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CHAPTER I

Introduction

1. A first glimpse of p-adic Hodge theory

Our goal in this section is to give a brief overview of p-adic Hodge theory. By nature,
p-adic Hodge theory admits two different perspectives, namely the arithmetic one and the
geometric one. We illustrate some key ideas of p-adic Hodge theory from each perspective,
and discuss how the two perspectives are related.

1.1. The arithmetic perspective

A central object in algebraic number theory is the absolute Galois group ΓQ = Gal(Q/Q).
Indeed, ΓQ contains virtually all arithmetic information about the field Q (and its finite
extensions, called number fields). However, since ΓQ is an extremely sophisticated object, we
usually study it via the natural injective group homomorphism ΓQp ↪! ΓQ induced by the
canonical embedding Q ↪! Qp for each prime p. It is a general principle that we can deduce
much information about ΓQ from knowledge about ΓQp for each prime p.

The group ΓQp is still quite complicated, but turns out to be much more manageable than
the group ΓQ is. The main objective of p-adic Hodge theory, from the arithmetic perspective,
is to understand ΓQp via continuous representations ΓQp ! GLn(Qp), called p-adic Galois
representations, where ΓQp and GLn(Qp) are respectively endowed with the profinite topology
and the p-adic topology. Such representations are particularly interesting as they encode two
different kinds of structures on Qp, namely the algebraic ones from the group ΓQp and the
analytic ones from the p-adic topology.

In this subsection, we present a primary example that shows why p-adic Galois represen-
tations are important for carrying out the strategy outlined in the first paragraph and how
we study such representations. Let E be an elliptic curve over Q, which refers to a projective
curve defined by a polynomial equation

y2 = x3 + ax+ b with a, b ∈ Q and 4a3 + 27b2 ̸= 0. (1.1)

Elliptic curves play a fundamental role in modern number theory, as highlighted by the proof of
Fermat’s last theorem. Elliptic curves have a remarkable property that their points (including
the point at infinity) naturally form an abelian group. Hence for each positive integer n and
a Q-algebra R, we can define

E[n](R) := {P ∈ E(R) : nP = O}
where O denotes the point at infinity identified as the zero element in E. We fix a prime ℓ
and define the ℓ-adic Tate module of E by

Tℓ(E) := lim −E[ℓv](Q)

where the transition maps send each P ∈ E[ℓv+1](Q) to ℓP ∈ E[ℓv](Q). It is a standard fact
that Tℓ(E) is a free Zℓ-module of rank 2, thereby admitting an isomorphism

Tℓ(E) ≃ Z2
ℓ .

5



6 I. INTRODUCTION

Moreover, the tautological action of ΓQ on Q naturally induces a continuous action on Tℓ(E),
and in turn gives rise to a continuous representation of ΓQ on

Vℓ(E) := Tℓ(E) ⊗Zℓ
Qℓ ≃ Q2

ℓ

called the ℓ-adic rational Tate module of E. The action of ΓQ on Tℓ(E) and Vℓ(E) contains
much information about the elliptic curve E, as suggested by the following fact:

Theorem 1.1.1 (Faltings [Fal83]). Given two elliptic curves E1 and E2 over Q, there exist
natural isomorphisms

Hom(E1, E2) ⊗Z Zℓ ∼= HomΓQ(Tℓ(E1), Tℓ(E2)),

Hom(E1, E2) ⊗Z Qℓ
∼= HomΓQ(Vℓ(E1), Vℓ(E2)).

(1.2)

In particular, a homomorphism between E1 and E2 is uniquely determined by the induced
map on the Tate modules as ΓQ-representations.

Remark. By a result of Tate [Tat66], an analogous statement holds for elliptic curves over
Fp with p ̸= ℓ. Both Theorem 1.1.1 and the result of Tate [Tat66] are special cases of
the Tate conjecture which relates subvarieties of a given algebraic variety X over a field k
to representations of Γk = Gal(k/k) on vector spaces over Qℓ that naturally arise from X
(similar to the ℓ-adic rational Tate module an elliptic curve). For elliptic curves over Qp, we
get injective maps instead of isomorphisms in (1.2).

However, the action of ΓQ on Tℓ(E) and Vℓ(E) is difficult to understand due to the com-
plexity of the group ΓQ. Following the strategy outlined at the beginning of this subsection,
we study the action of ΓQp on Tℓ(E) and Vℓ(E) for each prime p via the natural injection
ΓQp ↪! ΓQ. In fact, we have an identification

Tℓ(E) ∼= lim −E[ℓv](Qp) ≃ Z2
ℓ ,

endowed with a continuous action of ΓQp naturally induced by the tautological action on Qp.

We assume that E has good reduction at p. For p > 3, our assumption concretely means
that in the polynomial equation (1.1) we have a, b ∈ Zp with 4a3+27b2 not divisible by p. The
assumption is not very restrictive; indeed, it is a standard fact that E has good reduction at
almost all primes (i.e., all but finitely many primes). A main consequence of our assumption
is that E admits mod p reduction, denoted by E, which is an elliptic curve over Fp with points

given by the mod p solutions of (1.1). We have the ℓ-adic Tate module of E defined by

Tℓ(E) := lim −E[ℓv](Fp),
which turns out to be a free module over Zℓ (but not necessarily of rank 2) with a contin-
uous action of ΓFp = Gal(Fp/Fp) naturally induced by the tautological action on Fp, and
consequently obtain a continuous representation of ΓFp on the ℓ-adic rational Tate module

Vℓ(E) := Tℓ(E) ⊗Zℓ
Qℓ.

For p ̸= ℓ, we can explicitly describe the action of ΓQp on Tℓ(E) and Vℓ(E) through the ac-

tion of ΓFp on Tℓ(E) and Vℓ(E). In fact, if we regard Tℓ(E) and Vℓ(E) as ΓQp-representations
via the natural surjection ΓQp ↠ Gal(Qun

p /Qp) ∼= ΓFp , where Qun
p denotes the maximal un-

ramified extension of Qp, we have isomorphisms

Tℓ(E) ≃ Tℓ(E) and Vℓ(E) ≃ Vℓ(E)

as ΓQp-representations. Hence we only need to understand Tℓ(E) and Vℓ(E) as (continuous)
ΓFp-representations. The group ΓFp is topologically generated by the Frobenius automor-

phism which maps each element in Fp to its p-th power. It turns out that the Frobenius
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automorphism acts on Tℓ(E) and Vℓ(E) with characteristic polynomial x2 − apx + p, where

we set ap := p + 1 − #E(Fp). In summary, we can specify the action of ΓQp on Tℓ(E) and
Vℓ(E) by the following properties:

(i) The action is continuous and factors through the natural surjection ΓQp ↠ ΓFp .

(ii) The Frobenius automorphism of Fp, which topologically generates ΓFp , acts with

trace ap = p+ 1 − #E(Fp) and determinant p.

We refer to a ΓQp-representation with property (i) as an unramified representation, moti-
vated by the natural identification ΓFp

∼= Gal(Qun
p /Qp). Since the ℓ-adic Tate module Tℓ(E)

is unramified, it loses much information about the topology on ΓQp ; indeed, the topology on
ΓFp is very simple (being generated by one element, namely the Frobenius automorphism)
compared to the topology on ΓQp . Intuitively, for p ̸= ℓ the topologies on ΓQp and Qℓ do not
get along with each other very well, and in turn force the continuous action of ΓQp on Tℓ(E)
to be simple. It is worthwhile to mention that our discussion here explains one direction of
the following important criterion:

Theorem 1.1.2 (Néron [Nér64], Ogg [Ogg67], Shafarevich). An elliptic curve E over Q has
good reduction at p ̸= ℓ if and only if Tℓ(E) is unramified.

Let us now set p = ℓ. We have entered the realm of p-adic Hodge theory, as Vp(E) is
a p-adic Galois representation by construction. In stark contrast to our discussion in the
previous two paragraphs, we have the following facts:

(1) The (rational) Tate modules for E and E are never isomorphic; indeed, Tp(E) is
isomorphic to either Zp or 0 whereas Tp(E) is always isomorphic to Z2

p.

(2) Tp(E) and Vp(E) turn out to be never unramified; in other words, the action of
ΓQp on Tp(E) and Vp(E) always has a nontrivial contribution from the kernel of the
surjection ΓQp ↠ ΓFp , called the inertia group of Qp and denoted by IQp .

The second fact indicates that the topologies on ΓQp and Qp do not clash and thus allow
Tp(E) to carry a large amount of topological information. A side effect is that, as the first

fact shows, it is impossible to describe Tp(E) solely based on Tp(E).

We still wish to understand Tp(E) as a ΓQp-representation using the mod p reduction E.
Following Tate [Tat66] and Grothendieck [Gro71, Gro74], we regard E as a curve over Zp
and consider the functors defined by

E[p∞] := lim−!E[pv] and E[p∞] := lim−!E[pv],

called the p-divisible groups of E and E, where the transition maps are the natural inclusions.
For the elliptic curve E, the p-divisible group E[p∞] and the Tate module Tp(E) are equivalent
objects in the sense that we can determine one from the other. On the other hand, for the
mod p reduction E, the p-divisible group E[p∞] contains a lot of information that the Tate
module Tp(E) does not; for example, E[p∞] never vanishes while Tp(E) often does (as noted
in the previous paragraph). Hence the p-divisible groups serve as refinements of the p-adic
Tate modules which do not lose too much information under mod p reduction.

A remarkable fact is that we can describe p-divisible groups in terms of linear algebraic
objects. A Dieudonné module over Zp refers to a finite free Zp-module M equipped with an
endomorphism φM , called the Frobenius endomorphism, such that φM (M) contains pM . A
Honda system over Zp is a Dieudonné module M over Zp together with a submodule Fil1(M)

such that φM induces a natural isomorphism Fil1(M)/pFil1(M) ∼= M/φM (M).
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Theorem 1.1.3 (Dieudonné [Die55], Fontaine [Fon77]). Given an elliptic curve E over Q
with good reduction at p, we have the following statements:

(1) The mod p reduction E of E functorially gives rise to a Dieudonné module D(E)
over Zp of rank 2, which uniquely determines the isomorphism class of E[p∞].

(2) For p > 2, the elliptic curve E functorially gives rise to a Honda system over Zp with

underlying Dieudonné module D(E), which uniquely determines the isomorphism
class of E[p∞].

Remark. Let us make some remarks regarding Theorem 1.1.3.

(1) The results of Dieudonné [Die55] and Fontaine [Fon77] indeed yield anti-equivalences
of categories{

p-divisible groups over Fp
} ∼
 !

{
Dieudonné modules over Zp

}{
p-divisible groups over Zp

} ∼
 !

{
Honda systems over Zp

}
where the second anti-equivalence holds only for p > 2. For p = 2, the second
anti-equivalence holds after taking an appropriate subcategory on each side.

(2) The first statement, proved by Dieudonné [Die55], was the main motivation for Tate
[Tat66] and Grothendieck [Gro71, Gro74] to study p-divisible groups in relation
to the Tate modules, as it suggests that E[p∞] behaves much as Tℓ(E) for p ̸= ℓ.
The work of Tate [Tat66] and Grothendieck [Gro71, Gro74] eventually inspired
the proof of the second statement by Fontaine [Fon77] in an attempt to describe
E[p∞] via D(E) together with some “lifting data”.

(3) Our description of Dieudonné modules is potentially misleading. In general, for
a Dieudonné module M the endomorphism φM should be Frobenius-semilinear in
an appropriate sense. For Dieudonné modules over Zp, however, the Frobenius-
semilinearity simply means linearity as the Frobenius automorphism is trivial on the
residue field Fp.

Hence for p > 2 we can determine the isomorphism class of Tp(E) as a ΓQp-representation

by the Honda system associated to E with underlying Dieudonné module D(E). Intuitively,
once we fix an element σ ∈ ΓQp that lifts the Frobenius automorphism in ΓFp , the Honda

system encodes the actions of IQp and σ on Tp(E) respectively by Fil1(D(E)) and φD(E). For

p = 2, we can still associate a Honda system to E and show that it contains much information
about Tp(E), although in general it does not determine the isomorphism class of Tp(E).

If we instead want to study the p-adic Galois representation on Vp(E), we replace the

Dieudonné module D(E) by D(E) ⊗Zp Qp, called an isocrystal over Qp, which is a finite
dimensional vector space over Qp equipped with a (Frobenius-semilinear) automorphism. The

Honda system associated to E yields the isocrystal D(E) ⊗Zp Qp with the filtration given by

the subspace Fil1(D(E)) ⊗Zp Qp, called a filtered isocrystal over Qp. Now Theorem 1.1.3
implies for p > 2 that the filtered isocrystal associated to E determines the isomorphism class
of Vp(E) as a p-adic Galois representation, which turns out to apply also for p = 2.

We have thus transferred the study of Tp(E) and Vp(E) as ΓQp-representations to the
study of certain linear algebraic objects, such as Dieudonné modules and isocrystals. In fact,
a main theme of p-adic Hodge theory is to construct a dictionary that relates p-adic Galois
representations to various linear algebraic objects. Our discussion here illustrates a prototype
for such a dictionary.
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1.2. The geometric perspective

Our discussion in §1.1 shows how we can study elliptic curves over Q via their Tate
modules as ΓQ-representations. It is natural to ask whether we can similarly study other
algebraic varieties. Let X be a smooth proper variety over Q. For each Q-algebra R, we
write XR for the base change of X to R. Given an integer n ≥ 0 and a prime ℓ, we have the
étale cohomology group Hn

ét(XQ,Qℓ) which is a finite dimensional vector space over Qℓ with
a continuous action of ΓQ. As a special case, for an elliptic curve E over Q we have a natural
identification

Vℓ(E)∨ ∼= H1
ét(EQ,Qℓ)

as ΓQ-representations, where Vℓ(E)∨ denotes the dual representation of Vℓ(E). Following
the strategy outlined in §1.1, for each prime p we study the action of ΓQp on Hn

ét(XQ,Qℓ)
via the natural injection ΓQp ↪! ΓQ; in other words, we study the étale cohomology group
Hn

ét(XQp
,Qℓ) as a representation of ΓQp . For p ̸= ℓ, the ΓQp-representation Hn

ét(XQp
,Qℓ)

tends to be simple; indeed, it is unramified for all but finitely many p ̸= ℓ, as we have already
seen for the rational Tate modules of an elliptic curve in §1.1. For p = ℓ, on the other hand,
Hn

ét(XQp
,Qp) as a p-adic Galois representation turns out to carry interesting information

about the geometry of X. The main objective of p-adic Hodge theory, from the geometric
perspective, is to extract information about the geometric structure of an algebraic variety
from the p-adic étale cohomology groups.

In this subsection, we illustrate how the classical Hodge theory inspires fundamental
results in p-adic Hodge theory which relates the p-adic étale cohomology groups of an algebraic
variety over Qp (or its finite extension) to other cohomology groups. Let us consider an elliptic
curve E over Q. We may identify E(C) as a complex torus via an isomorphism

E(C) ≃ C/(Z⊕ Zτ) for some nonreal τ ∈ C.
Let α and β respectively denote the loops on E(C) induced by the line segments on C con-
necting 0 to 1 and τ , as illustrated in the following figure:

α

β
Re

Im

0

τ

1

1 + τ

We have an isomorphism
H1(E(C),Z) ≃ Z⊕ Z

with a basis given by the homotopy classes of α and β, and consequently find

H1(E(C),C) ∼= Hom(H1(E(C),C)) ≃ C⊕ C (1.3)

by Poincaré duality. Moreover, since E(C) has genus 1 there exists an isomorphism

H0(EC,Ω
1
EC) ≃ C

with a basis given by dz. Hence we obtain an isomorphism

H0(EC,Ω
1
EC) ⊕H0(EC,Ω

1
EC

)
∼
−! H1(E(C),C) (1.4)
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which maps dz and dz respectively to
∫
dz = (1, τ) and

∫
dz = (1, τ) under the isomorphism

(1.3). It is not hard to see that this isomorphism is canonical. In fact, it is a special case of
the Hodge decomposition given by the following theorem:

Theorem 1.2.1. For a smooth proper variety X over C, there exists a canonical isomorphism

Hn(X(C),Q) ⊗Q C ∼= Hn
dR(X/C) ∼=

⊕
i+j=n

H i(X,Ωj
X)

with H i(X,Ωj
X) = Hj(X,Ωi

X).

Theorem 1.2.1 admits analogues for the p-adic étale cohomology of an algebraic variety
over Qp. Let Cp denote the p-adic completion of Qp, called the field of p-adic complex numbers.
The field Cp is complete and algebraically closed, just as the field C is. Since the tautological

action of ΓQp on Qp is continuous, it uniquely extends to an action on Cp. For a p-adic
analogue of the complex conjugate, we consider the p-adic cyclotomic character

χ : ΓQp −! Aut(Zp) ∼= Z×
p

given by the ΓQp-action on the group

Tp(µp∞) := lim −µp
v(Qp) ≃ lim −Z/pvZ = Zp

where µpv(Qp) denotes the group of pv-th roots of unity in Qp, and write Cp(n) for Cp with
ΓQp-action twisted by χn in the sense that each γ ∈ ΓQp acts on Cp(n) as χ(γ)nγ. For an
elliptic curve E over Qp with good reduction, the work of Tate [Tat67] yields a canonical
isomorphism

H1
ét(EQp

,Qp) ⊗Qp Cp ∼= H0(E,Ω1
E/Qp

) ⊗Qp Cp ⊕H1(E,Ω0
E/Qp

) ⊗Qp Cp(−1)

which is compatible with ΓQp-actions. In fact, this isomorphism is a special case of the
Hodge-Tate decomposition given by the following theorem:

Theorem 1.2.2 (Faltings [Fal88]). For a smooth proper variety X over Qp, there exists a
canonical isomorphism

Hn
ét(XQp

,Qp) ⊗Qp Cp ∼=
⊕
i+j=n

H i(X,Ωj
X/Qp

) ⊗Qp Cp(−j) (1.5)

which is compatible with ΓQp-actions.

Let us take the Hodge-Tate period ring BHT :=
⊕
n∈Z

Cp(n) and write the isomorphism (1.5)

as a ΓQp-equivariant isomorphism of graded algebras

Hn
ét(XQp

,Qp) ⊗Qp BHT
∼=
( ⊕
i+j=n

H i(X,Ωj
X/Qp

)
)
⊗Qp BHT. (1.6)

A result of Tate [Tat67] and Sen [Sen80] establishes an identification B
ΓQp

HT = Qp and in turn
yields an isomorphism of graded Qp-algebras(

Hn
ét(XQp

,Qp) ⊗Qp BHT

)ΓQp ∼=
⊕
i+j=n

H i(X,Ωj
X/Qp

).

In particular, we can compute the Hodge numbers of X from Hn
ét(XQp

,Qp).

Theorem 1.2.2 is, however, not a complete analogue of Theorem 1.2.1 as it does not give
a comparison isomorphism which directly relate the étale cohomology and the de Rham co-
homology. Fontaine [Fon82] formulated a conjecture that such a comparison isomorphism
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exists as a refinement of the isomorphism (1.6), inspired by the fact that the de Rham co-
homology group Hn

dR(X/Qp) has a natural filtration
{

Film
(
Hn

dR(X/Qp)
) }

m∈Z, called the

Hodge filtration, with its graded vector space gr (Hn
dR(X/Qp)) yielding a natural isomorphism

gr (Hn
dR(X/Qp)) ∼=

⊕
i+j=n

H i(X,Ωj
X/Qp

).

A key ingredient of the conjecture is the de Rham period ring BdR which Fontaine [Fon82]
constructed as a Qp-algebra with the following properties:

(i) BdR carries a natural action of ΓQp with B
ΓQp

dR = Qp.

(ii) BdR admits a natural filtration { Filn(BdR) }n∈Z with BHT as its graded algebra.

Fontaine’s conjecture is now a theorem, commonly referred to as the p-adic de Rham com-
parison theorem, which we state as follows:

Theorem 1.2.3 (Faltings [Fal89]). For a smooth proper variety X over Qp, there exists a
canonical isomorphism

Hn
ét(XQp

,Qp) ⊗Qp BdR
∼= Hn

dR(X/Qp) ⊗Qp BdR (1.7)

which is compatible with ΓQp-actions and filtrations.

Remark. The filtration on the right side is the convolution filtration given by

Film
(
Hn

dR(X/Qp) ⊗Qp BdR

)
:=

⊕
i+j=m

Fili
(
Hn

dR(X/Qp)
)
⊗Qp Filj(BdR) for every m ∈ Z.

Theorem 1.2.3 yields Theorem 1.2.2 as a formal consequence; indeed, we obtain the iso-
morphism (1.6) from the isomorphism (1.7) by passing to the associated graded vector spaces.
In addition, Theorem 1.2.3 induces a natural isomorphism(

Hn
ét(XQp

,Qp) ⊗Qp BdR

)ΓQp ∼= Hn
dR(X/Qp),

thereby allowing us to recover Hn
dR(X/Qp) from Hn

ét(XQp
,Qp). Therefore Theorem 1.2.3 (with

Theorem 1.2.2 as its consequence) indicates that the p-adic étale cohomology of an algebraic
variety over Qp behaves much as the singular cohomology of an algebraic variety over C does.

Let us now assume that X has good reduction over Qp. Intuitively, our assumption
means that we may regard X as a smooth scheme over Zp, and thus allows us to take its

mod p reduction X. Motivated by our discussion in §1.1, we wish to understand the p-adic
Galois representation Hn

ét(XQp
,Qp) using X. We consider the crystalline cohomology group

Hn
cris(X/Zp) which is a Dieudonné module over Zp with a natural isomorphism

Hn
cris(X/Zp) ⊗Zp Qp

∼= Hn
dR(X/Qp)

and a canonical filtration
{

Film
(
Hn

cris(X/Zp)
) }

m∈Z induced by the Hodge filtration on

Hn
dR(X/Qp). For an elliptic curve E with good reduction over Qp, we may naturally iden-

tify H1
cris(E/Zp)⊗Zp Qp with the filtered isocrystal associated to E, which in turn determines

H1
ét(EQp

,Qp) ∼= Vp(E)∨ by our discussion in §1.1. For the general case, Grothendieck [Gro71]

proposed a conjecture that Hn
cris(X/Zp)⊗ZpQp as a filtered isocrystal determines Hn

ét(XQp
,Qp)

as a p-adic Galois representation in a functorial way; indeed, his conjecture predicts that there
exists a fully faithful functor D on a certain category of p-adic Galois representations with

D
(
Hn

ét(XQp
,Qp)

)
= Hn

cris(X/Zp) ⊗Zp Qp.

We refer to the functor D as the Grothendieck mysterious functor.
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Fontaine [Fon82, Fon83] reformulated the conjecture of Grothendieck [Gro71] in terms
of a comparison isomorphism between the étale cohomology and the crystalline cohomol-
ogy. His idea was to refine the de Rham comparison isomorphism (1.7) by constructing the
crystalline period ring Bcris, which is a Qp-subalgebra of BdR with the following properties:

(i) Bcris carries a natural action of ΓK with B
ΓQp

cris = Qp, induced by the action on BdR.

(ii) Bcris admits a (Frobenius-semilinear) endomorphism φ, called the Frobenius endo-
morphism, and a natural filtration { Filn(Bcris) }n∈Z given by the filtration on BdR.

Fontaine’s conjecture is now a theorem, commonly referred to as the crystalline comparison
theorem, which we state as follows:

Theorem 1.2.4 (Faltings [Fal89]). For a smooth proper variety X over Qp with mod p

reduction X, there exists a canonical isomorphism

Hn
ét(XQp

,Qp) ⊗Qp Bcris
∼= Hn

cris(X/Zp) ⊗Zp Bcris (1.8)

which is compatible with ΓQp-actions, filtrations, and Frobenius actions.

Remark. As in Theorem 1.2.3, the right side carries the convolution filtration given by

Film
(
Hn

cris(X/Zp) ⊗Zp Bcris

)
:=

⊕
i+j=m

Fili
(
Hn

cris(X/Zp)
)
⊗Zp Filj(Bcris) for every m ∈ Z.

The Frobenius actions refer to the Frobenius endomorphisms on Hn
cris(X/Zp) and Bcris.

Under the assumption that X has good reduction, we can obtain the de Rham comparison
isomorphism (1.7) from the crystalline comparison isomorphism (1.8) by tensoring with BdR

and forgetting the Frobenius actions. In addition, Theorem 1.2.4 yields a natural isomorphism(
Hn

ét(XQp
,Qp) ⊗Qp Bcris

)ΓQp ∼= Hn
cris(X/Zp) ⊗Zp Qp,

thereby suggesting that the mysterious functor D takes the form

D(V ) = (V ⊗Qp Bcris)
ΓQp

for every p-adic Galois representation V . It turns out, by the work of Fontaine [Fon94], that
the functor D is fully faithful on a suitable category of p-adic Galois representations with
values taken in the category of filtered isocrystals. In fact, Hn

cris(X/Zp) ⊗Zp Qp determines
Hn

ét(XQp
,Qp) by an identification

Hn
ét(XQp

,Qp) ∼=
(
Hn

cris(X/Zp) ⊗Zp Bcris

)φ=1 ∩ Fil0
(
Hn

cris(X/Zp) ⊗Zp Bcris

)
(1.9)

where
(
Hn

cris(X/Zp) ⊗Zp Bcris

)φ=1
denotes the space of invariants in Hn

cris(X/Zp) ⊗Zp Bcris

under the Frobenius action.

As our discussion demonstrates, a main theme in p-adic Hodge theory is to establish a
comparison isomorphism that relates p-adic étale cohomology groups to cohomology groups
of a different kind. In addition to the theorems presented in this subsection, there are many
results of a similar flavor, notably by the work of Tsuji [Tsu99], Scholze [Sch13], and Bhatt-
Morrow-Scholze [BMS18, BMS19]. Let us also mention that there are other approaches for
the comparison theorems presented in this subsection, in particular by the work of Fontaine-
Messing [FM87], Nizio l [Niz98, Niz08], and Beilinson [Bei12, Bei13].
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1.3. The interplay via algebraic functors

In the previous subsections, we illustrated two main themes in p-adic Hodge theory. The
first one, from the arithmetic perspective, is to construct a dictionary that relates p-adic
Galois representations to various linear algebraic objects. The second one, from the geometric
perspective, is to establish a comparison isomorphism that relates p-adic étale cohomology
groups to other cohomology groups.

In this subsection, we describe a connection between the two main themes of p-adic Hodge
theory provided by some linear algebraic functors. These functors originate in the work of
Fontaine [Fon79, Fon82, Fon83] which proposes a uniform approach for the p-adic com-
parison theorems in an attempt to resolve the conjecture of Grothendieck [Gro71] on the
mysterious functor. We write RepQp

(ΓQp) for the category of p-adic Galois representations,
and VectQp for the category of finite dimensional vector spaces over Qp. Let B be a p-adic
period ring, such as BHT, BdR or Bcris, which is a Qp-algebra carrying a natural ΓQp-action

with BΓQp = Qp. We define the functor DB : RepQp
(ΓQp) −! VectQp by setting

DB(V ) := (V ⊗Qp B)ΓQp for each V ∈ RepQp
(ΓQp)

and say that V ∈ RepQp
(ΓQp) is B-admissible if the natural ΓQp-equivariant map

αV : DB(V ) ⊗Qp B −! (V ⊗Qp B) ⊗Qp B
∼= V ⊗Qp (B ⊗Qp B) −! V ⊗Qp B

is an isomorphism. We enhance the functor DB by incorporating additional structures on B,
as demonstrated by the following examples:

(1) DBHT
(V ) for each V ∈ RepQp

(ΓQp) carries a grading naturally induced by the grading
on BHT.

(2) DBdR
(V ) for each V ∈ RepQp

(ΓQp) carries a filtration naturally induced by the
filtration on BdR.

(3) DBcris(V ) for each V ∈ RepQp
(ΓQp) carries a Frobenius endomorphism and a filtration

naturally induced by the ones on Bcris.

Then for a smooth proper variety X over Qp, we may state the p-adic comparison theorems
from §1.2 as follows:

(1) Hn
ét(XQp

,Qp) is BHT-admissible with a natural isomorphism

DBHT
(Hn

ét(XQp
,Qp)) ∼=

⊕
i+j=n

H i(X,Ωj
X/Qp

)

which is compatible with gradings on both sides.

(2) Hn
ét(XQp

,Qp) is BdR-admissible with a natural isomorphism

DBdR
(Hn

ét(XQp
,Qp)) ∼= Hn

dR(X/Qp)

which is compatible with filtrations on both sides.

(3) If X admits mod p reduction X, then Hn
ét(XQp

,Qp) is Bcris-admissible with a natural

isomorphism

DBcris(H
n
ét(XQp

,Qp)) ∼= Hn
cris(X/Zp) ⊗Zp Qp

which is compatible with Frobenius endomorphisms and filtrations on both sides.
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Let us denote by RepBQp
(ΓQp) the category of B-admissible representations. The work of

Fontaine [Fon82, Fon83] yields a hierarchy of p-adic Galois representations given by

RepBcris
Qp

(ΓQp) ⊊ RepBdR
Qp

(ΓQp) ⊊ RepBHT
Qp

(ΓQp)

with the associated functors satisfying the following relations:

• DBHT
(V ) for each V ∈ RepBdR

Qp
(ΓQp) is naturally isomorphic to the graded vector

space of DBdR
(V ).

• DBdR
(V ) for each V ∈ RepBcris

Qp
(ΓQp) is naturally isomorphic to DBcris(V ) (after

forgetting the Frobenius endomorphism).

This hierarchy realizes relations between various cohomology groups for a smooth proper
variety X over Qp, as presented in §1.2 and summarized in the following statements:

• The Hodge-Tate decomposition (1.6) follows from the de Rham comparison isomor-
phism (1.7) by passing to the associated graded space via the identification

gr (Hn
dR(X/Qp)) ∼=

⊕
i+j=n

H i(X,Ωj
X/Qp

).

where gr (Hn
dR(X/Qp)) denote the graded vector space of Hn

dR(X/Qp).

• IfX has good reduction, the de Rham comparision isomorphism (1.7) follows from the
crystalline comparison isomorphism (1.8) by tensoring with BdR via the identification

Hn
cris(X/Zp) ⊗Zp Qp

∼= Hn
dR(X/Qp).

In fact, we can conceptualize our hierarchy by the following principles:

(1) RepBHT
Qp

(ΓQp) contains almost all p-adic Galois representations which arise in practice.

(2) RepBdR
Qp

(ΓQp) contains all p-adic Galois representations which come from geometry.

(3) RepBcris
Qp

(ΓQp) contains all p-adic Galois representations which come from geometry

with integral structures.

We wish to understand how the category RepBQp
(ΓQp) behaves, especially in conjunc-

tion with the functor DB. A general formalism developed by Fontaine [Fon94] shows that
RepBQp

(ΓQp) and DB have the following properties:

(i) DB is exact and faithful on RepBQp
(ΓQp).

(ii) RepBQp
(ΓQp) is closed under taking subquotients.

(iii) RepBQp
(ΓQp) is closed under tensor products, with a natural identification

DB(V ⊗Qp W ) ∼= DB(V ) ⊗Qp DB(W ) for any V,W ∈ RepBQp
(ΓQp).

(iv) RepBQp
(ΓQp) is closed under taking duals, with a natural identification

DB(V ∨) ∼= HomQp(DB(V ),Qp) for every V ∈ RepBQp
(ΓQp)

where V ∨ denotes the dual representation of V .

Moreover, DBcris and RepBcris
Qp

(ΓQp) have a remarkable property given by the following result:

Theorem 1.3.1 (Fontaine [Fon94]). The functor DBcris is fully faithful on RepBcris
Qp

(ΓQp).

Remark. Theorem 1.2.4 and Theorem 1.3.1 together resolve the conjecture of Grothendieck
[Gro71] on the mysterious functor.
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Theorem 1.3.1 implies that studying Bcris-admissible representations is equivalent to
studying their associated filtered isocrystals. Therefore it is vital to understand the essential
image of DBcris , called the category of admissible filtered isocrystals over Qp. To every filtered
isocrystal over Qp, we attach two invariants called the Newton polygon and the Hodge poly-
gon , which are convex polygons with integer breakpoints. By definition, the Newton polygon
encodes the eigenspace decomposition for the Frobenius endomorphism while the Hodge poly-
gon encodes the isomorphism class of the associated graded vector space. A remarkable result
of Mazur [Maz72] and Berthelot-Ogus [BO78] is that for a smooth proper variety X over
Qp with mod p reduction X the Newton polygon of Hn

cris(X/Zp) ⊗ Qp lies on or above the

Hodge polygon of Hn
cris(X/Zp) ⊗ Qp with same endpoints. Inspired by this result, the work

of Colmez-Fontaine [CF00] provides an intrinsic description for the category of admissible
isocrystals by some explicit conditions on Newton polygons and Hodge polygons as follows:

Theorem 1.3.2 (Colmez-Fontaine [CF00]). A filtered isocrystal N over Qp is admissible if
and only if it satisfies the following properties:

(i) For every filtered isocrystalM ⊆ N , its Newton polygon lies above its Hodge polygon.

(ii) The Newton polygon and the Hodge polygon of N have the same endpoints.

The functor DBcris and the notion of Bcris-admissibility are very useful for studying elliptic
curves. A key strategy is, as already demonstrated in §1.1, to obtain information about the
p-adic Tate module of an elliptic curve over Q from the Frobenius action and the filtration on
the associated filtered isocrystal. As an application of this strategy, we can show that for an
elliptic curve E over Q with mod p reduction E the Newton polygon and the Hodge polygon
of DBcris(Vp(E)) coincide if and only if Vp(E) has dimension 1. For another application, we
have a p-adic analogue of Theorem 1.1.2 given by the following result:

Theorem 1.3.3 (Coleman-Iovita [CI99]). An elliptic curve E over Q has good reduction at
p if and only if Tp(E) is Bcris-admissible.

Remark. Both Theorem 1.1.2 and Theorem 1.3.3 readily extend to abelian varieties, which
are projective varieties with a (commutative) group structure on the set of points.

In order to study RepBHT
Qp

(ΓQp), the largest category in our hierarchy of p-adic Galois

representations, we often consider invariants called Hodge-Tate weights. By definition, an

integer d is a Hodge-Tate weight of V ∈ RepBHT
Qp

(ΓQp) with multiplicity m if and only if the

degree d part of the graded vector space DBHT
(V ) has dimension m. Hodge-Tate weights are

essentially algebraic generalizations of Hodge numbers; indeed, for a smooth proper variety X
over Qp, computing its Hodge numbers is equivalent to computing the Hodge-Tate weights of
its p-adic étale cohomology (with multiplicity). Moreover, Hodge-Tate weights are useful for
studying BHT-admissible representations which do not necessarily come from geometry; for
example, a continuous character η : ΓQp −! Qp is BHT-admissible with Hodge-Tate weight d

if and only if the image of IQp under ηχ−d is finite.

Our discussion in this subsection indicates that period rings and their associated functors
provide a general framework for the two main themes in p-adic Hodge theory. From the
arithmetic perspective, they provide dictionaries for classifying and studying p-adic Galois
representations in terms of linear algebraic objects. From the geometric perspective, they
allow us to uniformly formulate p-adic comparison theorems and to systemically detect geo-
metric properties of an algebraic variety over Qp from its p-adic étale cohomology. Therefore
period rings and their associated functors are essential for studying p-adic Hodge theory via
the interplay between the arithmetic and geometric perspectives.
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2. A first glimpse of the Fargues-Fontaine curve

In this section, we provide a brief introduction to a remarkable geometric object called
the Fargues-Fontaine curve, which plays a fundamental role in modern p-adic Hodge theory.
The main points that we convey in this section are as follows:

(1) The Fargues-Fontaine curve is akin to the complex projective line P1
C in many aspects.

(2) The Fargues-Fontaine curve provides a geometric framework for studying many im-
portant objects in p-adic Hodge theory.

Along the way, we discuss some additional facts about p-adic period rings and related objects.

2.1. Construction and basic properties

In this subsection, we demonstrate the construction and some key features of the Fargues-
Fontaine curve via comparisons with the complex projective line P1

C. Let us recall that P1
C

has the following properties:

(i) It is noetherian, connected, and regular of dimension 1.

(ii) Its Picard group Pic(P1
C) is canonically isomorphic to Z.

(iii) It has arithmetic genus 0 in the sense that H1(P1
C,OP1

C
) vanishes.

(iv) It admits a closed point ∞, namely the point at infinity, with natural isomorphisms

P1
C −∞ ∼= Spec (C[z]) and ÔP1

C,∞
∼= C[[z−1]]

where ÔP1
C,∞

denotes the completed local ring at ∞.

Property (iv) is closely related to the natural exact sequence

0 −! C −! C[z] −! C((z−1))/C[[z−1]] −! 0. (2.1)

Intuitively, this exact sequence indicates that we can construct P1
C by gluing the complex

affine line A1
C = Spec (C[z]) to the infinitesimal disk at ∞, given by Spec (C[[z−1]]), along the

punctured infinitesimal disk at ∞, given by Spec (C((z−1))).

The construction of the Fargues-Fontaine curve stems from a remarkable discovery of
Fontaine [Fon94] that the exact sequence (2.1) admits an analogue for p-adic period rings.
By construction, the de Rham period ring BdR is a discretely valued complete field with
residue field Cp. We write B+

dR for the valuation ring of BdR and Be := Bφ=1
cris for the ring of

φ-invariants in Bcris.

Theorem 2.1.1 (Fontaine [Fon94]). The natural sequence

0 −! Qp −! Be −! BdR/B
+
dR −! 0 (2.2)

is exact.

Remark. Theorem 2.1.1 is one of the most fundamental results in p-adic Hodge theory, with
many important applications including Theorem 1.3.1 and Theorem 1.3.2.

The exact sequences (2.1) and (2.2) have the following similarities:

(1) C[[z−1]] and B+
dR are both complete discrete valuation rings, with fraction fields

respectively given by C((z−1)) and BdR.

(2) C[z] and Be are both principal ideal domains.

The second similarity is another surprising discovery of Fontaine, primarily based on the work
of Berger [Ber08]. The similarities of the exact sequences (2.1) and (2.2) inspire the construc-
tion of the Fargues-Fontaine curve X by gluing Spec (Be) and Spec (B+

dR) along Spec (BdR).
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Theorem 2.1.2 (Fargues-Fontaine [FF18]). The Fargues-Fontaine curve X is a Qp-scheme
with the following properties:

(i) It is noetherian, connected and regular of dimension 1.

(ii) Its Picard group Pic(X) is canonically isomorphic to Z.

(iii) It has arithmetic genus 0 in the sense that H1(X,OX) vanishes.

(iv) It admits a closed point ∞ with natural isomorphisms

X −∞ ∼= Spec (Be) and ÔX,∞ ∼= B+
dR

where ÔX,∞ denotes the completed local ring at ∞.

Remark. However, unlike P1
C, the Fargues-Fontaine curve is not an algebraic variety. The

main issue is that it is not of finite type over the base field Qp; indeed, property (iv) implies
that the residue field at ∞ is Cp and thus is not finitely generated over Qp.

For an explicit description of the Fargues-Fontaine curve, we have a natural isomorphism
X ∼= Proj (P ) for a graded ring

P :=
⊕
n≥0

B(n)
e

where we set B
(n)
e := { f ∈ Be : ν∞(f) ≥ −n } with ν∞ denoting the valuation on BdR. For

comparison, we have the identification P1
C = Proj (C[z0, z1]) and an isomorphism

C[z0, z1] ∼=
⊕
n≥0

C[z](n)

where we set C[z](n) := { f ∈ C[z] : ν∞(f) ≥ −n } = { f ∈ C[z] : deg(f) ≤ n } with ν∞ denot-
ing the valuation on C((z−1)). The graded rings P and C[z0, z1] have an important common

feature of being generated in degree 1 (i.e., being generated by elements in B
(1)
e and C[z](1)).

In fact, this feature is responsible for numerous similarities between X and P1
C.

The Fargues-Fontaine curve has a surprising connection to perfectoid fields, which are
nonarchemedan fields of a special kind introduced by Scholze [Sch12]. Perfectoid fields are
very useful for studying problems in characteristic 0 by converting them to problems in pos-
itive characteristic. The key underlying fact is that every perfectoid field C with residue
characteristic p gives rise to a perfectoid field in characteristic p given by

C♭ := lim −
x 7!xp

C,

called the tilt of C. For example, Cp is a perfectoid field with its tilt F := C♭p naturally

isomorphic to the completion of Fp((t)). Let us consider the set Ŷ of untilts of F , which
refer to equivalence classes of pairs consisting of a perfectoid field C and an isomorphism
ι : C♭ ≃ F . We write o for the trivial untilt given by F and its identity map, which represents

the unique untilt of F in characteristic p. The set Y := Ŷ − o admits a natural action of
the Frobenius automorphism φF on F given by mapping each (C, ι) ∈ Y to (C,φF ◦ ι). By a
result of Kedlaya-Liu [KL15], the set |X| of closed points on X admits a natural bjection

|X| ∼
−! Y/φZ

F =
(
Ŷ − o

)
/φZ

F (2.3)

where φZ
F denotes the cyclic group generated by φF . We note that this bijection is reminiscent

of the isomorphism P1
C(C) ∼=

(
C2 − (0, 0)

)
/C× with C× acting by scalar multiplication.
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2.2. Vector bundles and p-adic Galois representations

The construction of the Fargues-Fontaine curve manifests direct links to p-adic Hodge
theory. In particular, it provides a geometric description for several rings in p-adic Hodge
theory and encodes a remarkable relation between these rings given by Theorem 2.1.1. The
work of Fargues-Fontaine [FF18] greatly extend these links to incorporate many other objects
in p-adic Hodge theory using vector bundles on X (i.e., locally free sheaves of finite rank).

In this subsection, we illustrate the significance of vector bundles on X in p-adic Hodge
theory, with particular focus on their relation to isocrystals and p-adic Galois representations.
As a key technical result, the work of Fargues-Fontaine [FF18] establishes a classification
theorem for vector bundles on X. Let us recall that, by a celebrated theorem of Grothendieck
[Gro57], every vector bundle V on P1

C admits a direct sum decomposition

V ≃
m⊕
i=1

OP1
C
(di) with di ∈ Z

where OP1
C
(di) denotes the line bundle on P1

C corresponding to di under the isomorphism

Pic(P1
C) ∼= Z. The classification theorem for vector bundles on X yields an analogous de-

composition, although the direct summands are not necessarily line bundles. For a precise
statement, we define the degree of a vector bundle V on X to be the image of det(V) := ∧rk(V)V
under the isomorphism Pic(X) ∼= Z, where rk(V) denotes the rank of V.

Theorem 2.2.1 (Fargues-Fontaine [FF18]). We can classify the vector bundles on X as
follows:

(1) For a rational number λ = d/r written in a reduced form with positive denominator,
there exists a unique indecomposable vector bundle OX(λ) of rank r and degree d

(2) Every vector bundle V on X admits a direct sum decomposition

V ≃
m⊕
i=1

OX(λi) with λi ∈ Q.

Remark. Kedlaya [Ked04, Ked05] obtained an equivalent statement of Theorem 2.2.1 prior
to the work of Fargues-Fontaine [FF18]. His result concerns certain analogues of isocrystals
and leads to a number of important results for studying the Fargues-Fontaine curve.

Theorem 2.2.1 finds its motivation in an analogous classification theorem for isocrystals.

Let us denote the completion of Qun
p by Q̂un

p . The isocrystals over Q̂un
p of rank 1 are canonically

in bijection with the integers, where each isocrystal N over Q̂un
p of rank 1 maps to the p-adic

valuation of φN (1) upon choosing an isomorphism N ≃ Q̂un
p . We define the degree of an

isocrystal N over Q̂un
p to be the integer corresponding to the isocrystal det(N) := ∧rk(N)N

over Q̂un
p of rank 1, where rk(N) denotes the rank of N .

Theorem 2.2.2 (Manin [Man63]). We can classify the isocrystals over Q̂un
p as follows:

(1) For a rational number λ = d/r written in a reduced form with positive denominator,

there exists a unique simple isocrystal N(λ) over Q̂un
p of rank r and degree d.

(2) Every isocrystal N over Q̂un
p admits a direct sum decomposition

N ≃
m⊕
i=1

N(λi) with λi ∈ Q.
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In fact, the work of Fargues-Fontaine [FF18] reveals a tidy connection between the cate-
gory BunX of vector bundles on X and the category φ−ModQp of isocrystals over Qp, given
by an essentially surjective functor

E : φ−ModQp −! BunX

which is compatible with ranks, degrees, direct sums, and tensor products. The key observa-
tion is that we can produce a vector bundle V on X by gluing a vector bundle V◦ on Spec (Be)

to a vector bundle V̂∞ on Spec (B+
dR) along Spec (BdR); in other words, we obtain a vector

bundle on X from a pair (M◦, M̂∞) consisting of a free Be-module M◦ of finite rank and a

B+
dR-lattice M̂∞ in M◦⊗Be BdR. The functor E sends each isocrystal N over Qp to the vector

bundle obtained from the pair (Nφ=1 ⊗Qp Be, N ⊗Qp B
+
dR) where Nφ=1 denotes the space of

φN -invariants in N .

On the category MFφQp
of filtered isocrystals over Qp, we have another functor

E ′ : MFφQp
−! BunX

which sends each filtered isocrystal N over Qp with filtration { Filn(N) }n∈Z to the vector

bundle obtained from the pair (Nφ=1 ⊗Qp Be,Fil0(N ⊗Qp BdR)) with

Fil0(N ⊗Qp BdR) =
⊕
n∈Z

Filn(N) ⊗Qp Fil−n(BdR).

The vector bundle E ′(N) for each N ∈ MFφQp
carries a natural action of ΓQp induced by the

ΓQp-action on BdR, as the ring Be and the filtration on BdR turn out to be stable under the
ΓQp-action on BdR. The functor E ′ allows us to study filtered isocrystals and p-adic Galois
representations via vector bundles on X, as indicated by the following facts:

(1) There exists a natural ΓQp-equivariant isomorphism

V ∼= H0(X, E ′(DBcris(V ))) for every V ∈ RepBcris
Qp

(ΓQp).

(2) Every N ∈ MFφQp
is admissible if and only if E ′(N) is trivial.

The first fact follows directly from the constructions of X and E ′, whereas the second fact is
a consequence of Theorem 2.2.1. It is worthwhile to mention that these facts yield geometric
proofs of Theorem 1.3.1 and Theorem 1.3.2.

Let us finish this section by addressing another major application of the Fargues-Fontaine,
whose scope reaches far beyond p-adic Hodge theory. One of the most influential research
projects in modern mathematics is the Langlands program, which investigates intricate con-
nections between various areas of mathematics, such as number theory, geometry, and complex
analysis. The Fargues-Fontaine curve has a remarkable application to a central conjecture in
the Langlands program, namely the local Langlands correspondence, which aims to relate rep-
resentations of algebraic groups over Qp to representations of ΓQp . In fact, the seminal work of
Fargues-Scholze [FS21] proposes a geometric construction of the local Langlands correspon-
dence in terms of vector bundles on the Fargues-Fontaine curve. The construction involves
vast generalizations of several facts presented in this section, including the bijection (2.3) and
Theorem 2.2.1, in addition to a number of advanced tools from p-adic geometry. While we
are unable to discuss any details about the construction in this book, we hope that our brief
exhibition inspires curious readers to study related topics. The book of Scholze-Weinstein
[SW20] is a wonderful introductory reference for the theoretical foundations.
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Exercises

1. Let E be an elliptic curve over Q, defined by an equation

y2 = x3 + ax+ b with a, b ∈ Q and 4a3 + 27b2 ̸= 0.

(1) Show that every nonvertical line intersects with E at three points (over Q), counted
with multiplicity.

(2) The group law on E, written additively, satisfies the following properties:

(i) The identity element O is the point at infinity.

(ii) Given a point P on E, the vertical line passing through it and E have the second
intersection point at −P .

(iii) Given two points P, Q on E with distinct x-coordinates, the line passing through
them and E have the third intersection point at −(P +Q).

(iv) Given a point P on E, the tangent line to E at P and E have the third inter-
section point at −(P + P ).

Given two arbitrary points P = (x1, y1) and Q = (x2, y2) on E, derive a formula for
their sum P +Q.

Remark. The conclusions of this exercise remains valid if one replaces the base field Q with
another field k. In addition, one can verify that the group law on E given by the above
properties is indeed associative. For curious readers who attempt to check this by themselves,
there are two possible approaches as follows:

(a) One can use the formula for the group law obtained here for a direct verification.

(b) One can use the Riemann-Roch theorem to show that the group law on E agrees
with the group law on Pic0(E), the degree 0 part of the Picard group Pic(E).

2. Let E be an elliptic curve over Q and n be a positive integer.

(1) Show that E[n](Q) is an abelian group of order n2 with a natural action of ΓQ.

Hint. Identify E[n](Q) as a solution set of polynomials with rational coefficients.

(2) Establish an identification E[n](Q) ∼= (Z/nZ) × (Z/nZ).

Hint. Apply the fundamental theorem for finitely generated abelian groups after
observing that E[d](Q) has d2 elements for each divisor d of n.

Remark. If one replaces the base field Q with another field k, the conclusions of this exercise
remains valid as long as n is invertible in k. If n is not invertible in k, the group E[n](k) still
carries a natural action of the absolute Galois group Γk = Gal(k/k) but may have order less
than n2.

3. Given an elliptic curve E over Q and a prime number ℓ, show that the ℓ-adic Tate-module
Tℓ(E) is a free Zℓ-module of rank 2 with a natural action of ΓQ.

Remark. If one replaces the base field Q with another field k, the conclusions of this exercise
remains valid as long as ℓ is different from the characteristic of k. If n has characterstic ℓ, the
ℓ-adic Tate-module Tℓ(E) is still a free Zℓ-module but of rank 0 or 1.
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4. In this exercise, we give a simple analogy between the complex conjugation and the p-adic
cyclotomic character.

(1) Let µ∞ denote the group of roots of unity in C. Show that the complex conjugation
naturally induces a character

χ̃ : ΓR −! Aut(R) ∼= R×

with γ(ζ) = ζ χ̃(γ) for every γ ∈ ΓR and ζ ∈ µ∞.

(2) Let µp∞ denote the group of p-power roots of unity in Qp. Show that the p-adic

cyclotomic character χ yields the relation γ(ζ) = ζχ(γ) for every γ ∈ ΓQp and ζ ∈ µp∞ .

5. This exercise requires some knowledge on the étale cohomology and the Hodge theory.

(1) Directly verify the Hodge-Tate decomposition theorem for P1.

(2) Show that the p-adic de Rham comparison theorem fails if we replace BdR by Cp.

6. Deduce the identification (1.9) from Theorem 1.2.4 and Theorem 2.1.1.

7. Let ν∞ denote the valuations on BdR and C((z−1)).

(1) Show the identity deg(f) = −ν∞(f) for every f ∈ C(z).

(2) Define the degree of each f ∈ BdR to be deg(f) := −ν∞(f). Prove the identity

deg(fg) = deg(f) + deg(f) for any f, g ∈ BdR.

8. In this exercise, we provide a precise description of the Fargues-Fontaine curve X as a
scheme that glues Spec (Be) and Spec (B+

dR) along Spec (BdR); in other words, we prove

that the topological space obtained by gluing Spec (Be) and Spec (B+
dR) along Spec (BdR) is

naturally a scheme. We define the degree function on BdR as in Exercise 7.

(1) Under the identification A1
C = P1

C −∞, prove the identification

OP1
C
(U) =

{
OA1

C
(U) for any open U ⊆ P1

C with ∞ /∈ U,

OA1
C
(U −∞)− for any open U ⊆ P1

C with ∞ ∈ U

where we set OA1
C
(U −∞)− :=

{
f ∈ OA1

C
(U −∞) : deg(f) ≤ 0

}
.

(2) Let us set X◦ := Spec (Be) and denote by ∞ the special point of Spec (B+
dR). Prove

that X is indeed a scheme with the structure sheaf given by

OX(U) =

{
OX◦(U) for any open U ⊆ X with ∞ /∈ U,

OX◦(U −∞)− for any open U ⊆ X with ∞ ∈ U

where we set OX(U −∞)− := { f ∈ OX◦(U −∞) : deg(f) ≤ 0 }.

9. Deduce properties (i), (ii) and (iv) in Theorem 2.1.2 from the original construction of the
Fargues-Fontaine curve X, given by gluing Spec (Be) and Spec (B+

dR) along Spec (BdR), and
the fact that Be is a principal ideal domain.





CHAPTER II

Foundations of p-adic Hodge theory

1. Finite flat group schemes

In this section, we develop basic theory of finite flat group schemes and discuss some of
its applications to arithmetic geometry. Our primary reference for this section is the article of
Tate [Tat97]. Throughout our discussion, all rings are commutative unless specified otherwise.

1.1. Basic definitions and properties

We begin with the notion of group schemes over a base scheme S. We usually take S to
be affine and denote the base ring by R.

Definition 1.1.1. A group scheme over S, or an S-group, is an S-scheme G with maps

• m : G×S G −! G, called the multiplication,

• e : S −! G, called the unit section,

• i : G −! G, called the inverse,

which satisfy the group axioms given by the following commutative diagrams:

(a) associativity diagram

G×S G×S G G×S G

G×S G G

m×id

id×m m

m

(b) identity diagrams

G×S S G

G×S G

∼

id×e m

S ×S G G

G×S G

∼

e×id m

(c) inverse diagram

G G×S G

S G

(i,id)

(id,i)

m

e

Remark. In other words, S-groups are group objects in the category of S-schemes.

Lemma 1.1.2. A scheme G over S is a group scheme if and only if it defines a functor from
the category of S-schemes to the category of groups sending each S-scheme T to G(T ).

Proof. The assertion is immediate by Yoneda’s lemma. □

23
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Definition 1.1.3. Let f : G! H be a morphism between S-groups G and H.

(1) We say that f is a homomorphism if the induced map fT : G(T ) ! H(T ) for each
S-scheme T is a group homomorphism.

(2) If f is a homomorphism, we define its kernel to be the S-group ker(f) with ker(f)(T )
for each S-scheme T given by the kernel of the induced map fT : G(T )! H(T ).

Example 1.1.4. Given an S-group G and an integer n, the multiplication by n on G is the
homomorphism [n]G : G! G given by the n-th power map on G(T ) for each S-scheme T .

Lemma 1.1.5. Let f : G! H be a morphism between S-groups G and H.

(1) The morphism f is a homomorphism if and only if it fits ito a commutative diagram

G×S G H ×S H

G H

f×f

mG mH

f

where mG and mH respectively denote the multiplications of G and H.

(2) If f is a homomorphism, its kernel ker(f) is naturally isomorphic to the fiber of f
over the unit section of H.

Proof. The assertions are straightforward to verify by Lemma 1.1.2. □

Definition 1.1.6. Let G = Spec (A) be an affine R-group.

(1) Its comultiplication is the map µ : A! A⊗R A induced by the multiplication.

(2) Its counit is the map ϵ : A! R induced by the unit section.

(3) Its coinverse is the map ι : A! A induced by the inverse.

Lemma 1.1.7. Let G = Spec (A) be an affine R-group. Its comultiplication µ, counit ϵ, and
coinverse ι fit into the following commutative diagrams:

(a) coassociativity diagram

A⊗R A⊗R A A⊗R A

A⊗R A A

µ⊗id

id⊗µ

µ

µ

(b) coidentity diagrams

A⊗R R A

A⊗R A

∼

µid⊗ϵ

R⊗R A A

A⊗R A

∼

µϵ⊗id

(c) coinverse diagram

A A⊗R A

R A

id⊗ι

ι⊗id

ϵ

µ

Proof. The assertion is evident by definition. □
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Example 1.1.8. We present some important examples of affine group schemes.

(1) The additive group over R is the R-scheme Ga := Spec (R[t]) with the natural ad-
ditive group structure on Ga(B) = B for each R-algebra B. Its comultiplication µ,
counit ϵ, and coinverse ι are determined by the identities

µ(t) = t⊗ 1 + 1 ⊗ t, ϵ(t) = 0, ι(t) = −t.

(2) The multiplicative group over R is the R-scheme Gm := Spec (R[t, t−1]) with the
natural multiplicative group structure on Gm(B) = B× for each R-algebra B. Its
comultiplication µ, counit ϵ, and coinverse ι are determined by the identities

µ(t) = t⊗ t, ϵ(t) = 1, ι(t) = t−1.

(3) The n-th roots of unity is the R-scheme µn := Spec (R[t]/(tn − 1)) with the natural
multiplicative group structure on µn(B) = { b ∈ B : bn = 1 } for each R-algebra B.
We can regard µn as a closed subgroup scheme of Gm via the natural surjection
R[t, t−1] ↠ R[t]/(tn − 1) with comultiplication, counit, and coinverse as in (2).

(4) If R has characteristic p, we have an R-group αp := Spec (R[t]/tp) with the natural
additive group structure on αp(B) = { b ∈ B : bp = 0 } for each R-algebra B. We
can regard αp as a closed subgroup scheme of Ga by via the natural surjection
R[t] ↠ R[t]/(tp) with comultiplication, counit, and coinverse as in (1).

(5) Given an abstract group M , the constant group scheme on M over R is the R-scheme

M :=
∐
m∈M

Spec (R) ∼= Spec (A) for A :=
∏
m∈M

R with the natural group structure

(induced by M) on M(B) regarded as the set of locally constant functions from
Spec (B) to M for each R-algebra B . If we identify A and A ⊗R A respectively as
the rings of R-valued functions on M and M ×M , the comultiplication µ, counit ϵ,
and coinverse ι are given by the identities

µ(f)(m,m′) = f(mm′), ϵ(f) = f(1M ), ι(f)(m) = f(m−1)

for all f ∈ A and m,m′ ∈M , where 1M denotes the identity element of M .

Definition 1.1.9. Given an affine R-group G = Spec (A), we define its augmentation ideal
to be the kernel of its counit ϵ : A! R.

Proposition 1.1.10. Let G be an affine R-group.

(1) The unit section of G is a closed embedding.

(2) The kernel of an R-group homomorphism f : H ! G is a closed R-subgroup of H.

Proof. Let us write G = Spec (A) and denote its augmentation ideal by I. The first
statement is evident as we naturally identify the unit section e of G with the closed embed-
ding Spec (A/I) ↪! Spec (A). The second statement follows from the first statement after
identifying ker(f) as the fiber of f over e as noted in Lemma 1.1.5. □

Remark. Proposition 1.1.10 does not hold for general group schemes which are not necessarily
affine. In fact, we can show that the unit section G is a closed embedding if and only if G is
separated over R.

Example 1.1.11. Given an affine R-group G, its n-torsion subgroup G[n] := ker([n]G) for
each integer n is a closed R-subgroup of G by Proposition 1.1.10.

Remark. We have a natural identification µn ∼= Gm[n] for each integer n ≥ 1.
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Let us now introduce the objects of main interest for this section. For the rest of this
section, we assume that R is noetherian unless stated otherwise.

Definition 1.1.12. Let G = Spec (A) be an affine group scheme over R.

(1) We say that G is commutative if it yields the commutative diagram

G×R G G×R G

G

(g,h)7!(h,g)

m m

where m denotes the multiplication of G.

(2) We say that G is finite flat of order n if it is commutative with A being locally free
of rank n over R.

Lemma 1.1.13. Let G = Spec (A) be an affine group scheme over R.

(1) G is commutative if and only if G(B) is commutative for each R-algebra B.

(2) G is finite flat if and only if it is commutative with its structure morphism to Spec (R)
being finite flat.

Proof. The first assertion is an immediate consequence of Lemma 1.1.2. The second
assertion follows from a general fact stated in the Stacks Project [Sta, Tag 02KB]. □

Example 1.1.14. Some group schemes introduced in Example 1.1.8 are finite flat, as easily
seen by their affine descriptions.

(1) The n-th roots of unity µn is finite flat of order n.

(2) If R is has characteristic p, the R-group αp is finite flat of order p.

(3) For an abelian group M of order n, the constant R-group M is finite flat of order n.

Proposition 1.1.15. For an abelian scheme A of dimension g over R, its n-torsion subgroup
A[n] = ker([n]A) is a finite flat R-group of order n2g.

Proof. Since all fibers of A are abelian varieties of dimension g, the assertion follows
from a standard fact about abelian varieties stated in the Stacks Project [Sta, Tag 03RP]. □

Remark. Readers who are unfamiliar with abelian schemes should not be concerned. For
most parts of our discussion, it suffices to understand them as generalizations of elliptic curves.

Many basic properties of finite abelian groups extend to finite flat group schemes. Here
we state two fundamental theorems without proof.

Theorem 1.1.16 (Deligne). Let G be a finite flat R-group of order n. The homomorphism
[n]G annihilates G; in other words, it factors through the unit section of G.

Remark. Curious reader can find Deligne’s proof of Theorem 1.1.16 in the lecture notes of
Stix [Sti, §3.3]. It is unknown whether Theorem 1.1.16 holds without the commutativity
assumption on G.

Theorem 1.1.17 (Grothendieck [Gro60]). Let G be a finite flat R-group of order n with a
finite flat closed R-subgroup H of order m. There exists a unique finite flat R-group G/H of
order n/m which fits into a short exact sequence

0 −! H −! G −! G/H −! 0.

Definition 1.1.18. Let G be a finite flat R-group with a finite flat closed R-subgroup H.
We refer to the R-group G/H in Theorem 1.1.17 as the quotient group scheme of G by H.

https://stacks.math.columbia.edu/tag/02KB
https://stacks.math.columbia.edu/tag/03RP


1. FINITE FLAT GROUP SCHEMES 27

1.2. Cartier duality

In this subsection, we discuss a duality for finite flat R-groups. Given an R-module M ,
we write M∨ for its dual module. For an R-module map f , we denote its dual map by f∨.

Lemma 1.2.1. Let B be an R-algebra.

(1) Given an R-group G, the B-scheme GB is naturally a B-group.

(2) Given a finite flat R-group G of order n, the B-group GB is finite flat of order n.

(3) Given a short exact sequence of finite flat R-groups

0 −! G′ −! G −! G′′ −! 0,

the base change to B yields a short exact sequence

0 −! (G′)B −! GB −! (G′′)B −! 0.

Proof. The assertions are straightforward to verify by Lemma 1.1.2, Lemma 1.1.13, and
a standard fact about finite flat morphisms stated in the Stacks project [Sta, Tag 02KD]. □

Definition 1.2.2. Given a finite flat R-group G, its Cartier dual G∨ is the group-valued
functor on the category of R-algebras with

G∨(B) = HomB-grp(GB, (Gm)B) for each R-algebra B

where the group structure is induced by the multiplication map on (Gm)B.

Lemma 1.2.3. Given be a finite flat R-group G with [n]G = 0, we have

G∨(B) ∼= HomB-grp(GB, (µn)B) for each R-algebra B.

Proof. The assertion follows immediately from the identification µn = Gm[n]. □

Theorem 1.2.4 (Cartier duality). Let G = Spec (A) be a finite flat R-group of order n with
comultiplication µ, counit ϵ, and coinverse ι. For the R-algebra A we write s : R! A for its
structure morphism and mA : A⊗R A! A for its ring multiplication map.

(1) A∨ is an R-algebra with structure morphism ϵ∨ and ring multiplication map µ∨.

(2) G∨ is an R-group which admits a natural identification G∨ ∼= Spec (A∨) with comul-
tiplication m∨

A, counit s∨, and coinverse ι∨.

(3) G∨ is finite flat of order n.

(4) There exists a canonical R-group isomorphism G ∼= (G∨)∨.

Proof. Let us consider the natural identifications

R∨ ∼= R and (A⊗R A)∨ ∼= A∨ ⊗R A
∨.

The map µ∨ fits into associativity and commutativity diagrams induced by the corresponding
diagrams for the multiplication on G. In addition, we have commutative diagrams

A∨ ⊗R R A∨

A∨ ⊗R A
∨

∼

id⊗ϵ∨ µ∨

R⊗R A
∨ A∨

A∨ ⊗R A
∨

∼

ϵ∨⊗id µ∨

induced by the identity diagrams for G. Hence we deduce statement (1).

https://stacks.math.columbia.edu/tag/02KD
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Let us now consider statement (2). It is straightforward to verify that G▽ := Spec (A∨)
is an R-group with comultiplication m∨

A, counit s∨, and coinverse ι∨. Let B be an arbitrary
R-algebra. In light of Lemma 1.1.2, we wish to establish a canonical isomorphism

G∨(B) ∼= G▽(B). (1.1)

Let µB, ϵB, and ιB respectively denote the comultiplication, counit, and coinverse of
GB ∼= Spec (AB). By the affine description of Gm given in Example 1.1.8, we find

G∨(B) = HomB-grp(GB, (Gm)B) ∼=
{
f ∈ HomB-alg(B[t, t−1], AB) : µB(f(t)) = f(t) ⊗ f(t)

}
where the identity µB(f(t)) = f(t) ⊗ f(t) comes from compatibility with comultiplications.
Since we have the canonical isomorphism HomB-alg(B[t, t−1], AB) ∼= A×

B which sends each
f ∈ HomB-alg(B[t, t−1], AB) to f(t), we obtain a natural identification

G∨(B) ∼=
{
u ∈ A×

B : µB(u) = u⊗ u
}
. (1.2)

Meanwhile, as A∨
B is a B-algebra by statement (1), we have

G▽(B) ∼= HomR-alg(A
∨, B) ∼= HomB-alg(A

∨
B, B). (1.3)

Let us denote the ring multiplication map on B by mB and the identity map on B by idB.
By definition, HomB-alg(A

∨
B, B) is the group of B-module homomorphisms A∨

B ! B through
which µ∨B and ϵ∨B are respectively compatible with mB and idB. Taking B-duals, we identify
this group with the group of B-module homomorphisms B ! AB through which m∨

B and
id∨
B are respectively compatible with µB and ϵB. Since we have the canonical isomorphism

HomB-alg(B,AB) ∼= A×
B which sends each f ∈ HomB-alg(B,AB) to f(1), we find

HomB-alg(A
∨
B, B) ∼=

{
u ∈ A×

B : µB(u) = u⊗ u, ϵB(u) = 1
}
. (1.4)

Moreover, the group scheme axioms for GB yields the relation (ϵB ⊗ idB) ◦ µB = idB and
consequently implies that every u ∈ A×

B with µB(u) = u⊗umust satisfy the identity ϵB(u) = 1.
Hence the isomorphisms (1.3) and (1.4) together yield a natural identification

G▽(B) ∼=
{
u ∈ A×

B : µB(u) = u⊗ u
}
. (1.5)

Now we establish the desired isomorphism (1.1) by the identifications (1.2) and (1.5), thereby
completing the proof of statement (2).

It remains to prove statements (3) and (4). Since G∨ is commutative by Lemma 1.1.13
and the commutativity of Gm, we deduce statement (3) from statement (2) by observing that
A∨ is locally free of rank n over R. In addition, we apply statements (1) and (2) to see
that the canonical R-module isomorphism A ∼= (A∨)∨ is indeed an R-algebra isomorphism
which respects comultiplications, counits, and coinverses on both sides, thereby establishing
statement (4). □

Proposition 1.2.5. Given a finite flat R-group G and an R-algebra B, there exists a natural
B-group isomorphism G∨ ×R B ∼= (G×R B)∨.

Proof. It is evident that G∨ ×R B and (G ×R B)∨ are naturally isomorphic as group-
valued functors. Lemma 1.2.1 and Theorem 1.2.4 together imply that these functors are
indeed finite flat B-groups and thus yield the desired assertion. □

Definition 1.2.6. Given a homomorphism f : G! H of finite flat R-groups, we refer to the
induced homomorphism f∨ : G∨ ! H∨ as the dual homomorphism of f .

Example 1.2.7. Given a finite flat R-group G, we have [n]∨G = [n]G∨ for every integer n > 0;
indeed, [n]∨G maps each f ∈ G∨(B) = HomB-grp(GB, (Gm)B) for an arbitrary R-algebra B to
f ◦ [n]GB

= [n]G∨(f).
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Proposition 1.2.8. For every positive integer n, we have (Z/nZ)∨ ∼= µn and µ∨n
∼= Z/nZ.

Proof. Let us set A :=
∏

i∈Z/nZ

R and write ei for the element of A whose only nonzero

entry is 1 in the component corresponding to i. As explained in Example 1.1.8 we have
Z/nZ ∼= Spec (A) with comultiplication µ, counit ϵ, and coinverse ι given by the relations

µ(ei) =
∑
v+w=i

ev ⊗ ew, ϵ(ei) =

{
1 for i = 0

0 otherwise
, ι(ei) = e−i.

Let mA : A ⊗R A ! A and s : R ! A respectively denote the ring multiplication map and
structure morphism of A. We have the dual basis { fi } of A∨ with

fi(ej) =

{
1 for i = j,

0 otherwise.

Theorem 1.2.4 yields a natural identification (Z/nZ)∨ ∼= Spec (A∨) with comultiplication m∨
A,

counit s∨, and coinverse ι∨, where A∨ is an R-algebra with structure morphism ϵ∨ and ring
multiplication map µ∨. The maps µ∨, ϵ∨, m∨

A, s∨, and ι∨ are determined by the identities

µ∨(fi ⊗ fj) = fi+j , ϵ∨(1) = f0, m∨
A(fi) = fi ⊗ fi, s∨(fi) = 1, ι∨(fi) = f−i.

Hence the map A∨ ! R[t]/(tn − 1) sending each fi to ti induces an R-group isomorphism
(Z/nZ)∨ ∼= µn by Example 1.1.8 and in turn yields an R-group isomorphism µ∨n

∼= Z/nZ by
Theorem 1.2.4. □

Proposition 1.2.9. If R has characteristic p, the R-group αp is self-dual.

Proof. As explained in Example 1.1.8, we have αp = Spec (A) for A := R[t]/(tp) with
comultiplication µ, counit ϵ, and coinverse ι given by the relations

µ(ti) =
∑
v+w=i

(
i

v

)
tv ⊗ tw, ϵ(ti) =

{
1 for i = 0

0 otherwise
, ι(ti) = (−t)i.

Let mA : A ⊗R A ! A and s : R ! A respectively denote the ring multiplication map and
structure morphism of A. We have the dual basis { fi } of A∨ with

fi(t
j) =

{
1 for i = j,

0 otherwise.

Theorem 1.2.4 yields a canonical identification α∨
p

∼= Spec (A∨) with comultiplication m∨
A,

counit s∨, and coinverse ι∨, where A∨ is an R-algebra with structure morphism ϵ∨ and ring
multiplication map µ∨. The maps µ∨, ϵ∨, m∨

A, s∨, and ι∨ are determined by the identities

µ∨(fi ⊗ fj) =

(
i+ j

i

)
fi+j , ϵ∨(1) = 0,

m∨
A(fi) =

∑
v+w=i

fv ⊗ fw, s∨(fi) =

{
1 for i = 0

0 otherwise
, ι∨(fi) = (−1)ifi.

Hence the map A∨ ! A sending each fi to ti/i! yields an R-group isomorphism α∨
p
∼= αp. □

Remark. When R has characteristic p, we have an R-scheme isomorphism µp ≃ αp given by
the ring isomorphism R[t]/(tp) ≃ R[t]/(tp− 1) sending t to t+ 1. Propositions 1.2.8 and 1.2.9
together show that µp and αp are not isomorphic as group schemes.
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Proposition 1.2.10. Given an abelian scheme A over R with dual abelian scheme A∨, we
have a natural isomorphism A[n]∨ ∼= A∨[n] for every positive integer n.

Proof. The homomorphism [n]A is surjective by a standard fact about abelian varieties
stated in the Stacks Project [Sta, Tag 03RP]. Hence we have a short exact sequence

0 −! A[n] −! A [n]
−! A −! 0

which gives rise to a long exact sequence

0 −! Hom(A,Gm)
[n]
−! Hom(A,Gm) −! Hom(A[n],Gm) −! Ext1(A,Gm)

[n]
−! Ext1(A,Gm).

In addition, we have natural identifications

Hom(A,Gm) = 0, Hom(A[n],Gm) ∼= A[n]∨, Ext1(A,Gm) ∼= A∨

by definition of Cartier duals and some general fact about abelian varieties stated in the notes
of Milne [Mil, §9]. Therefore we obtain an exact sequence

0 −! A[n]∨ −! A∨ [n]
−! A∨

which yields the desired isomorphism A[n]∨ ∼= A∨[n]. □

Example 1.2.11. If R = k is a field, every elliptic curve E over k admits a natural isomor-
phism E[n]∨ ∼= E[n] for each integer n ≥ 1 by Proposition 1.2.10 a standard fact that elliptic
curves are self-dual as stated in the notes of Milne [Mil, §9].

Lemma 1.2.12. Given a closed embedding f : H ↪−! G of finite flat R-groups, we have a
canonical isomorphism ker(f∨) ∼= (G/H)∨.

Proof. Let B be an arbitrary R-algebra and fB : HB ↪−! GB denote the homomorphism
induced by f . Theorem 1.1.17 and Lemma 1.2.1 together yield a canonical isomorphism
GB/HB

∼= (G/H)B. Hence we obtain an identification

ker(f∨)(B) = { g ∈ HomB-grp(GB, (Gm)B) : g ◦ fB = 0 }
= { g ∈ HomB-grp(GB, (Gm)B) : HB ⊆ ker(g) }
∼= HomB-grp(GB/HB, (Gm)B) ∼= HomB-grp((G/H)B, (Gm)B) = (G/H)∨(B),

thereby establishing the desired assertion. □

Proposition 1.2.13. Given a short exact sequence of finite flat R-groups

0 −! G′ −! G −! G′′ −! 0,

the Cartier duality gives rise to a short exact sequence

0 −! G′′∨ −! G∨ −! G′∨ −! 0.

Proof. Let f and g respectively denote the maps G′ ! G and G ! G′′ in the given
short exact sequence. It is straightforward to verify the injectivity of g∨ by the surjectivity
of g. In addition, Lemma 1.2.12 yields a canonical isomorphism ker(f∨) ∼= G′′∨. Therefore
it remains to establish the surjectivity of f∨. Since G′′∨ is a finite flat closed R-subgroup
of G∨ by Proposition 1.1.10 and Theorem 1.2.4, we obtain the quotient R-group G∨/G′′∨

by Theorem 1.1.17. Now f∨ factors through a homomorphism G∨/G′′∨ ! G′∨, whose dual
coincides with the isomorphism ker(g) ∼= G′ induced by f under the identifications

(G′∨)∨ ∼= G′ and (G∨/G′′∨)∨ ∼= ker((g∨)∨) ∼= ker(g)

given by Theorem 1.2.4 and Lemma 1.2.12. Hence we deduce that f∨ is surjective as desired,
thereby completing the proof. □

https://stacks.math.columbia.edu/tag/03RP
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1.3. Finite étale group schemes

In this subsection, we introduce finite étale group schemes and discuss their properties.

Definition 1.3.1. Let G = Spec (A) be an affine R-group. We say that G is finite étale if it
is finite flat with ΩA/R = 0, where ΩA/R denotes the module of relative differentials.

Lemma 1.3.2. Let G = Spec (A) be a commutative affine R-group.

(1) G is finite étale if and only if its structure morphism to Spec (R) is finite étale.

(2) When R = k is a field, G is finite étale if and only if there exists a k-algebra

isomorphism A ≃
n∏
i=1

ki where each ki is a finite separable extension of k.

Proof. The first assertion is an immediate consequencel of Lemma 1.1.13. The second
assertion follows from the first assertion by a standard fact about étale morphisms stated in
the Stacks project [Sta, Tag 00U3]. □

Lemma 1.3.3. Given a finite étale R-group G and an R-algebra B, the B-scheme GB is a
finite étale B-group.

Proof. The assertion follows from Lemma 1.2.1, Lemma 1.3.2, and a standard fact that a
base change of an étale morphism is étale as stated in the Stacks project [Sta, Tag 02GO]. □

Proposition 1.3.4. Assume that R is a henselian local ring with perfect residue field k.

(1) There exists an equivalence of categories

{ finite étale R-groups } ∼
−! { finite abelian groups with a continuous Γk-action }

which sends each finite étale R-group G to G(k).

(2) If a finite étale R-group G has order n, the abelian group G(k) also has order n.

Proof. Let us first consider statement (1). By some standard facts about finite étale
morphisms stated in the Stacks project [Sta, Tag 09ZS and Tag 0BQ8], there exists an
equivalence of categories

{ finite étale R-schemes } ∼
−! { finite sets with a continuous Γk-action }

which maps each R-scheme T to T (k). Hence we obtain the desired equivalence by passing
to the corresponding categories of commutative group objects.

For statement (2), we write G = Spec (A) for some locally free R-algebra A of rank n. By

Lemma 1.3.2 and Lemma 1.3.3, there exists a k-algebra isomorphism A ⊗R k ≃
m∏
i=1

ki where

each ki is a finite separable extension of k. Hence we find

G(k) ∼= HomR-alg(A, k) ∼= HomR-alg(A⊗R k, k) ≃ HomR-alg(
m∏
i=1

ki, k) ∼=
m∐
i=1

Homk(ki, k)

and in turn deduce that the order of G(k) is
m∑
i=1

dimk(ki) = dimk(A⊗R k) = n,

thereby completing the proof. □

Remark. Primary examples of henselian local rings are complete local rings and fields.

https://stacks.math.columbia.edu/tag/00U3
https://stacks.math.columbia.edu/tag/02GO
https://stacks.math.columbia.edu/tag/09ZS
https://stacks.math.columbia.edu/tag/0BQ8
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Lemma 1.3.5. For an affine R-group G = Spec (A) with augmentation ideal I, we have a
canonical R-module isomorphism A ∼= R⊕ I.

Proof. The assertion follows from the observation that the structure morphism R ! A
splits the short exact sequence

0 −! I −! A
ϵ
−! R −! 0

where ϵ denotes the counit of G. □

Proposition 1.3.6. Let G = Spec (A) be a finite flat R-group with augmentation ideal I.

(1) There exist natural isomorphisms

I/I2 ⊗R A ∼= ΩA/R and I/I2 ∼= ΩA/R ⊗A A/I.

(2) G is étale if and only if we have I = I2.

Proof. Let us consider a commutative diagram

G×R G G×R G

G

(g,h)7!(g,gh−1)

∆ (id,e)

where ∆ and e respectively denote the diagonal morphism and the unit section of G. The
horizontal map is an isomorphism of R-schemes; indeed, it has an inverse which sends each
(g, h) ∈ G×R G to (g, h−1g). Hence we obtain a commutative diagram

A⊗R A A⊗R A

A
a⊗b 7!ab

∼

a⊗b7!a·ϵ(b)

where ϵ denotes the counit of G. The horizontal map induces an isomorphism between the
kernels of the two downward maps. Let J denote the kernel of the left downward map. Under
the canonical decomposition

A⊗R A ∼= A⊗R R⊕A⊗R I

given by Lemma 1.3.5, we identify the kernel of the right downward map with A ⊗R I and
consequently obtain a natural isomorphism J ∼= A⊗R I. Therefore we have

ΩA/R
∼= J/J2 ∼= (A⊗R I)/(A⊗R I)2 ∼= (A⊗R I)/(A⊗R I

2) ∼= A⊗R (I/I2),

where the first identification comes from a standard fact about relative differentials stated in
the Stacks project [Sta, Tag 00RW], and thus find

ΩA/R ⊗A (A/I) ∼=
(
(I/I2) ⊗R A

)
⊗A A/I ∼= (I/I2) ⊗R A/I ∼= (I/I2) ⊗R R ∼= I/I2.

Now we see that ΩA/R vanishes if and only if I/I2 vanishes, thereby completing the proof. □

Remark. Let us provide some geometric intuition behind the isomorphisms in statement (1).
Since ΩR/R vanishes, we can alternatively obtain the isomorphism I/I2 ∼= ΩA/R⊗AA/I from
the conormal exact sequence

0 −! I/I2 −! ΩA/R ⊗A A/I −! ΩR/R −! 0

given by a standard fact stated in the Stacks project [Sta, Tag 06AA]. The isomorphism
I/I2 ⊗R A ∼= ΩA/R says that we can recover ΩG/ Spec (R) = ΩA/R from its pullback along the
unit section by multiplying functions on G.

https://stacks.math.columbia.edu/tag/00RW
https://stacks.math.columbia.edu/tag/06AA
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Proposition 1.3.7. Every finite flat constant group scheme is étale.

Proof. Let M be a finite abelian group with identity element denoted by 0. By the affine
description in Example 1.1.8, we have

M ≃ Spec
( ∏
i∈M

R
)

with counit given by the projection to the factor for i = 0. Hence the augment ideal of M is

I =
∏
i∈M
i ̸=0

R.

Since I is naturally a multiplicative monoid, we have I = I2. Therefore Proposition 1.3.6
implies that M is étale. □

Proposition 1.3.8. Assume that R = k is an algebraically closed field.

(1) Every finite étale k-groups is a constant group scheme.

(2) Given a prime p, the k-group Z/pZ is a unique finite étale k-group of order p.

Proof. Proposition 1.3.4 yields an equivalence of categories

{ finite étale k-groups } ∼
−! { finite abelian groups }

which sends each finite étale k-group G to G(k). For every finite abelian group M , we find
M(k) ∼= M by Example 1.1.8. Hence we establish the desired assertions by Proposition 1.3.7
and the fact that Z/pZ is a unique group of order p. □

Proposition 1.3.9. A finite flat R-group G is étale if and only if the (scheme theoretic)
image of the unit section is open.

Proof. Let us write G = Spec (A) for some locally free R-algebra A of finite rank and
denote by I the augmentation ideal of G. We naturally identify the (scheme theoretic) image
of the unit section with Spec (A/I). By Proposition 1.3.6, it suffices to show that the closed
embedding Spec (A/I) ↪! Spec (A) is open if and only if I/I2 vanishes.

Suppose that I/I2 vanishes. By Nakayama’s lemma, there exists an element a ∈ A with
a−1 ∈ I and aI = 0. We observe that a is idempotent; indeed, we find a2 = a(a−1) +a = a.
Let us consider the localization map A! Aa, which is surjective since we have

b

an
=

ba

an+1
=
ba

a
=
b

1
for each b ∈ A and n ≥ 1.

Its kernel consists of elements b ∈ A with anb = 0 for some n ≥ 1, or equivalently ab = 0 as
a is idempotent. It contains I since the element a annihilates I, while for every element b in
the kernel we have b = −(a− 1)b+ ab = −(a− 1)b ∈ I. Hence the localization map A! Aa
has I as its kernel and thus induces an isomorphism A/I ∼= Aa. It is now evident that the
closed embedding Spec (A/I) ↪! Spec (A) is open.

For the converse, we now assume that the embedding Spec (A/I) ↪! Spec (A) is open.
Since open embeddings are flat as stated in the Stacks project [Sta, Tag 0250], the ring
homomorphism A↠ A/I must be flat. Therefore we obtain a short exact sequence

0 −! I ⊗A A/I −! A⊗A A/I −! A/I ⊗A A/I −! 0,

which in turn yields a short exact sequence

0 −! I/I2 −! A/I −! A/I −! 0

with the third arrow being the identity map. We thus deduce that I/I2 vanishes as desired. □

https://stacks.math.columbia.edu/tag/0250
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Theorem 1.3.10. A finite flat R-group G with order invertible in R must be étale.

Proof. Let us write G = Spec (A) for some locally free R-algebra A of finite rank. The
group axioms for G yield commutative diagrams

Spec (R) G

G×R G

(e,e)

e

m

G G

G×R G

(id,e) (e,id)

id

m

where m and e respectively denote the multiplication map and unit section of G. These
diagrams are equivalent to the commutative diagrams

R A

A⊗R A

ϵ

µϵ⊗ϵ

A A

A⊗R A

id

µ

id⊗ϵ ϵ⊗id (1.6)

where µ and ϵ respectively denotes the comultiplication and counit of G. Let us denote the
augmentation ideal of G by I and take an arbitrary element t ∈ I. We have ϵ(t) = 0 and thus
find µ(t) ∈ ker(ϵ⊗ ϵ) by the diagram (1.6). Under the decomposition

A⊗R A ∼= (R⊗R R) ⊕ (I ⊗R R) ⊕ (R⊗R I) ⊕ (I ⊗R I)

given by Lemma 1.3.5, we obtain a natural identification

ker(ϵ⊗ ϵ) ∼= (I ⊗R R) ⊕ (R⊗R I) ⊕ (I ⊗R I)

and thus have µ(t) ∈ a⊗ 1 + 1 ⊗ b+ I ⊗R I for some a, b ∈ I. Now the diagram (1.6) implies
that a and b are both equal to t, thereby yielding the relation

µ(t) ∈ t⊗ 1 + 1 ⊗ t+ I ⊗R I. (1.7)

We assert that [n]G for each n ≥ 1 induces multiplication by n on I/I2. Let [n]A : A! A
denote the R-algebra homomorphism induced by [n]G. We have commutative diagrams

G G

G×R G

[n]G

([n−1]G,id) m

A A

A⊗R A

[n]A

µ[n−1]A⊗id

and thus apply the relation (1.7) to find [n]A(t) ∈ [n − 1]A(t) + t + I2. Since [1]A is the
identity map on A, we obtain the relation [n]A(t) ∈ nt + I2 for each n ≥ 1 by induction,
thereby deducing the desired assertion as t is an arbitrary element in I.

Let us denote the order of G by m. Since [m]G factors through the unit section of G
by Theorem 1.1.16, its induced map on ΩA/R factors through ΩR/R = 0 and thus must be

zero. We find that [m]G induces a zero map on I/I2 ∼= ΩA/R ⊗A A/I by Proposition 1.3.6.

Meanwhile, [m]G induces multiplication by m on I/I2 and thus is an isomorphism as m
is invertible in R. Hence we deduce that I/I2 vanishes, thereby completing the proof by
Proposition 1.3.6. □

Remark. Theorem 1.3.10 is the only result which relies on Theorem 1.1.16 in our discussion.
If R is a field, it is possible to prove Theorem 1.3.10 without using Theorem 1.1.16.

Corollary 1.3.11. Every finite flat group scheme over a field of characteristic 0 is étale.
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1.4. The connected-étale sequence

Throughout this subsection, we assume that R is a henselian local ring and denote its
residue field by k. Our main goal for this subsection is to discuss a fundamental theorem that
every finite flat R-group naturally arises as an extension of an étale R-group by a connected
R-group.

Lemma 1.4.1. A finite flat R-scheme is étale if and only if its special fiber is étale.

Proof. The assertion immediately follows from some standard facts about étale mor-
phisms stated in the Stacks project [Sta, Tag 02GO, Tag 02GM, and Tag 00U3]. □

Remark. Our proof shows that Lemma 1.4.1 does not require R to be henselian.

Lemma 1.4.2. For a finite R-scheme T , we have the following equivalent conditions:

(i) T is connected.

(ii) T is a spectrum of a henselian local finite R-algebra.

(iii) The action of Γk on T (k) is transitive.

Proof. Let us write T = Spec (B) for some finite R-algebra B. By a general fact about
henselian local rings stated in the Stacks project [Sta, Tag 04GH], we have

B ≃
n∏
i=1

Bi

where each Bi is a henselian local finite R-algebra. Since the spectrum of a local ring is
connected, each Ti := Spec (Bi) corresponds to a connected component of T . Hence we
deduce the equivalence between conditions (i) and (ii)

We denote the residue field of each Bi by ki. Via the isomorphism

T (k) = HomR-alg(B, k) ≃
n∐
i=1

Homk(ki, k),

we identify each Homk(ki, k) as an orbit under the action of Γk on T (k). Therefore we obtain
the equivalence between conditions (i) and (iii). □

Remark. If k is algebraically closed, Lemma 1.4.2 shows that a finite R-scheme T is connected
if and only if T (k) is a singleton.

Lemma 1.4.3. A finite R-scheme is connected if and only if its special fiber is connected.

Proof. The assertion is evident by Lemma 1.4.2. □

Remark. Lemma 1.4.3 is a special case of a general fact that for every proper R-scheme T
there exists a natural bijection between the connected components of T and the connected
components of Tk, as stated in SGA 4 1/2, Exp. 1, Proposition 4.2.1.

Lemma 1.4.4. Connected components of a finite flat R-scheme T are finite flat over R.

Proof. Let T ◦ be a connected component of T . The closed embedding T ◦ ↪! T is finite
flat by general facts stated in the Stacks project [Sta, Tag 035C, Tag 04PX]. Hence T ◦ is
finite flat over R by a standard fact that the composition of finite flat morphisms is finite flat
as stated in the Stacks project [Sta, Tag 01WK, Tag 01U7]. □

Remark. Our proof shows that Lemma 1.4.4 holds without any assumption on the base ring.

https://stacks.math.columbia.edu/tag/02GO
https://stacks.math.columbia.edu/tag/02GM
https://stacks.math.columbia.edu/tag/00U3
https://stacks.math.columbia.edu/tag/04GH
https://stacks.math.columbia.edu/tag/035C
https://stacks.math.columbia.edu/tag/04PX
https://stacks.math.columbia.edu/tag/01WK
https://stacks.math.columbia.edu/tag/01U7
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Definition 1.4.5. Given an R-group G, its identity component G◦ is the connected compo-
nent of the unit section.

Lemma 1.4.6. For a finite flat R-group G, we have G◦(k) = 0.

Proof. Let us write G = Spec (A) for some locally free R-algebra A of finite rank.
By Lemma 1.4.2 and Lemma 1.4.4, we have G◦ = Spec (A◦) for some henselian local finite
R-algebra A◦. Since the unit section factors through G◦, it induces a surjective ring homo-
morphism A◦ ! R. We denote its kernel by I◦ and obtain an isomorphism A◦/I◦ ∼= R, which
induces an isomorphism between the residue fields of A◦ and R. Hence we find

G◦(k) = HomR-alg(A
◦, k) ∼= Homk(k, k) = 0

as desired. □

Proposition 1.4.7. A finite flat R-group G is connected if and only if we have G(k) = 0.

Proof. If G(k) is trivial, G is connected by Lemma 1.4.2. Conversely, if G is connected,
we have G = G◦ and thus find G(k) = 0 by Lemma 1.4.6. □

Example 1.4.8. Let us present some primary examples of connected R-groups.

(1) If k has characteristic p, the R-group µpv for each integer v ≥ 1 is connected by
Proposition 1.4.7.

(2) If R has characteristic p, the R-group αp is connected by Proposition 1.4.7.

Theorem 1.4.9. Let G be a finite flat R-group. The identity component G◦ is naturally a
finite flat closed R-subgroup of G such that the quotient Gét := G/G◦ is étale.

Proof. Let us first prove that G◦ is a finite flat closed R-subgroup of G. Since we have
(G◦ ×R G

◦)(k) ∼= G◦(k) × G◦(k) = 0 by Lemma 1.4.6, the scheme G◦ ×R G
◦ is connected

by Lemma 1.4.2. Hence the image of G◦ ×R G
◦ under the multiplication map lies in G◦ for

being a connected subscheme of G which contains the unit section. Similarly, the image of
G◦ under the inverse map lies in G◦. Therefore G◦ is an R-subgroup of G, which is evidently
closed by construction. Moreover, G◦ is finite flat by Lemma 1.1.13 and Lemma 1.4.4.

We now consider the finite flat R-group Gét = G/G◦ given by Theorem 1.1.17. Its unit
section G◦/G◦ has an open image as G◦ is open in G by the noetherian hypothesis on R.
Hence we deduce from Proposition 1.3.9 that Gét is étale, thereby completing the proof. □

Definition 1.4.10. Given a finite flat R-group G, we refer to the short exact sequence

0 −! G◦ −! G −! Gét −! 0

given by Theorem 1.4.9 as the connected-étale sequence of G.

Example 1.4.11. Let us describe the connected-étale sequence of µn for each integer n ≥ 1.
If k has characteristic 0, Corollary 1.3.11 and Lemma 1.4.1 together imply that µn is étale,
thereby yielding the connected-étale sequence

0 −! 0 −! µn
id
−! µn −! 0.

Let us henceforth assume that k has characteristic p. We may write n = pvm for some positive
integers v and m such that m is not divisible by p. Then we have a short exact sequence

0 −! µpv −! µn
[pv ]
−! µm −! 0. (1.8)

The R-group µpv is connected as noted in Example 1.4.8. Moreover, since µm has order m
by Example 1.1.14, it is étale as easily seen by Theorem 1.3.10 and Lemma 1.4.1. Hence the
exact sequence (1.8) is indeed the connected-étale sequence of µn.
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Proposition 1.4.12. Let G be a finite flat R-group.

(1) The natural surjection G↠ Gét induces a canonical isomorphism G(k) ∼= Gét(k).

(2) G is étale if and only if we have G◦ = 0.

Proof. The first statement is evident by Lemma 1.4.6 and Theorem 1.4.9. Since the
(scheme theoretic) image of the unit section is closed as noted in Proposition 1.1.10, it is open
if and only if it coincides with its connected component G◦. Therefore the second statement
follows from Proposition 1.3.9. □

Proposition 1.4.13. Let f : G! H be a homomorphism of finite flat R-groups.

(1) If G is connected, f factors through the embedding H◦ ↪! H.

(2) If H is étale, f factors through the surjection G↠ Gét.

(3) f naturally induces homomorphisms f◦ : G◦ ! H◦ and f ét : Gét ! H ét.

Proof. The first statement is evident since the image of G is a connected R-subgroup
of H. The second statement follows from the fact that the image of G◦ lies in H◦ by the
first statement and thus is trivial by Proposition 1.4.12. The last statement is an immediate
consequence of the previous two statements. □

Proposition 1.4.14. Let G, G′, and G′′ be finite flat R-groups with a short exact sequence

0 −! G′ −! G −! G′′ −! 0.

(1) The given exact sequence induces short exact sequences

0 −! (G′)◦ −! G◦ −! (G′′)◦ −! 0,

0 −! (G′)ét −! Gét −! (G′′)ét −! 0.

(2) G is connected if and only if both G′ and G′′ are connected.

(3) G is étale if and only if both G′ and G′′ are étale.

Proof. Theorem 1.4.9 and Proposition 1.4.13 together yield a commutative diagram

0 0 0

0 (G′)◦ G′ (G′)ét 0

0 G◦ G Gét 0

0 (G′′)◦ G′′ (G′′)ét 0

0 0 0

where the rows are exact. Since the middle column is exact, Proposition 1.4.12 implies that
the right column is exact on the level of k-points. We deduce from Proposition 1.3.4 that
the right column is exact and consequently find by the snake lemma (or the nine lemma)
that the left column is exact as well, thereby establishing statement (1). Statement (2) is an
immediate consequence of Proposition 1.4.7. Statement (3) follows form the first statement
by Proposition 1.4.12. □
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Proposition 1.4.15. Assume that R = k is a perfect field. For every finite flat k-group G,
the connected-étale sequence canonically splits.

Proof. Let Gred denote the reduction of G. If we write G = Spec (A) for some finite
dimensional k-algebra A, we have Gred = Spec (Ared) for Ared := A/n where n denotes the
nilradical of A. We wish to prove that the homomorphism G↠ Gét admits a canonical section
induced by the closed embedding Gred ↪! G.

We assert that Gred is a k-subgroup of G. The scheme Gred×kG
red is reduced by a general

fact that the product of two reduced schemes over a perfect field is reduced as noted in the
Stacks project [Sta, Tag 035Z]. Hence the image of Gred×kG

red under the multiplication map
lies in Gred by a standard fact stated in the Stacks project [Sta, Tag 0356]. Similarly, the
image of Gred under the inverse map lies in Gred. In addition, the unit section of G factors
through Gred as k is reduced. Therefore Gred is a k-subgroup of G as desired.

Let us now prove that Gred is finite étale. By construction, the affine ring Ared of Gred is
a finite dimensional k-algebra. Hence we deduce from some general facts stated in the Stacks
project [Sta, Tag 00J6 and Tag 00JB] that there exists a k-algebra isomorphism

Ared ≃
n∏
i=1

Ared
i

where each Ared
i is a finite dimensional local k-algebra with a unique prime ideal. In fact, since

Ared is reduced, each Ared
i is a finite field extension of k, which is separable as k is perfect.

Now Lemma 1.3.2 implies that Gred is finite étale as desired.

It remains to show that the homomorphism Gred ↪! G ↠ Gét is an isomorphism. The
embedding Gred ↪! G induces an isomorphism Gred(k) ∼= G(k) as k is reduced. Moreover, the
surjection G ↠ Gét induces an isomorphism G(k) ∼= Gét(k) as noted in Proposition 1.4.12.
Therefore the homomorphism Gred ↪! G ↠ Gét yields an isomorphism Gred(k) ∼= Gét(k)
which is clearly Γk-equivariant. Since Gred and Gét are both finite étale, we establish the
desired assertion by Proposition 1.3.4. □

Example 1.4.16. We say that an elliptic curve E over Fp is ordinary if E[p](Fp) is isomorphic

to Z/pZ. We assert that every ordinary elliptic curve E over Fp yields an isomorphism

E[p] ≃ µp × Z/pZ.

Let us consider the connected-étale sequence

0 −! E[p]◦ −! E[p] −! E[p]ét −! 0. (1.9)

We have E[p]ét(Fp) ≃ E[p](Fp) ≃ Z/pZ by Proposition 1.4.12 and thus find E[p]ét ≃ Z/pZ by

Proposition 1.3.8. Therefore the exact sequence (1.9) induces a dual exact sequence

0 −! (Z/pZ)∨ −! E[p]∨ −! (E[p]◦)∨ −! 0 (1.10)

by Proposition 1.2.13, where the second arrow is a closed embedding by Proposition 1.1.10.
Now we apply Proposition 1.2.8 and Example 1.2.11 to identify the map (Z/pZ)∨ ↪! E[p]∨

with a closed embedding µp ↪! E[p], which in turn gives rise to a closed embedding µp ↪! E[p]◦

by Proposition 1.4.13 and Example 1.4.8. Moreover, as Example 1.1.14 and Proposition 1.1.15
show that E[p]ét ≃ Z/pZ and E[p] respectively have order p and p2, Theorem 1.1.17 implies

that E[p]◦ has order p2/p = p. Since µp also has order p by Example 1.1.14, the closed
embedding µp ↪! E[p]◦ is indeed an isomorphism by Theorem 1.1.17. Hence we obtain the
desired isomorphism by Proposition 1.4.15.

https://stacks.math.columbia.edu/tag/035Z
https://stacks.math.columbia.edu/tag/0356
https://stacks.math.columbia.edu/tag/00J6
https://stacks.math.columbia.edu/tag/00JB
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1.5. The Frobenius morphism

For this subsection, we assume that R = k is a field of characteristic p and write σ for the
Frobenius endomorphism of k. Finite flat k-groups admit natural homomorphisms induced
by σ. In this subsection, we describe these homomorphisms and explore their applications.

Definition 1.5.1. Let T = Spec (B) be an affine k-scheme and r be a positive integer.

(1) The pr-Frobenius twists of B and T are respectively

B(pr) := B ⊗k,σr k and T (pr) := T ×k,σr k = Spec (B(pr)),

where the factor k in the products has σr as structure morphism.

(2) The relative pr-Frobenius of B is the k-algebra homomorphism φ
[r]
B : B(pr) ! B

which maps each b⊗ c ∈ B(pr) = B ⊗krσ k to c · bpr ∈ B.

(3) The relative pr-Frobenius of T is the morphism φ
[r]
T : T ! T (pr) induced by φ

[r]
B .

(4) For r = 1, we often refer to φB := φ
[1]
B and φT := φ

[1]
T as the Frobenii of B and T .

Remark. We can similarly define the Frobenius twists and relative Frobenii for all k-schemes.

Lemma 1.5.2. Let T = Spec (B) be an affine k-scheme and r be a positive integer.

(1) The Frobenius twists satisfy recursive relations

B(pr+1) =
(
B(pr)

)(p)
and T (pr+1) =

(
T (pr)

)(p)
.

(2) The relative Frobenii satisfy recursive relations

φ
[r+1]
B := φ

[r]
B ◦ φB(pr) and φ

[r+1]
T = φT (pr) ◦ φ[r]

T .

Proof. The assertions are evident by definition. □

Proposition 1.5.3. Let T = Spec (B) be a k-variety with B = k[t1, · · · , tn]/(f1, · · · , fm) for
some polynomials f1, · · · , fm in n variables. Fix a positive integer r.

(1) There exists a canonical k-algebra isomorphism

B(pr) ∼= k[t1, · · · , tn]/(f
(pr)
1 , · · · , f (pr)m )

with f
(pr)
i obtained from fi by raising each coefficient to the pr-th power.

(2) The homomorphism φ
[r]
B maps each ti ∈ B(pr) to tp

r

i ∈ B.

(3) For a k-point on T that represents a common root (c1, · · · , cn) of f1, · · · , fm, its

image under φ
[r]
T represents the common root (cp

r

1 , · · · , c
pr
n ) of f

(pr)
1 , · · · , f (p

r)
m .

Proof. Statement (1) is follows from the fact that under the canonical identification

k[t1, · · · , tn](p
r) ∼= k[t1, · · · , tn], the natural map k[t1, · · · , tn] ! k[t1, · · · , tn](p

r) rasies the
coefficients of each polynomial to their pr-th powers. Statement (2) follows immediately from
statement (1). Statement (3) is a straightforward consequence of statement (2). □

Proposition 1.5.4. Given an affine k-scheme T = Spec (B) and a positive integer r, the

morphism φ
[r]
T induces a natural bijection T (k) ∼= T (pr)(k).

Proof. Let FrobT : T ! T denote the morphism induced by the p-th power map on B.
Under the natural bijection T (pr)(k) = T (k) × (Spec (k)) (k) ∼= T (k) given by the fact that

(Spec (k)) (k) is a singleton, φ
[r]
T maps each t ∈ T (k) to FrobrT (t) by construction. Hence we

establish the desired assertion by observing that FrobrT induces a bijection T (k) ∼= T (k). □
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Definition 1.5.5. Given a morphism f : T ! U of affine k-schemes and a positive integer r,
we refer to the induced morphism f (p

r) : T (pr) ! U (pr) as the pr-Frobenius twist of f .

Example 1.5.6. Given an arbitrary affine k-scheme T = Spec (B), we show the equality(
φ
[r]
T

)(ps)
= φ

[r]

T (ps)

for any positive integers r and s. For r = 1 and s = 1, since we have a commutative diagram

T (p) T (p2) Spec (k)

T T (p) Spec (k)

(φT )(p)

σ

φT

where each square is cartesian, we find (φT )(p) = φT (p) by observing that the morphism

T (p) −! T
φT−! T (p) given by the left square induces the p-th power map on B(p). For

r = 1 and s ≥ 2, we have (φT )(p
s) =

(
(φT )(p

s−1)
)(p)

and thus proceed by induction to find

(φT )(p
s) = φT (ps) . Finally, for r ≥ 2 and s ≥ 2, we have(

φ
[r]
T

)(ps)
=
(
φ
T (pr−1) ◦ φ

[r−1]
T

)(ps)
=
(
φ
T (pr−1)

)(ps) ◦ (φ[r−1]
T

)(ps)
by Lemma 1.5.2 and thus proceed by induction to obtain the desired equality.

Lemma 1.5.7. Let T and U be affine k-schemes. Take a positive integer r.

(1) There exists a natural isomorphism (T ×k U)(p
r) ∼= T (pr) ×k U

(pr) which canonically

identifies φ
[r]
(T×kU) with φ

[r]
T ×k φ

[r]
U .

(2) Every k-scheme morphism f : T ! U gives rises to a commutative diagram

T T (pr)

U U (pr)

φ
[r]
T

f f (p
r)

φ
[r]
U

where all maps are k-scheme morphisms.

Proof. The assertions are straightforward to verify using properties of fiber products. □

Proposition 1.5.8. Let G be an affine k-group and r be a positive integer.

(1) The pr-Frobenius twist G(pr) is naturally an affine k-group.

(2) The relative pr-Frobenius φ
[r]
G is a k-group homomorphism.

(3) If G is finite flat, G(pr) is finite flat with a natural isomorphism
(
G(pr)

)∨ ∼= (G∨)(p
r).

Proof. As we have G(pr) = G×k,σr k, statements (1) and (3) are evident by Lemma 1.2.1
and Proposition 1.2.5. Statements (2) is a straightforward consequence of Lemma 1.5.7. □

Lemma 1.5.9. Let f : G! H be a homomorphism of affine k-groups.

(1) The pr-Frobenius twist f (p
r) is a k-group homomorphism for each r ≥ 1.

(2) If f is a closed embedding, f (p
r) is also a closed embedding for each r ≥ 1.

(3) If f is an isomorphism, f (p
r) is also an isomorphism for each r ≥ 1.

Proof. The first statement is striaghtforward to verify by Lemma 1.5.7. The remaining
statements are evident by the construction of the Frobenius twists via base changes. □
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Definition 1.5.10. Let G be a finite flat k-group and r be a positive integer.

(1) We define the pr-Verschiebung to be ψ
[r]
G :=

(
φ
[r]
G∨

)∨
, regarded as a homomorphism

from G(pr) ∼=
(
(G∨)(p

r)
)∨

to G ∼= (G∨)∨ under the identifications given by Proposi-
tion 1.5.8 and Theorem 1.2.4.

(2) For r = 1, we often refer to ψG := ψ
[1]
G = φ∨

G∨ as the Verschiebung of G.

Proposition 1.5.11. We identify the Frobenius and Verschiebung of αp, µp, Z/pZ as follows:

(1) For αp, we have φαp = 0 and ψαp = 0.

(2) For µp, we have φµp = 0 and ψµp = idµp .

(3) For Z/pZ, we have φZ/pZ = idZ/pZ and ψZ/pZ = 0.

Proof. Let us begin with the Frobenii. We use the affine descriptions in Example 1.1.8.

For αp, we find α
(p)
p

∼= αp and φαp = 0 by Proposition 1.5.3. For µp, we similarly find µ
(p)
p

∼= µp

and φµp = 0. Let us now consider Z/pZ. We write A :=
∏

i∈Z/pZ

k for its affine ring and ei

for the element of A whose only nonzero entry is 1 in the component corresponding to i. We
have a natural identification

A(p) =

 ∏
i∈Z/pZ

k

⊗k,σ k ∼=
∏

i∈Z/pZ

(k ⊗k,σ k) ∼=
∏

i∈Z/pZ

k = A.

Hence for each a =
∑

i∈Z/pZ

ciei ∈ A with ci ∈ k we find

φA(a) = φA

 ∑
i∈Z/pZ

ciei

 =
∑

i∈Z/pZ

φA(ciei) =
∑

i∈Z/pZ

cie
p
i =

∑
i∈Z/pZ

ciei = a,

thereby deducing that φZ/pZ coincides with the identity map. Now that we have the desired

identifications of the Frobenii, we deduce the identifications for the Verschiebungs from the
results on Cartier duals such as Proposition 1.2.8, and Proposition 1.2.9. □

Lemma 1.5.12. Given a finite flat k-group G, we have ψ
[r+1]
G = ψ

[r]
G ◦ ψG(pr) for each r ≥ 1.

Proof. The assertion is evident by Lemma 1.5.2. □

Lemma 1.5.13. Let G and H be finite flat k-group schemes. Take a positive integer r.

(1) There exists a natural isomorphism (G×kH)(p
r) ∼= G(pr)×kH

(pr) which canonically

identifies ψ
[r]
(G×kH) with ψ

[r]
G ×k φ

[r]
H .

(2) Every homorphism f : G! H of finite flat k-groups induces commutative diagrams

G G(pr)

H H(pr)

f

φ
[r]
G

f (p
r)

φ
[r]
H

G G(pr)

H H(pr)

f f (p
r)

ψ
[r]
G

ψ
[r]
H

where all maps are k-group homomorphisms.

Proof. By Lemma 1.2.1, fiber products of finite flat k-groups are finite flat k-groups.
Hence the assertions follow from Lemma 1.5.7, Proposition 1.5.8, and Lemma 1.5.9. □
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Proposition 1.5.14. Let G = Spec (A) be a finite flat k-group. We denote the symmetric
group of order p by Sp, which acts on A⊗p by permuting factors of pure tensors.

(1) There exists a k-algebra homomorphism γ : (A⊗p)Sp ! A(p) with the following
properties:

(i) For each a ∈ A, we have γ(a⊗p) = a⊗ 1.

(ii) For each pure tensor in A⊗p with unequal factors, the sum of elements in its
Sp-orbit maps to 0 under γ.

(2) The k-algebra homomorphism ψA induced by ψG fits into a commutative diagram

A (A⊗p)Sp A(p)

A⊗p

ψA

γ

with the map A! A⊗p induced by the comultiplication of G.

Proof. Let us work with the natural k-algebra isomorphisms

A ∼= (A∨)∨,
(
SympA∨)∨ ∼= (A⊗p)Sp , A(p) ∼=

(
(A∨)(p)

)∨
,

given by Theorem 1.2.4, Proposition 1.5.8, and the fact that Symp(A∨) is the k-algebra of

Sp-covariants for (A∨)⊗p. Since k has characteristic p, we have (f1 + f2)
⊗p = f⊗p1 + f⊗p2 in

Symp(A∨) for any f1, f2 ∈ A∨. Therefore there exists a unique k-algebra homomorphism

θ : (A∨)(p) ! SympA∨ which maps each f ⊗ c ∈ (A∨)(p) = A∨ ⊗k,σ k to c · f⊗p ∈ SympA∨.
Let us take γ to be the dual of θ. In addition, we identify each a ∈ A with its image ea under
the isomorphism A ∼= (A∨)∨. For each a ∈ A and f ⊗ c ∈ (A∨)(p) = A∨ ⊗k,σ k, we have

γ(a⊗p)(f ⊗ c) = (ea)
⊗p(c · f⊗p) = c · f(a)p = (ea ⊗ 1)(f ⊗ c)

where the last equality follows from the identity f(a)⊗c = 1⊗(c·f(a)p) in A⊗k,σk. Moreover,
given a pure tensor ⊗ai ∈ A⊗p with unequal factors, we denote its Sp-stabilizer by S and find

γ

( ∑
τ∈Sp/S

p⊗
i=1

aτ(i)

)
(f ⊗ c) =

∑
τ∈Sp/S

(
p⊗
i=1

eaτ(i)

)
(c · f⊗p) = c

∑
τ∈Sp/S

p∏
i=1

f(ai) = 0

for each f ⊗ c ∈ (A∨)(p) = A∨ ⊗k,σ k, where the last equality follows from the fact that the
number of elements in Sp/S is divisible by p. Therefore we establish statement (1).

Let us now consider statement (2). By construction, φA∨ fits into a commutative diagram

(A∨)(p) SympA∨ A∨

(A∨)⊗p

θ

φA∨

⊗fi 7!
∏

A∨ fi

where
∏
A∨ denotes the ring multiplication on A∨. Theorem 1.2.4 implies that the dual of

the map (A∨)⊗p ! A∨ in the diagram coincides with the map A ! A⊗p induced by the
comultiplication of G. Since we have ψA = φ∨

A∨ by construction, we obtain the diagram in
statement (2) by dualizing the above diagram, thereby completing the proof. □
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Proposition 1.5.15. Every finite flat k-group G yields the identities

ψ
[r]
G ◦ φ[r]

G = [pr]G and φ
[r]
G ◦ ψ[r]

G = [pr]G(p) for each integer r ≥ 1.

Proof. An inductive argument based on Lemma 1.5.2 and Lemma 1.5.12 shows that it
suffices to establish the desired identities for r = 1. Let us write G = Spec (A) for some
finite dimensional k-algebra A. In addition, we let ψA denote the k-algebra homomorphism
induced by ψG and Sp denote the symmetric group of order p. Proposition 1.5.14 yields a
commutative diagram

A (A⊗p)Sp A(p)

A⊗p A

ψA

γ

φA

⊗ai 7!
∏

A ai

with the map A ! A⊗p induced by the comultiplication of G and
∏
A denoting the ring

multiplication on A. Therefore we have a commutative diagram

G G(p)

G×p G

ψG

g1···gp [(g1,··· ,gp)

(g,··· ,g) [g

φG

and in turn find ψG ◦ φG = [p]G. Moreover, we have φ
(p)
G = φG(p) as noted in Example 1.5.6

and thus obtain a commutative diagram

G(p) G(p2)

G G(p)

φ
G(p)

ψG
ψ
G(p)

φG

by Lemma 1.5.13. Since we have established the identity ψG ◦ φG = [p]G for an arbitrary
finite flat k-group G, we find φG ◦ψG = ψG(p) ◦φG(p) = [p]G(p) as desired, thereby completing
the proof. □

Remark. Let us briefly discuss the Verschiebung for a general affine k-group G = Spec (A)
which is not necessarily finite flat. Our proof of Proposition 1.5.14 readily shows that state-
ment (1) holds for an arbitrary k-algebra A. In addition, the associativity axiom for G
implies that the k-algebra homomorphism A ! A⊗p induced by the comultiplication of G
factors through the embedding (A⊗p)Sp ↪! A⊗p. Therefore there exists a unique k-algebra

homomorphism ψA : A ! A(p) which fits into the diagram in statement (2). We define the

Verschiebung of G to be the k-scheme morphism ψG : G(p) ! G induced by ψA. It is not hard
to verify that ψA is compatible with comultiplications, which means that ψG is a k-group
homomorphism. Moreover, for each integer r ≥ 1 we inductively define the k-group homo-

morphism ψ
[r]
G by the recursive relation in Lemma 1.5.12. It turns out that Lemma 1.5.13 and

Proposition 1.5.15 hold for general affine k-groups; indeed, we can establish Lemma 1.5.13
by a straightforward argument on affine rings and in turn deduce Proposition 1.5.15 by the
same proof. In addition, we can suitably adjust our argument in Example 1.5.6 to obtain the

identity (ψ
[r]
G )(p

s) = ψ
[r]

G(ps) for any positive integers r and s.
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Lemma 1.5.16. Let G = Spec (A) be a finite flat k-group.

(1) The Frobenius φG is an isomorphism if and only if it is injective.

(2) If G is connected, A is an artinian local k-algebra with its maximal ideal given by
the augmentation ideal of G.

Proof. Since G and G(p) are of the same order by construction, statement (1) follows
from Proposition 1.1.10 and Theorem 1.1.17. If G is connected, A is an artinian local ring by
Lemma 1.1.13, Lemma 1.4.2, and a general fact that every finite dimensional algebra over a
field is artinian as noted in the Stacks project [Sta, Tag 00J6]. Hence we deduce statement (2)
by observing that the augmentation ideal I of G is a maximal ideal as we have A/I ∼= k. □

Proposition 1.5.17. Let G = Spec (A) be a finite flat k-group.

(1) G is connected if and only if φ
[r]
G vanishes for some integer r ≥ 1.

(2) G is étale if and only if φG is an isomorphism.

Proof. Let us begin with statement (1). If φ
[r]
G vanishes for some r ≥ 1, we find by

Proposition 1.5.4 that G(k) is trivial and thus deduce from Proposition 1.4.7 that G is con-
nected. For the converse, we now assume that G is connected. Its augmentation ideal I is
nilpotent by Lemma 1.5.16 and a standard fact stated in the Stacks project [Sta, Tag 00J8];

in particular, there exists an integer r ≥ 1 with tp
r

= 0 for all t ∈ I. Therefore φ
[r]
A factors

through the surjection A(pr) = A⊗k,σr k ↠ (A/I)⊗k,σr k induced by the unit section of G(pr).

We deduce that φ
[r]
G vanishes and in turn establish statement (1).

It remains to prove statement (2). Let us assume that φG is an isomorphism. It is not hard
to see that φG◦ is an isomorphism, for example by Lemma 1.5.7 and Lemma 1.5.16. Hence

Example 1.5.6 and Lemma 1.5.9 together imply that φ(G◦)(pr) = φ
(pr)
G◦ is an isomorphism for

each r ≥ 1. Now a simple induction based on Lemma 1.5.2 shows that φ
[r]
G◦ is an isomorphism

for each r ≥ 1. Since φ
[r]
G◦ vanishes for some r ≥ 1 by statement (1), we find that G◦ is trivial

and consequently deduce from Proposition 1.4.12 that G is étale.

We now assume for the converse that G is étale. Since Lemma 1.5.7 implies that φker(φG)

vanishes, ker(φG) is connected by statement (1); in particular, ker(φG) lies in G◦. Hence we
find by Proposition 1.4.12 that ker(φG) is trivial and in turn deduce from Lemma 1.5.16 that
φG is an isomorphism, thereby completing the proof. □

Remark. Proposition 1.5.17 yields similar criteria for G∨ to be connected or étale in terms
of the Verschiebungs.

Example 1.5.18. Let E be an ordinary elliptic curve over Fp. We assert that there exists an
isomorphism ker(φE[p]) ≃ µp. Example 1.4.16 shows that we have E[p]◦ ≃ µp. Lemma 1.5.7
and Proposition 1.5.17 together imply that ker(φE[p]) is connected and thus lies in E[p]◦ ≃ µp.
On the other hand, ker(φE[p]) contains E[p]◦ ≃ µp as φµp vanishes by Proposition 1.5.11.
Therefore we have ker(φE[p]) = E[p]◦ ≃ µp as desired.

Remark. As noted after Definition 1.5.1, we can define the relative Frobenii for general k-
schemes, including abelian k-varieties. Moreover, since abelian varieties admit a notion of
duality, we can define their relative Verschiebungs as in Definition 1.5.10. It turns out that
most results that in this subsection remain valid for abelian varieties. In particular, for an

ordinary elliptic curve E over Fp, we find ker(φE) ⊆ E[p] by the identity ψ
[r]
E ◦ φ[r]

E = [pr]E
and in turn obtain an isomorphsim ker(φE) ≃ µp from Example 1.5.18.

https://stacks.math.columbia.edu/tag/00J6
https://stacks.math.columbia.edu/tag/00J8
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Proposition 1.5.19. Let G = Spec (A) be a finite flat k-group with augmentation ideal I.

(1) For each integer r ≥ 1, there exists a natural isomorphism

ker(φ
[r]
G ) ∼= Spec (A/I(p

r))

where I(p
r) denotes the ideal generated by the pr-th powers of elements in I.

(2) If φG vanishes, the order of G is pd where d denotes the dimension of I/I2 over k.

Proof. Let us denote by e the unit section of G, which we naturally identify with the
closed embedding Spec (A/I) ↪! Spec (A). The unit section of G(pr) is e(p

r), induced by

natural surjection A(pr) = A ⊗k,σr k ↠ (A/I) ⊗k,σr k. Hence statement (1) follows from the

identification of ker(φ
[r]
G ) as the fiber of φ

[r]
G over e(p

r).

Let us now consider statement (2). We chooose a1, · · · , ad ∈ I whose images in I/I2 form
a basis over k. Since Proposition 1.5.17 shows that G is connected, we note by Lemma 1.5.16
that A is a local ring with maximal ideal I and in turn deduce from Nakayama’s lemma that
a1, · · · , ad generate I. Therefore statement (1) yields an isomorphism A ∼= A/(ap1, · · · , a

p
d).

Let us take the k-algebra homomorphism

λ : k[t1, · · · , td] −! A ∼= A/(ap1, · · · , a
p
d)

which maps each ti to ai. Since λ is surjective as easily seen by Lemma 1.3.5, we have

k[t1, · · · , td]/ ker(λ) ≃ A

and thus obtain an isomorphism

ΩA/k ≃
d⊕
i=1

A · dti
/ ∑

f∈ker(λ)

A · df

by a general fact about differentials stated in the Stacks project [Sta, Tag 00RU]. Moreover,
Proposition 1.3.6 implies that ΩA/k is a free A-module of rank d. Hence we deduce that∑
f∈ker(λ)

A · df is trivial, which means that ker(λ) is stable under partial derivatives. Now we

must have ker(λ) ⊆ (tp1, · · · , t
p
d), since otherwise we take an element f ∈ ker(λ)\(tp1, · · · , t

p
d)

with minimal sum of degrees of its terms and find that its partial derivatives yield elements in
ker(λ) which violate the minimality for f . As ker(λ) evidently contains (tp1, · · · , t

p
d), we obtain

an isomorphism k[t1, · · · , td]/(tp1, · · · , t
p
d) ≃ A and thus establish statement (2) by observing

that k[t1, · · · , td]/(tp1, · · · , t
p
d) is free of dimension pd over k. □

Proposition 1.5.20. If a finite flat k-group G is connected, its order is a power of p.

Proof. Let us denote the order of G by n. Since the assertion is trivial for n = 1, we
henceforth assume n > 1 and proceed by induction on n. It is evident by Proposition 1.4.12
that G is not étale. Hence Lemma 1.5.16 and Proposition 1.5.17 together imply that ker(φG)
is not trivial. In addition, as ker(φG) is a closed k-subgroup of G by Proposition 1.1.10, we
apply Proposition 1.4.14 to see that both ker(φG) and G/ ker(φG) are connected. Let us write
n1 and n2 respectively for the orders of ker(φG) and G/ ker(φG). By Theorem 1.1.17 we have
n = n1n2. If φG does not vanish, we find that both n1 and n2 are less than n and thus are
powers of p by the induction hypothesis, which in particular implies that n is a power of p. If
φG vanishes, Proposition 1.5.19 readily shows that n is a power of p. Hence we establish the
desired assertion. □

https://stacks.math.columbia.edu/tag/00RU
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Proposition 1.5.21. Given a finite flat k-group G = Spec (A) with unit section e, its tangent
space at e admits a canonical isomorphism tG,e ∼= Homk-grp(G∨,Ga).

Proof. Let us write I for the augmentation ideal of G and regard the unit section e
as a k-point of G via the natural closed embedding Spec (k) ∼= Spec (A/I) ↪! Spec (A).
The tangent space tG,e is by definition canonically isomorphic to the kernel of the natural
homomorphism G(k[t]/(t2))! G(k), which we naturally identify with the group of k-algebra
homomorphisms A ! k[t]/(t2) whose composition with the map k[t]/(t2) ! k equals the
counit ϵ of G. Since we can uniquely write every k-linear map A ! k[t]/(t2) in the form
f0 + tf1 with f0, f1 ∈ A∨ = Homk-mod(A, k), we find

tG,e ∼=
{
f ∈ Homk-alg(A, k[t]/(t2)) : f = ϵ+ tg with g ∈ A∨ }

∼=
{
g ∈ A∨ : ϵ+ tg ∈ Homk-alg(A, k[t]/(t2)

}
.

For each g ∈ A∨, we have ϵ+ tg ∈ Homk-alg(A, k[t]/(t2)) if and only if it satisfies the identities

ϵ(ab) + tg(ab) = (ϵ(a) + tg(a)) (ϵ(b) + tg(b)) and ϵ(1) + tg(1) = 1 for each a, b ∈ A,

which are equivalent to the identities

g(ab) = ϵ(a)g(b) + ϵ(b)g(a) and g(1) = 0 for each a, b ∈ A

by the fact that ϵ is an k-algebra homomorphism. We observe that the second identity is
redundant as it follows from the first identity for a = b = 1. In addition, the first identity is
equivalent to the commutative diagram

A k ∼= k ⊗k k

A⊗k A

g

mA
ϵ⊗g+g⊗ϵ

where mA denotes the ring multiplication map on A. We dualize this diagram under the
identification A∨ = Homk-mod(A, k) ∼= Homk-mod(k,A∨) and find m∨

A(g) = g ⊗ 1 + 1 ⊗ g.
Therefore we obtain a natural isomorphsim

tG,e ∼=
{
g ∈ A∨ : m∨

A(g) = g ⊗ 1 + 1 ⊗ g
}
.

Meanwhile, by Example 1.1.8 and Theorem 1.2.4 we find

Homk-grp(G∨,Ga) ∼=
{
f ∈ Homk-alg(k[t], A∨) : m∨

A(f(t)) = f(t) ⊗ 1 + 1 ⊗ f(t)
}

where the identity m∨
A(f(t)) = f(t) ⊗ 1 + 1 ⊗ f(t) comes from compatibility with comultipli-

cations. Since we have the canonical isomorphism Homk-alg(k[t], A∨) ∼= A∨ which sends each
f ∈ Homk-alg(k[t], A∨) to f(t), we obtain a natural identification

Homk-grp(G∨,Ga) ∼=
{
g ∈ A∨ : m∨

A(g) = g ⊗ 1 + 1 ⊗ g
}
.

Therefore we deduce the desired assertion, thereby completing the proof. □

Proposition 1.5.22. A finite flat k-group G is étale if and only if Homk-grp(G∨,Ga) vanishes.

Proof. Let us write G = Spec (A) for some finite dimensional k-algebra A. We denote
the augmentation ideal of G by I and regard the unit section e as a k-point of G via the closed
embedding Spec (k) ∼= Spec (A/I) ↪! Spec (A). The tangent space tG,e is naturally isomorphic
to the dual of I/I2 by a general fact stated in the Stacks project [Sta, Tag 0B2E]. Therefore,
by Proposition 1.3.6, G is étale if and only if tG,e vanishes. Now the desired assertion follows
from Proposition 1.5.21. □

https://stacks.math.columbia.edu/tag/0B2E
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Theorem 1.5.23. Assume that k is algebraically closed.

(1) Every simple finite flat k-group is either étale or connected.

(2) The simple finite étale k-groups are Z/ℓZ where ℓ ranges over all prime numbers.

(3) The simple connected finite flat k-groups are µp and αp.

Proof. Statement (1) is straightforward to verify by Theorem 1.4.9. Statement (2) fol-
lows from Proposition 1.3.7, Proposition 1.3.8, and the fact that the simple abelian groups
are precisely the cyclic groups of prime order. Hence it remains to prove statement (3).

The k-groups µp and αp are indeed connected as noted in Example 1.4.8. Moreover, they
are of order p by construction and thus are simple by Theorem 1.4.9. We wish to show that
they are the only simple connected finite flat k-groups.

Let G be a simple connected finite flat k-group. Theorem 1.2.4 and Proposition 1.2.13
together imply that G∨ is simple. Hence G∨ is either étale or connected by statement (1).

We consider the case where G∨ is étale. Statement (2) yields an isomorphism G∨ ≃ Z/ℓZ
for some prime ℓ. Hence G has order ℓ by Example 1.1.14 and Theorem 1.2.4. On the other
hand, the order of G is a power of p as noted in Proposition 1.5.20. We thus find ℓ = p and
in turn obtain an isomorphism G ≃ µp by Proposition 1.2.8.

Let us now consider the case where G∨ is connected. It is evident by Proposition 1.4.12
that neither G nor G∨ is étale. Theorem 1.2.4 and Proposition 1.5.22 together yield a nonzero
k-group homomorphism f : G ! Ga, which is indeed a closed embedding as G∨ is simple.
Moreover, Lemma 1.5.16 and Proposition 1.5.17 together imply that ker(φG) is not trivial,
which means that φG vanishes as G is simple. Therefore f must factor through ker(φGa),
which is isomorphic to αp as easily seen by Example 1.1.8 and Proposition 1.5.3. Since αp is
simple, we deduce that f induces an isomorphism G ≃ αp. □

Remark. In the category of finite flat group schemes, the image of a homomorphism is a
scheme theoretic image and thus is closed in the target; in particular, subobjects of a finite
flat k-group scheme is a closed k-subgroup.

Example 1.5.24. We say that an elliptic curve E over Fp is supersingular if E[p](Fp) is trivial.

We assert that every supersingular elliptic curve E over Fp yields a short exact sequence

0 −! αp −! E[p] −! αp −! 0.

Example 1.1.14 and Theorem 1.5.23 together show that the order of every simple finite flat
Fp-group is a prime. Since E[p] has order p2 as noted in Proposition 1.1.15, it is not simple

and thus admits a nonzero proper closed Fp-subgroup H. Let us consider the exact sequence

0 −! H −! E[p] −! E[p]/H −! 0.

Proposition 1.2.13 and Example 1.2.11 together yield a short exact sequence

0 −! (E[p]/H)∨ −! E[p] −! H∨ −! 0.

Since E[p] is connected as easily seen by Proposition 1.4.7, we deduce from Proposition 1.4.14
that H, E[p]/H, H∨, (E[p]/H)∨ are all connected. In addition, we find by Theorem 1.1.17
that both H and E[p]/H have order p and thus are simple. Therefore Proposition 1.2.8
and Theorem 1.5.23 together imply that both H and E[p]/H are isomorphic to αp, thereby
yielding the desired assertion.

Remark. It turns out that the Fp-subgroup H ≃ αp coincides with ker(φE[p]).
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2. p-divisible groups

In this section, we introduce p-divisible groups as limits of finite flat group schemes and
discuss some fundamental theorems about their structures. The primary references for this
section are the book of Demazure [Dem72] and the article of Tate [Tat67]. Throughout this
section, we let R denote a noetherian base ring.

2.1. Basic definitions and properties

In this subsection, we define p-divisible groups and describe their basic properties inherited
from properties of finite flat group schemes.

Definition 2.1.1. A p-divisible group of height h over R is an ind-scheme G = lim−!
v>0

Gv with

the following properties:

(i) Each Gv is a finite flat R-group of order pvh.

(ii) Each transition map iv : Gv ! Gv+1 fits into a short exact sequence

0 Gv Gv+1 Gv+1.
iv [pv ]

Remark. Some authors prefer to say Barsotti-Tate groups for p-divisible groups.

Example 2.1.2. We present some important examples of p-divisible groups.

(1) The trivial R-group 0 is a unique p-divisible group of height 0 over R via the identi-
fication 0 ∼= lim−! 0.

(2) The constant p-divisible group over R is Qp/Zp := lim−!Z/pvZ with natural inclusions.

It is a p-divisible group of height 1 over R.

(3) The p-power roots of unity over R is µp∞ := lim−!µpv with natural inclusions. It is a
p-divisible group of height 1 over R.

(4) Every abelian scheme A of dimension g over R gives rises to a p-divisible group
A[p∞] := lim−!A[pv] of height 2g over R by Proposition 1.1.15.

Remark. When R has characteristic p, we have a finite flat R-group αpv := Spec (R[t]/tp
v
) for

each integer v ≥ 1 with the natural additive group structure on αpv(B) =
{
b ∈ B : bp

v
= 0

}
for each R-algebra B. However, the ind-scheme lim−!αpv over R with natural inclusions is not

a p-divisible group since [p]αv vanishes for each v ≥ 1.

Definition 2.1.3. Let G = lim−!Gv and H = lim−!Hv be p-divisible groups over R.

(1) A homomorphism from G to H is a system f = (fv) of R-group homomorphisms
fv : Gv ! Hv which fit into commutative diagrams

Gv Hv

Gv+1 Hv+1

fv

iv jv

fv+1

where iv and jv respectively denote transition maps of G and H.

(2) The kernel of a homomorphism f = (fv) from G to H is ker(f) := lim−! ker(fv).

Example 2.1.4. Given a p-divisible group G = lim−!Gv over R and an integer n, the multi-

plication by n on G is the homomorphism [n]G := ([n]Gv).
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Lemma 2.1.5. Let B be an R-algebra.

(1) Given a p-divisible group G = lim−!Gv of height h over R, the base change to B yields

a p-divisible group GB = lim−! (Gv)B of height h over B.

(2) Given a short exact sequence of p-divisible groups over R

0 −! G′ −! G −! G′′ −! 0,

the base change to B yields a short exact sequence of p-divisible groups

0 −! (G′)B −! GB −! (G′′)B −! 0.

Proof. The assertions are straightforward to verify by Lemma 1.2.1. □

Lemma 2.1.6. Every p-divisible group G = lim−!Gv over R yields R-group homomorphisms
iv,w : Gv ! Gv+w and jv,w : Gv+w ! Gw for each v, w ≥ 1 with the following properties:

(i) The map iv,w induces a canonical isomorphism Gv ∼= Gv+w[pv].

(ii) There exists a commutative diagram

Gv+w Gv+w

Gw

[pv ]

jv,w iw,v

(iii) We have a short exact sequence

0 Gv Gv+w Gw 0.
iv,w jv,w

Proof. Let us write iv : Gv ! Gv+1 for the transition map. For each v, w ≥ 1 the map
iv+w−1 induces a natural isomorphism

Gv+w[pv] ∼= Gv+w[pv+w−1] ∩Gv+w[pv] ∼= Gv+w−1 ∩Gv+w[pv] ∼= Gv+w−1[p
v].

Hence we set iv,w := iv+w−1 ◦ · · · ◦ iv and establish property (i) by induction on w. Moreover,
as the image of [pv]Gv+w lies in Gv+w[pw] by the fact that [pv+w]Gv+w vanishes, property (i)
implies that there exists a unique map jv,w : Gv+w ! Gw which satisfies property (ii).

It remains to verify property (iii). The map iv,w is a closed embedding as easily seen
by Proposition 1.1.10. In addition properties (i) and (ii) together yield an identification
ker(jv,w) = Gv+w[pv] ∼= Gv. Hence jv,w gives rise to a closed embedding Gv+w/Gv ↪! Gw,
which is indeed an isomorphism by Theorem 1.1.17 as both Gv+w/Gv and Gw have order pw.
We deduce that jv,w is surjective and consequently establish property (iii). □

Proposition 2.1.7. Let G = lim−!Gv be a p-divisible group over R.

(1) There exists a canonical identification Gv ∼= ker([pv]G) for each v ≥ 1.

(2) The homomorphism [p]G is surjective.

Proof. Given an integer v ≥ 1, we obtain a natural isomorphism ker([pv]Gw) ∼= Gv for
each w ≥ v by Lemma 2.1.6 and thus establish statement (1). In addition, we deduce from
Lemma 2.1.6 that the map [p]Gv+1 factors through a surjection Gv+1 ↠ Gv for each v ≥ 1
and consequently establish statement (2). □

Remark. Statement (1) shows that the kernel of a homomorphism between two p-divisible
groups is not necessarily a p-divisible group. For statement (2), we may define the surjectivity
of [p]G in terms of fpqc sheaves over R.
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Proposition 2.1.8. Let G = lim−!Gv be a p-divisible group of height h over R.

(1) The ind-scheme G∨ := lim−!G∨
v with transition maps induced by [p]G is a p-divisible

group of height h over R.

(2) There exists a canonical isomorphism G ∼= (G∨)∨.

Proof. Lemma 2.1.6 yields a commutative diagram

G1

0 Gv Gv+1 Gv+1 Gv 0

i1,v

iv=iv,1

jv,1

[pv ] jv=j1,v

where the horizontal arrows form an exact sequence. Hence we obtain an exact sequence

0 −! G∨
v

j∨v−! G∨
v+1

[pv ]
−! G∨

v+1

by Example 1.2.7 and Proposition 1.2.13. Now the desired assertions immediately follow from
Theorem 1.2.4. □

Definition 2.1.9. Given a p-divisible group G over R, we refer to the p-divisible group G∨

in Proposition 2.1.8 as the Cartier dual of G.

Remark. Some authors prefer to call G∨ the Serre dual of G.

Example 2.1.10. Let us record the Cartier duals of p-divisible groups from Example 2.1.2.

(1) The Cartier dual of 0 is evidently 0 by definition.

(2) We have (Qp/Zp)∨ ∼= µp∞ and µ∨p∞
∼= Qp/Zp by Proposition 1.2.8.

(3) Given an abelian scheme A over R, we have A[p∞]∨ ∼= A∨[p∞] by Proposition 1.2.10
where A∨ denotes the dual abelian scheme of A.

Proposition 2.1.11. Assume that R is a henselian local ring with residue field k. Let
G = lim−!Gv be a p-divisible group over R.

(1) There exists a natural exact sequence of p-divisible groups

0 −! G◦ −! G −! Gét −! 0 (2.1)

with G◦ = lim−!G◦
v and Gét = lim−!Gét

v .

(2) If R = k is a perfect field, the exact sequence (2.1) canonically splits.

Proof. Since the order of G1 is a power of p, we deduce from Theorem 1.1.17 that

the R-groups G◦
1 and Gét

1 respectively have order ph
◦

and ph
ét

for some integers h◦ and hét.
Meanwhile, as Lemma 2.1.6 yields a natural isomorphism Gv+1/Gv ∼= G1 for each v ≥ 1, we
find G◦

v+1/G
◦
v
∼= G◦

1 and Gét
v+1/G

ét
v
∼= Gét

1 by Proposition 1.4.14. A simple induction based on

Theorem 1.1.17 shows that the R-groups G◦
v and Gét

v respectively have order pvh
◦

and pvh
ét

.
In addition, Proposition 1.4.14 yields short exact sequences

0 −! G◦
v −! G◦

v+1
[pv ]
−! G◦

v+1 and 0 −! Gét
v −! Gét

v+1
[pv ]
−! Gét

v+1.

Therefore G◦ = lim−!G◦
v and Gét = lim−!Gét

v are p-divisible groups over R. Now the desired
assertions are evident by Proposition 1.4.13 and Proposition 1.4.15. □

Remark. Proposition 2.1.11 implies an interesting fact that for a p-divisible groupG = lim−!Gv
over a henselian local ring R each Gv being connected or étale is equivalent to G1 being
connected or étale.
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Definition 2.1.12. Let G = lim−!Gv be a p-divisible group over R.

(1) We say that G is connected if each Gv is connected.

(2) We say that G is étale if each Gv is étale.

(3) If R is a henselian local ring, we refer to the p-divisible groups G◦ and Gét in Propo-
sition 2.1.11 respectively as the connected part and the étale part of G.

Example 2.1.13. Below are essential examples of étale or connected p-divisible groups.

(1) The constant p-divisible group Qp/Zp is étale by Proposition 1.3.7.

(2) If R is a henselian local ring with residue field of characteristic p, the p-power roots
of unity µp∞ is connected by Example 1.4.8.

Definition 2.1.14. Assume that R = k is a field of characteristic p. Let G = lim−!Gv be a
p-divisible group over k and r be a positive integer.

(1) The pr-Frobenius twist of G is G(pr) := lim−!G
(pr)
v with transition maps given by the

pr-Frobenius twists of the transition maps for G.

(2) We define the pr-Frobenius of G to be φ
[r]
G := (φ

[r]
Gv

) and the pr-Verschiebung of G

to be ψ
[r]
G := (ψ

[r]
Gv

).

(3) For r = 1, we often refer to φG := φ
[1]
G and ψG := ψ

[1]
G respectively as the Frobenius

and the Verschiebung of G.

Proposition 2.1.15. Assume that R = k is a field of characteristic p. Let G be a p-divisible
group of height h over k and r be a positive integer.

(1) The ind-scheme G(pr) is a p-divisible group of height h over k.

(2) The maps φ
[r]
G and ψ

[r]
G are homomorphisms of p-divisible groups.

(3) We have ψ
[r]
G ◦ φ[r]

G = [pr]G and φ
[r]
G ◦ ψ[r]

G = [pr]G(pr) .

Proof. The assertions are direct consequences of Proposition 1.5.8, Lemma 1.5.13, and
Proposition 1.5.15. □

Remark. We can alternatively deduce the first statement from Lemma 2.1.5.

Definition 2.1.16. Assume that R = k is a field. For a p-divisible group G = lim−!Gv over k,

we define its Tate module to be Tp(G) := lim −Gv(k) with transition maps induced by [p]G.

Remark. We define Tp(G) as an inverse limit of groups, while G is a direct limit of k-groups.

Proposition 2.1.17. Assume that R = k is a perfect field of characteristic not equal to p.
There exists an equivalence of categories

{ p-divisible groups over k } ∼
−! { finite free Zp-modules with a continuous Γk-action }

which sends each p-divisible group G over k to Tp(G).

Proof. Let G = lim−!Gv be a p-divisible group over k. Lemma 2.1.6 implies that each

Gv(k) is a finite free module over Z/pvZ. Moreover, each Gv(k) naturally carries a continuous
Γk-action. Hence Tp(G) = lim −Gv(k) is a finite free Zp-module with a continuous Γk-action.

Since all finite flat k-groups of p-power order are étale by Theorem 1.3.10, it is not hard
to deduce from Proposition 1.3.4 that the functor is fully faithful. Moreover, given a finite
free Zp-module M with a continuous Γk-action, Proposition 1.3.4 yields a finite étale k-group

Gv with Gv(k) = M/(pv) for each v ≥ 1 and in turn provides a p-divisible group G = lim−!Gv
with Tp(G) = M . Therefore we deduce that the functor is an equivalence as desired. □
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2.2. Serre-Tate equivalence for connected p-divisible groups

In this subsection, we introduce formal group laws and explore their relations to p-divisible
groups. Throughout this subsection, we assume that R is a complete reduced noetherian local
ring with residue field k of characteristic p and let Ad := R[[t1, · · · , td]] denote the ring of power
series over R in d variables. We often write A := Ad if the context clearly specifies d. We work
with the canonical identifications Ad⊗̂RAd

∼= R[[T,U ]] and Ad⊗̂RAd⊗̂RAd
∼= R[[T,U, V ]],

where we write T := (t1, · · · , td), U := (u1, · · · , ud), and V := (v1, · · · , vd).

Lemma 2.2.1. An R-algebra homomorphism f : R[[t1, · · · , tn]] ! R[[u1, · · · , um]] is continu-
ous if and only if each f(ti) lies in the ideal I := (u1, · · · , um).

Proof. The map f is continuous if and only if there exists an integer v with f(tvi ) ∈ I
for each i = 1, · · · , n. Hence the assertion follows from our assumption that R is reduced. □

Definition 2.2.2. A formal group law of dimension d over R is a continuous R-algebra
homomorphism µ : Ad ! Ad⊗̂RAd such that Φ(T,U) := (µ(ti)) satisfies the following axioms:

(i) associativity axiom Φ(T,Φ(U, V )) = Φ(Φ(T,U), V ),

(ii) unit section axiom Φ(T, 0) = T = Φ(0, T ),

(iii) commutativity axiom Φ(T,U) = Φ(U, T ).

Example 2.2.3. We present two primary examples of one-dimensional formal group laws.

(1) The additive formal group law over R is the continuous R-algebra homomorphism
µĜa

: R[[t]]! R[[t, u]] with µĜa
(t) = t+ u.

(2) The multiplicative formal group law over R is the continuous R-algebra homomor-
phism µĜm

: R[[t]]! R[[t, u]] with µĜm
(t) = t+ u+ tu = (1 + t)(1 + u) − 1.

Lemma 2.2.4. Let µ : A ! A ⊗̂RA be a formal group law of dimension d over R represented
by Φ(T,U) := (µ(ti)). We have a d-tuple Ξ(T ) = (Ξi(T )) of power series in d variables with

Φ(T,Ξ(T )) = 0 = Φ(Ξ(T ), T ).

Proof. By the commutativity axiom for µ, it suffices to construct a d-tuple Ξ(T ) with
Φ(T,Ξ(T )) = 0. Let us consider the ideal I := (t1, · · · , td) of A . We have a natural
identification I ⊗̂I ∼= (t1, · · · , td, u1, · · · , ud). For each R-module M , we regard M×d as the
set of d-tuples whose entries all lie in M . We wish to present the desired d-tuple as a limit
Ξ(T ) = lim

j!∞
Pj(T ) where each Pj(T ) is a d-tuple of polynomials with

Pj(T ) ∈ Pj−1(T ) + (I j)×d and Φ(Pj(T ), T ) ∈ (I j+1)×d.

The unit section axiom for µ yields the relation

Φ(T,U) ∈ T + U + ((I ⊗̂I )2)×d. (2.2)

Let us set P1(T ) := −T and inductively construct Pj(T ) for each j > 1. By the relation

Φ(Pj−1(T ), T ) ∈ (I j)×d, there exists a d-tuple ∆j(T ) ∈ (I j)×d with

∆j(T ) ∈ −Φ(Pj−1(T ), T ) + (I j+1)×d. (2.3)

For Pj(T ) := Pj−1(T ) + ∆j(T ), we have Pj(T ) ∈ Pj−1(T ) + (I j)×d and find

Φ(Pj(T ), T ) = Φ(Pj−1(T ) + ∆j(T ), T ) ∈ Φ(Pj−1(T ), T ) + ∆j(T ) + (I j+1)×d = (I j+1)×d

by the relations (2.2) and (2.3). Therefore we obtain a desired d-tuple Ξ(T ). □

Remark. Lemma 2.2.4 shows that the inverse axiom is automatic for formal group laws.
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Lemma 2.2.5. Let µ : A ! A ⊗̂RA be a formal group law of dimension d over R.

(1) The formal group law µ yields commutative diagrams

A A ⊗̂RA

A ⊗̂RA A ⊗̂RA ⊗̂RA

µ

µ µ⊗̂id

id⊗̂µ

A ⊗̂RA A ⊗̂RA

A

x⊗̂y 7!y⊗̂x

µµ

(2) The R-algebra map ϵ : A ! R with ϵ(ti) = 0 fits into commutative diagrams

A A A ⊗̂RR

A ⊗̂RA

id

µ

∼

id⊗̂ϵ

A A R⊗̂RA

A ⊗̂RA

id

µ

∼

ϵ⊗̂id

(3) There exists an R-algebra map ι : A ! A that fits into a commutative diagram

A A ⊗̂RA

R A

ϵ

µ

ι⊗̂idid⊗̂ι

Proof. Statements (1) and (2) are evident by the axioms for µ. Statement (3) is a
reformulation of Lemma 2.2.4. □

Remark. We can extend the notion of R-groups to define formal R-groups as group objects
in the category of formal R-schemes. Lemma 2.2.5 shows that every formal group law µ of
dimension d over R corresponds to a unique a formal R-group Gµ = Spf(A ) with comultipli-
cation µ, counit ϵ, and coinverse ι.

Definition 2.2.6. Let µ and ν be formal group laws over R.

(1) A homomorphism from µ and ν is a continuous R-algebra map θ : Ad′ ! Ad with a
commutative diagram

Ad′ Ad′⊗̂RAd′

Ad Ad⊗̂RAd

ν

θ θ⊗̂θ
µ

where d and d′ respectively denotes the dimensions of µ and ν.

(2) A homomorphism θ : Ad′ ! Ad from µ and ν is finite flat if Ad becomes a free
module of finite rank over Ad′ via θ.

Remark. The map θ goes from the power series ring for ν to the power series ring for µ so
that it corresponds to a formal R-group homomorphism Gµ ! Gν . If we consider the tuples
Φ(T,U) := (µ(ti)), Ψ(T,U) := (ν(tj)), and Ξ(T ) := (θ(tj)), the commutative diagram for θ
is equivalent to the identity Ψ(Ξ(T ),Ξ(U)) = Ξ(Φ(T, T )).

Example 2.2.7. Let µ be a formal group law of dimension d over R. For each integer n ≥ 1,
the multiplication by n on µ is the homomorphism [n]µ : A ! A inductively defined by the

relations [1]µ := idA and [n]µ := ([n− 1]µ⊗̂id) ◦ µ.

Remark. The map [n]µ induces the multiplication by n on the formal R-group Gµ.
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Definition 2.2.8. Let µ : A ! A ⊗̂RA be a formal group law of dimension d over R.

(1) We refer to the ideal I := (t1, · · · , td) in A as the augmentation ideal of µ.

(2) We say that µ is p-divisible if the homomorphism [p]µ : A ! A is finite flat.

Remark. The ideal I is the kernel of the counit ϵ : A ! R for the formal R-group Gµ. Hence
our definition here is comparable to the definition of augmentation ideal for affine R-groups.

Example 2.2.9. Let us consider the formal group laws from Example 2.2.3.

(1) The additive formal group law µĜa
is not p-divisible; indeed, [p]µĜa

satisfies the

identity [p]µĜa
(t) = pt and thus is not finite flat for inducing a zero map on A ⊗R k.

(2) The multiplicative formal group law µĜm
is p-divisible; indeed, [p]µĜm

satisfies the

identity [p]µĜm
(t) = (1 + t)p − 1 and thus is finite flat.

Proposition 2.2.10. Let µ : A ! A ⊗̂RA be a p-divisible formal group law of dimension d
over R with augmentation ideal I . We write Av := A /[pv]µ(I ) for each v ≥ 1.

(1) Each µ[pv] := Spec (Av) is naturally a connected finite flat R-group.

(2) The ind-scheme µ[p∞] := lim−!µ[pv] is a connected p-divisible group over R.

Proof. Let us take ϵ and ι as in Lemma 2.2.5. For each v ≥ 1, we have

Av = A /[pv]µ(I ) ∼= A /I ⊗A ,[pv ]µ A ∼= R⊗A ,[pv ]µ A

and thus find that µ[pv] = Spec (Av) is naturally anR-group with comultiplication 1⊗µ, counit
1 ⊗ ϵ, and coinverse 1 ⊗ ι. If we take a basis of A over [p]µ(A ) given by f1, · · · , fr ∈ A ,
a simple induction yields a basis of A over [pv]µ(A ) for each v ≥ 1 given by elements of
the form [pv−1]µ(fiv−1) · · · [p]µ(fi1)fi0 with (i0, · · · , iv−1) ∈ (Z/rZ)v and consequently implies
that µ[pv] is finite flat of order rv over R. Moreover, since R is a local ring, both A and
Av = A /[pv]µ(I ) are local rings as well. We deduce that µ[pv] is connected and in turn
establish statement (1).

Let us now consider statement (2). Lemma 1.4.3 and Proposition 1.5.20 together imply
that µ[p] has order ph for some integer h. Therefore our discussion in the previous paragraph
shows that each µ[pv] has order pvh. Furthermore, the R-algebra homomorphism

Av = A /[pv]µ(I ) −! [p]µ(A )/[pv+1]µ(I )

induced by [p]µ is an isomorphism for being a surjective map between two free R-algebras of
the same rank. Hence we obtain a surjective ring homomorphism

Av+1 = A /[pv+1]µ(I ) ↠ [p]µ(A )/[pv+1]µ(I ) ≃ Av,

which induces an embedding iv : µ[pv] ↪! µ[pv+1]. Since it is evident by construction that
iv identifies µ[pv] with the kernel of [pv] on µ[pv+1], we conclude that µ[p∞] := lim−!µ[pv] is a
connected p-divisible group of height h over R, thereby completing the proof. □

Remark. We can alternatively deduce statement (2) from statement (1) by the identifidcation
µ[pv] ∼= Gµ[pv] for each v ≥ 1.

Definition 2.2.11. Given a p-divisible formal group law µ over R, we define its associated
connected p-divisible group over R to be µ[p∞] as constructed in Proposition 2.2.10.

Example 2.2.12. The multiplicative formal group law µĜm
is p-divisible as explained in

Example 2.2.9. For each v ≥ 1, we have [pv]µĜm
(t) = (1+ t)p

v −1 and thus find µĜm
[pv] ∼= µpv

by Example 1.1.8. Hence we obtain a natural identification µĜm
[p∞] ∼= µp∞ .
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Our main objective for this subsection is to prove a theorem of Serre and Tate that the
association described in Proposition 2.2.10 defines an equivalence between the category of
p-divisible formal group laws and the category of connected p-divisible groups.

Lemma 2.2.13. Let µ : A ! A ⊗̂RA be a formal group law of dimension d over R with
augmentation ideal I . For each integer n ≥ 1, we have

[n]µ(ti) ∈ nti + I 2.

Proof. Let us take d-tuples Φ(T,U) := (µ(ti)) and Ξn(T ) := ([n]µ(ti)) for each n ≥ 1.

Given an R-module M , we regard M×d as the set of d-tuples whose entries all lie in M . Under
the natural identification I ⊗̂I ∼= (t1, · · · , td, u1, · · · , ud), we find

Φ(T,U) ∈ T + U + ((I ⊗̂I )2)×d.

by the unit section axiom for µ. Hence the identity [n]µ = ([n− 1]µ⊗̂id) ◦ µ yield the relation

Ξn(T ) = Φ(Ξn−1(T ), T ) ∈ Ξn−1(T ) + T + (I 2)×d.

Since we have Ξ1(T ) = T by definition, we proceed by induction to find Ξn(T ) ∈ nT +(I 2)×d

for each n ≥ 1, thereby completing the proof. □

Remark. The proof of Theorem 1.3.10 yields an analogous relation for finite flat R-groups.

Lemma 2.2.14. Given a p-divisible formal group law µ : A ! A ⊗̂RA of dimension d over R
with augmentation ideal I , there exists a natural homeomorphic R-algebra isomorphism

A ∼= lim −Av

where we write Av := A /[pv]µ(I ) for each v ≥ 1.

Proof. Since R is a local ring, A and Av are also local rings for each v ≥ 1. Moreover,
each Av is a free R-algebra of finite rank as noted in Proposition 2.2.10. Let us write m
for the maximal ideal of R and M := mA + I for the maximal ideal of A . We have
[p]µ(I ) ⊆ pI + I 2 ⊆ MI by Lemma 2.2.13 and thus find [pv]µ(I ) ⊆ MvI for each v ≥ 1.
Hence for each i, v ≥ 1 we have [pv]µ(I ) +miA ⊆ Mw for some w ≥ 1. Meanwhile, for each

i, v ≥ 1 we find Mw′ ⊆ [pv]µ(I ) +miA for some w′ ≥ 1 as A /([pv]µ(I ) +miA ) = Av/m
iAv

is local artinian. Now we obtain a homeomorphic R-algebra isomorphism

A ∼= lim −
w

A /Mw ∼= lim −
i,v

A /([pv]µ(I ) + miA ) ∼= lim −
v,i

Av/m
iAv ∼= lim −

v

Av

where the last identification comes from an observation that each Av is m-adically complete
by a general fact stated in the Stacks project [Sta, Tag 031B]. □

Lemma 2.2.15. Given p-divisible formal group laws µ and ν over R, there exists a natural
identification

Hom(µ, ν) ∼= Hom(µ[p∞], ν[p∞]).

Proof. Let us write d and d′ respectively for the dimensions of µ and ν. In addition, we
setAv := Ad/[p

v]µ(Iµ) andBv := Ad′/[p
v]ν(Iν) for each v ≥ 1, where Iµ and Iν respectively

denote the augmentation ideals of µ and ν. Proposition 2.2.10 shows that µ[pv] := Spec (Av)
and ν[pv] := Spec (Bv) are connected finite flat R-groups. Since we have Ad

∼= lim −Av and
Ad′

∼= lim −Bv by Lemma 2.2.14, we obtain a natural identification

Hom(µ, ν) ∼= lim −Homνv ,µv(Bv, Av) ∼= lim−!HomR-grp(µ[pv], ν[pv]) = Hom(µ[p∞], ν[p∞])

where Homνv ,µv(Bv, Av) denotes the set of R-algebra maps Bv ! Av compatible with the
comultiplications µv on µ[pv] and νv on ν[pv]. □

https://stacks.math.columbia.edu/tag/031B
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Proposition 2.2.16. Let G = lim−!Gv be a connected p-divisible group over R.

(1) There exists a homeomorphic k-algebra isomorphism

lim −(Av ⊗R k) ≃ k[[t1, · · · , td]] for some d ≥ 0

where Av denotes the affine ring of Gv.

(2) The special fiber G := G ×R k is a p-divisible group over k such that ker(φG) is a

finite flat k-group of order pd.

Proof. It is evident by Lemma 2.1.5 that G is a p-divisible group over k. Let us write

Gv := Gv ×R k and Hv := ker(φ
[v]

G
) for each v ≥ 1. Proposition 2.1.7 and Proposition 2.1.15

together imply that each Hv is a closed k-subgroup of G[pv] ∼= Gv. Moreover, each Gv is

connected by Lemma 1.4.3 and thus is a k-subgroup of ker(φ
[w]

G
) = Hw for some w ≥ 1

by Proposition 1.5.17. Therefore we write Hv = Spec (Bv) for each v ≥ 1 and obtain a
homeomorphic k-algebra isomorphism

lim −Av ⊗R k ≃ lim −Bv. (2.4)

We denote the augmentation ideal of Hv by Jv and set J := lim − Jv. Since each Hv is
connected, as easily seen by Proposition 1.4.14 or Proposition 1.5.17, its affine ring Bv is a local
k-algebra with maximal ideal Jv by Lemma 1.5.16. In addition, we have H1

∼= ker(φHv) by

Lemma 1.5.7 and thus apply Proposition 1.5.19 to obtain an isomorphism B1
∼= Bv/J

(p)
v where

J
(p)
v denotes the ideal generated by the p-th powers of elements in Jv. We find J1 ∼= Jv/J

(p)
v

and in turn get an identification J1/J
2
1
∼= Jv/J

2
v . Let us take b1, · · · , bd ∈ J whose images in

J1/J
2
1 form a basis over k. Nakayama’s lemma implies that Jv admits generators given by the

images of b1, · · · , bd and in turn yields a surjective k-algebra homomorphism k[t1, · · · , td] ↠ Bv

which sends each ti to the image of bi in Bv. Furthermore, as φ
[v]
Hv

vanishes by Lemma 1.5.7,
this map induces a surjective k-algebra homomorphism

λv : k[t1, · · · , td]/(tp
v

1 , · · · , t
pv

d ) ↠ Bv

by Proposition 1.5.19. Therefore we obtain a continuous k-algebra homomorphism

λ : k[[t1, · · · , td]] ↠ lim −Bv

via the identification k[[t1, · · · , td]] ∼= lim − k[t1, · · · , td]/(tp
v

1 , · · · , t
pv

d ).

In light of the isomorphism (2.4), we wish to show that λ is a homeomorphism. It suffices
to prove that each λv is an isomorphism. Since each λv is surjective by construction, we only
need to verify that its source and target have equal dimensions over k; in other words, it is
enough to show that Bv has dimension pdv over k, or equivalently that Hv has order pdv.

For v = 1, the assertion follows from Proposition 1.5.19. Let us henceforth assume v > 1

and proceed by induction. Proposition 2.1.15 shows that G
(p)

is a p-divisible group over k
with φG ◦ψG = [p]

G
(p) . Since [p]

G
(p) is surjective as noted in Proposition 2.1.7, the map φG is

also surjective and thus maps Hv = ker(φ
[v]

G
) surjectively onto ker(φ

[v−1]

G
(p) ) ∼= H

(p)
v−1. We deduce

that there exists a short exact sequence

0 −! H1 −! Hv−!H
(p)
v−1 −! 0.

Now the desired assertion follows from Theorem 1.1.17 and the fact that the order of H
(p)
v−1 is

the same as the order of Hv−1. □
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Lemma 2.2.17. Given an R-algebra B, its ideal J with J⊗Rk = 0 is trivial if for each maximal
ideal n of B the Bn-module Jn admits a finite set of generators.

Proof. Let us write m for the maximal ideal of R. For each maximal ideal n of B, we
have Jn = mJn ⊆ nJn and thus deduce from Nakayama’s lemma that Jn is trivial. □

Lemma 2.2.18. Let G = lim−!Gv be a p-divisible group over R with Gv = Spec (Av).

(1) G gives rise to a flat R-algebra lim −Av.

(2) If an R-algebra B admits a k-algebra isomorphism

θ : (B ⊗R k)[[t1, · · · , td]]
∼
−! lim −(Av ⊗R k) for some d ≥ 0,

there exists an R-algebra surjection θ : B[[t1, · · · , td]] −! lim −Av which lifts θ.

Proof. Since each iv : Gv ! Gv+1 is a closed embedding by Proposition 1.1.10, the
induced map πv : Av+1 ! Av is surjective. Hence statement (1) follows from a general fact
stated in the Stacks project [Sta, Tag 0912]. It remains to establish statement (2).

We assert that each θv : (B ⊗R k)[[t1, · · · , td]] ↠ Av ⊗R k lifts to an R-algebra homomor-
phism θv : B[[t1, · · · , td]]! Av with a commutative diagram

B[[t1, · · · , td]] Av+1 Av+1 ⊗R k

Av Av ⊗R k

θv+1

θv
πv πv⊗id

We take θ1 to be an arbitrary lift of θ1 and proceed by induction on v. Let us write m for
the maximal ideal of R and choose a1, · · · , ad ∈ Av+1 which lift θv+1(t1), · · · , θv+1(td). We
observe that πv(a1), · · · , πv(ad) lift θv(t1), · · · , θv(td) and in turn find θv(ti) − πv(ai) ∈ mAv.
Since πv is surjective, we may choose b1, · · · , bd ∈ mAv+1 with πv(bi) = θv(ti) − πv(ai) and
deduce that θv+1 lifts to a map θv+1 : B[[t1, · · · , td]]! Av+1 with θv+1(ti) = ai+bi as desired.

Now we have an R-algebra homomorphism θ : B[[t1, · · · , td]] −! lim −Av which lifts θ. We

find coker(θ) ⊗R k = coker(θ) = 0 and also observe that coker(θ) admits a generator over
lim −Av given by the image of 1. Therefore Lemma 2.2.17 implies that θ is surjective. □

Lemma 2.2.19. Every connected p-divisible group G = lim−!Gv over R with Gv = Spec (Av)

yields a formal group law µ : A ! A ⊗̂RA via a homeomorphic R-algebra isomorphism

A = R[[t1, · · · , td]] ≃ lim −Av for some d ≥ 0.

Proof. Proposition 2.2.16 and Lemma 2.2.18 yield a surjective R-algebra homomorphism
θ : A ↠ lim −Av which lifts a homeomorphic isomorphism θ : k[[t1, · · · , td]]

∼
−! lim −(Av ⊗R k).

In addtion, we have ker(θ) ⊗R k = ker(θ) = 0 by Lemma 2.2.18 and a general fact stated in
the Stacks project [Sta, Tag 00HL]. Since A is a notherian local ring, we find ker(θ) = 0 by
Lemma 2.2.17 and in turn deduce that θ is an isomorphism.

The map θ is continuous as the kernel of each θv : A ! Av is open by the fact that
the R-algebra Av is of finite length. Moreover, with θ being a homeomorphism we observe
that every power of the ideal I := (t1, · · · , td) contains an open set in its image under θ and
consequently find that θ is open. Therefore θ is a homeomorphic R-algebra isomorphism.

Let us denote the comultiplication of each Gv by µv. Via the isomorphism θ we may
identify lim −µv with a continuous R-algebra homomorphism µ : A ! A ⊗̂RA . It is evident
by the axioms for each comultiplication µv that µ is indeed a formal group law over R. □

https://stacks.math.columbia.edu/tag/0912
https://stacks.math.columbia.edu/tag/00HL
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Theorem 2.2.20 (Serre-Tate). There exists an equivalence of categories

{ p-divisible formal group laws over R } ∼
−! { connected p-divisible groups over R }

which maps each p-divisible formal group law µ over R to µ[p∞].

Proof. Since Lemma 2.2.15 shows that the functor is fully faithful, we only need to
prove that the functor is essentially surjective. Let G = lim−!Gv be an arbitrary connected

p-divisible group of height h over R with Gv = Spec (Av). Lemma 2.2.19 yields a formal group
law µ : A ! A ⊗̂RA induced by G via a homeomorphic R-algebra isomorphism

A = R[[t1, · · · , td]] ≃ lim −Av for some d ≥ 0.

We wish to show that µ is p-divisible with µ[p∞] ≃ G.

We denote the agumentation ideal of A by I . For each v ≥ 1, we have Gv ∼= ker([pv]G)
by Proposition 2.1.7 and thus find Av ≃ A /[pv]µ(I ). Let us write r := ph and choose
f1, · · · , fr ∈ A whose images in A1 ≃ A /[p]µ(I ) form a basis over R.

For every g ∈ A , a simple induction yields a sequence (gi,j) for each i = 1, · · · , r with

gi,j ∈ gi,j−1 + I j−1 and g ∈
r∑
i=1

[p]µ(gi,j)fi + [p]µ(I )j .

Since we have [p]µ(I ) ⊆ I by Lemma 2.2.1, we set gi := lim
j!∞

gi,j and find g =
r∑
i=1

[p]µ(gi)fi.

Hence we deduce that f1, · · · , fr generate A over [p]µ(A ).

As noted in Lemma 2.1.6, each [p]Gv factors through a surjective R-group homomorphism
jv : Gv+1 ↠ Gv, which in turn induces a faithfully flat R-algebra homomorphism

ηv : Av ≃ A /[pv]µ(I ) −! A /[pv+1]µ(I ) ≃ Av+1

by a standard fact stated in the Stacks project [Sta, Tag 00HQ]. Since each Av is a free local
R-algebra of rank pvh, we see that Av+1 is free over Av of rank r = ph and in turn deduce
that the images of f1, · · · , fr in Av+1 ≃ A /[pv+1]µ(I ) form a basis over Av ≃ A /[pv]µ(I ).

Let us now consider a relation
r∑
i=1

[p]µ(hi)fi = 0 with h1, · · · , hr ∈ A . For each v ≥ 1,

we consider this relation in Av+1 ≃ A /[pv+1]µ(I ) and find [p]µ(h1), · · · , [p]µ(hr) ∈ [pv]µ(I ).
Since we have [pv]µ(I ) ⊆ I v for each v ≥ 1 as easily seen by Lemma 2.2.1, we deduce that
[p]µ(h1), · · · , [p]µ(hr) must all be zero. Therefore we find that f1, · · · , fr form a basis of A
over [p]µ(A ), which in particular implies that µ is p-divisible. As we evidently have µ[p∞] ≃ G
by construction, we deduce the desired assertion and complete the proof. □

Remark. Our proof yields a formal R-group isomorphism Gµ ≃ lim−!Gv with Gµ[pv] ≃ Gv.

Definition 2.2.21. Let G be a p-divisible group over R.

(1) We define its associated formal group law to be the p-divisible formal group law µG
over R corresponding to G◦ under the equivalence in Theorem 2.2.20.

(2) We define its dimension to be the dimension of µG.

Proposition 2.2.22. Given a p-divisible group G over R of dimension d, its special fiber
G := G×R k is a p-divisible group over k such that ker(φG) is finite flat of order pd.

Proof. Proposition 1.5.17 implies that ker(φG) lies in G
◦

:= G◦×Rk. Hence the assertion
follows from Proposition 2.2.16, Lemma 2.2.19, and Theorem 2.2.20. □

https://stacks.math.columbia.edu/tag/00HQ
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Theorem 2.2.23. Let G be a p-divisible group of height h over R. If write d and d∨ respec-
tively for the dimensions of G and G∨, we have h = d+ d∨.

Proof. Lemma 2.1.5 shows that G := G×R k is a p-divisible group of order h over k. Let
us write G = lim−!Gv where each Gv is a finite flat k-group scheme. We have ψG ◦ φG = [p]G
as noted in Proposition 2.1.15 and thus find ker(φG) ⊆ G[p]. In addition, we deduce from
Proposition 2.1.7 that φG is surjective. Therefore we obtain a commutative diagram

0 ker(φG) G G
(p)

0

0 0 G G 0

φG

[p]G ψG

id

where the rows are evidently exact. By the snake lemma, the diagram yields an exact sequence

0 ker(φG) G[p] ker(ψG) 0.

Proposition 2.2.22 shows that ker(φG) has order pd, while Proposition 2.1.7 implies that

G[p] ∼= G1 has order ph. Hence we deduce from Theorem 1.1.17 that ker(ψG) has order ph−d.

For the desired assertion, it suffices to show that ker(ψG) has order pd
∨
. We have

ker(ψG) ∼= ker(ψG1
) and ker(φ

G
∨) ∼= ker(φ

G
∨
1
)

as easily seen by Proposition 2.1.7 and Proposition 2.1.15. Since the k-groups G1 and G
(p)
1

are of the same order by construction, we apply Theorem 1.1.17 with the identifications

ψG1
(G

(p)
1 ) ∼= G

(p)
1 / ker(ψG1

) and coker(ψG1
) ∼= G1/ψG1

(G
(p)
1 )

to find that ker(ψG1
) and coker(ψG1

) are of the same order. Moreover, Proposition 1.2.13

yields a natural isomorphism coker(ψG1
) ∼= ker(φ

G
∨
1
) as we have ψG1

= φ∨
G

∨
1

by definition.

Therefore ker(ψG) and ker(φ
G

∨) have the same order. Since we have G
∨ ∼= G∨ ×R k by

Proposition 1.2.5, we deduce from Proposition 2.2.22 that ker(ψ
G

∨) has order pd
∨
, thereby

establishing the desired assertion. □

Proposition 2.2.24. Assume that R = k is an algebraically closed field of characteristic p.
Every p-divisible group G = lim −Gv of height 1 over k is isomorphic to either Qp/Zp or µp∞ .

Proof. Let us first consider the case where G is étale. Each Gv is a finite étale k-group
of order pv with Gv = Gv+1[p

v]. Since every finite étale k-group is a constant group scheme
as noted in Proposition 1.3.8, we find Gv ≃ Z/pvZ for each v ≥ 1 by a simple induction and

in turn obtain an isomorphism G ≃ Qp/Zp.
We now turn to the case where G is not étale. A p-divisible group over R is étale if and

only if it has dimension 0, as easily seen by Proposition 2.1.11. Since G has height 1, we
deduce from Theorem 2.2.23 that G∨ is étale and thus find G∨ ≃ Qp/Zp. Hence we obtain

an isomorphism G ≃ (Qp/Zp)∨ ≃ µp∞ by Proposition 2.1.8 and Example 2.1.10, thereby

completing the proof. □

Example 2.2.25. Let E be an ordinary elliptic curve over Fp. Example 1.4.16 shows that

both E[p∞]◦ and [p∞]ét are of height 1 with E[p]◦ ≃ µp and E[p]ét ≃ Z/pZ. Therefore
Proposition 2.1.11 and Proposition 2.2.24 together yield an isomorphism

E[p∞] ≃ Qp/Zp × µp∞ .
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2.3. Dieudonné-Manin classification

Throughout this subsection, we assume that R = k is a perfect field of characteristic p.
We introduce several algebraic objects and discuss their relation to p-divisible groups over k.
We begin with a brief overview on Witt vectors where we omit some technical details.

Theorem 2.3.1. Let A be a perfect Fp-algebra.
(1) There exists a unique (up to isomorphism) ring W (A) which is p-adically complete

with W (A)/pW (A) ∼= A.

(2) Given a p-adically complete ring B, every homomorphism f : A ! B/pB uniquely

lifts to a multiplicative map f̂ : A! B and a homomorphism f : W (A)! B.

Remark. For a proof, we refer readers to the book of Serre [Ser79, §II.5].

Definition 2.3.2. Let A be a perfect Fp-algebra.

(1) We refer to the ring W (A) in Theorem 2.3.1 as the ring of Witt vectors over A.

(2) For each a ∈ A, we define its Teichmüller lift [a] ∈ W (A) to be its image under the
unique multiplicative map A!W (A) which lifts the identity map on A.

Example 2.3.3. We present two important examples which frequently arise in practice.

(1) For q = pr with an integer r ≥ 1, the ring W (Fq) is isomorphic to the valuation ring
of the unramified extension of degree r over Qp, as easily seen by Theorem 2.3.1.

(2) The ring W (Fp) is the valuation ring of Q̂un
p , where Q̂un

p denotes the completion of
the maximal unramified extension of Qp.

Proposition 2.3.4. Let A be a perfect Fp-algebra.

(1) For every α ∈W (A), there exists a unique element a0 ∈ A with α− [a0] ∈ pW (A).

(2) Every α ∈W (A) admits a unique expression α =
∞∑
n=0

[an]pn with an ∈ A.

(3) The p-th power map on A uniquely lifts to an automorphism φW (A) on W (A) with

φW (A)

( ∞∑
n=0

[an]pn

)
=

∞∑
n=0

[apn]pn.

Proof. Statement (1) is evident with a0 given by the image of α under the natural
map W (A) ↠ W (A)/pW (A) ∼= A. Statement (2) follows from statement (1) by inductively
constructing a unique sequence (an) in A with

α−
m∑
n=0

[an]pn ∈ pmW (A) for each m ≥ 0.

Statement (3) is straightforward to verify by Theorem 2.3.1 and the perfectness of A. □

Definition 2.3.5. Let A be a perfect Fp-algebra.

(1) For every α ∈W (A), we define its Teichmüller expansion to be the unique expression

α =
∞∑
n=0

[an]pn with an ∈ A given by Proposition 2.3.4.

(2) We call the map φW (A) in Proposition 2.3.4 the Frobenius automorphism of W (A).

Remark. Teichmüller expansions for Zp = W (Fp) are not the same as p-adic expansions.



2. p-DIVISIBLE GROUPS 61

Proposition 2.3.6. Let A be a perfect Fp-algebra. Take two arbitrary elements α, β ∈W (A)

with Teichmüller expansions α =
∞∑
n=0

[an]pn and β =
∞∑
n=0

[bn]pn ∈W (A).

(1) The Teichmüller expansion of α+ β has the first two coefficients given by

c0 = a0 + b0 and c1 = a1 + b1 −W1

(
a
1/p
0 , b

1/p
0

)
,

where we write W1(t, u) :=
(t+ u)p − tp − up

p
∈ Z[t, u].

(2) The Teichmüller expansion of αβ has the first two coefficients given by

d0 = a0b0 and d1 = a0b1 + a1b0.

Proof. The addition under the natural surjection W (A) ↠ W (A)/pW (A) ∼= A yields
the identity c0 = a0 + b0. Since every element of A admits a unique p-th root, we have

c
1/p
0 = a

1/p
0 + b

1/p
0 . Hence we find [c

1/p
0 ] ∈ [a

1/p
0 ] + [b

1/p
0 ] + pW (A) and in turn get the relation

[c0] = [c
1/p
0 ]

p
∈
(

[a
1/p
0 ] + [b

1/p
0 ]
)p

+ p2W (A).

Meanwhile, the addition under the natural map W (A) ↠W (A)/p2W (A) yields the relation

[c0] + p[c1] = [a0] + [b0] + p([a1] + [b1]) + p2W (A).

Now we have

p[c1] ∈ p([a1] + [b1]) + [a0] + [b0] −
(

[a
1/p
0 ] + [b

1/p
0 ]
)p

+ p2W (A)

and consequently find

[c1] ∈ [a1] + [b1] −W1

(
[a

1/p
0 ], [b

1/p
0 ]
)

+ pW (A).

We consider the images under the natural surjection W (A) ↠W (A)/pW (A) ∼= A and obtain

the identity c1 = a1 + b1 −W1

(
a
1/p
0 , b

1/p
0

)
. Therefore we establish statement (1).

Let us now consider statement (2). The multiplication under the natural surjection
W (A) ↠ W (A)/pW (A) ∼= A yields the identity d0 = a0b0. Moreover, the multiplication
under the natural map W (A) ↠W (A)/p2W (A) yields the relation

[d0] + p[d1] ∈ [a0b0] + p([a0b1] + [a1b0]) + p2W (A).

Hence we have

p[d1] ∈ p([a0b1] + [a1b0]) + p2W (A)

and consequently find

[d1] ∈ [a0b1] + [a1b0] + pW (A).

We consider the images under the natural surjection W (A) ↠W (A)/pW (A) ∼= A and deduce
the identity d1 = a0b1 + a1b0, thereby completing the proof. □

Remark. We can inductively proceed to express the n-th coefficients in the Teichmüller

expansion of α+β and αβ as polynomials in a
1/pn

0 , b
1/pn

0 , · · · , an, bn, although for n > 1 these
polynomials are too complicated for practical computations. We refer curious readers to the
book of Serre [Ser79, §II.6] for details.
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Our main objective for this subsection is to discuss fundamental theorems of Dieudonné
and Manin which describe p-divisible groups over k via modules over W (k) with a semilinear
endomorphism. We won’t provide their proofs, since we will only use these theorems as
motivations for some constructions in Chapters III and IV. Curious readers may consult the
book of Demazure [Dem72, Chapters III and IV] for an excellent exposition of these results.

Definition 2.3.7. Let us write σ for the Frobenius automorphism of W (k).

(1) GivenW (k)-modulesM , N and an integer r, we say that an additive map f : M ! N
is σr-semilinear if it satisfies the identity

f(cm) = σr(c)f(m) for each c ∈W (k) and m ∈M.

(2) A Dieudonné module over k is a free W (k)-module M with a σ-semilinear endomor-
phism φM , called the Frobenius endomorphism of M , whose image contains pM .

(3) A W (k)-linear map f : M1 ! M2 for Dieudonné modules M1 and M2 over k is a
morphism of Dieudonné modules if it satisfies the identity f ◦ φM1 = φM2 ◦ f .

Lemma 2.3.8. The ring W (k) is a complete discrete valuation ring with residue field k and
uniformizer p.

Proof. Since W (k) is p-adically complete with W (k)/pW (k) ∼= k by construction, it is
a local ring with maximal ideal pW (k) and residue field k by some general facts stated in the
Stacks project [Sta, Tag 05GI and Tag 00E9]. Moreover, it is evident by Proposition 2.3.4
that every element α ∈W (k) admits a unique expression α = pnu for some integer n ≥ 0 and
unit u ∈W (k). Therefore we establish the desired assertion. □

Lemma 2.3.9. Let M be a Dieudonné module over k.

(1) The Frobenius endomorphism φM is injective.

(2) There exists a unique σ−1-semilinear endomorphism ψM on M such that φM ◦ ψM
and ψM ◦ φM coincide with the multiplication by p on M .

Proof. Take e1, · · · , er ∈ M which form a basis over W (k). Since W (k) is a principal
ideal domain by Lemma 2.3.8, statement (1) follows from the rank-nullity theorem and the
fact that φM (M) has rank r for containing pM . Hence we only need to prove statement (2).

We may write pei = φM (e′i) for a unique element e′i ∈ M and in turn obtain a unique
σ−1-semilinear endomorphism ψM on M with φM ◦ ψM being the multiplication by p on M ;
indeed, ψM maps each ei to e′i. We wish to show that ψM◦φM coincides with the multiplication
by p on M . Since we have ψM (φM (e′i)) = ψM (φM (ψM (ei))) = ψM (pei) = pe′i, we observe
that ψM ◦ φM and the multiplication by p agree on the W (k)-module M ′ ⊆ M spanned by
e′1, · · · , e′r. Moreover, M ′ has rank r as e′1, · · · , e′r are linearly independent by construction.
Hence we deduce from the rank-nullity theorem that the difference between ψM ◦φM and the
multiplication by p identically vanishes on M , thereby establishing the desired assertion. □

Definition 2.3.10. Given a Dieudonné module M over k, we refer to the σ−1-semilinear
endomorphism ψM in Lemma 2.3.9 as the Verschiebung endomorphism of M .

Lemma 2.3.11. Given a Dieudonné module M over k, its dual M∨ = HomW (k)(M,W (k)) is
naturally a Dieudonné module over k with

φM∨(f)(m) = σ(f(ψM (m))) for all f ∈M∨ and m ∈M.

Proof. The assertion is straightforward to verify by definition. □

https://stacks.math.columbia.edu/tag/05GI
https://stacks.math.columbia.edu/tag/00E9


2. p-DIVISIBLE GROUPS 63

Theorem 2.3.12 (Dieudonné [Die55]). There is an exact anti-equivalence of categories

D : { p-divisible groups over k } ∼
−! { Dieudonné modules over k }

such that for every p-divisible group G over k we have the following statements:

(1) The rank of D(G) is equal to the height of G.

(2) The maps φG, ψG, and [p]G yield φD(G), ψM , and the multiplication by p.

(3) There exists a natural isomorphism D(G∨) ∼= D(G)∨.

Remark. Let us briefly describe the construction of D(G) for a p-divisible group G = lim−!Gv
over k. For each integer n ≥ 1, we have a k-group Wn with Wn(A) = W (A)/pnW (A) for every
perfect k-algebra A. If G∨ is connected, D(G) := lim −

v

lim−!
n

Homk-grp(Gv,Wn) turns out to be a

Dieudonné module over k. with Frobenius endomorphism induced by φG. If G∨ is étale, it is
connected by Theorem 2.2.23 and consequently yields a Dieudonné module D(G) := D(G∨)∨

over k. In the general case, G admits a natural decomposition

G ∼= Gunip ×Gmult

with (Gunip)∨ connected and (Gmult)∨ étale, thereby giving rise to a Dieudonné module
D(G) := D(Gunip) ⊕ D(Gmult) over k.

Definition 2.3.13. We refer to the functor D in Theorem 2.3.12 as the Dieudonné functor.

Example 2.3.14. We describe the Dieudonné functor for some simple p-divisible groups.

(1) D(Qp/Zp) is isomorphic to W (k) with φD(Qp/Zp) = σ and ψD(Qp/Zp) = pσ−1.

(2) D(µp∞) is isomorphic to W (k) with φD(µp∞ ) = pσ and ψD(µp∞ ) = σ−1.

Definition 2.3.15. Let us write K0(k) := W (k)[1/p] for the fraction field of W (k).

(1) We define the Frobenius automorphism of K0(k) to be the unique field automorphism
on K0(k) which extends σ.

(2) An isocrystal over K0(k) is a vector space N over K0(k) with a σ-semilinear auto-
morphism φN called the Frobenius automorphism of N .

(3) A K0(k)-linear map g : N1 ! N2 for isocrystals N1 and N2 over K0(k) is a morphism
of isocrystals if it satisfies the identity

g(φN1(n)) = φN2(g(n)) for each n ∈ N1.

Lemma 2.3.16. Let σ denote the Frobenius automorphism of K0(k).

(1) Every Dieudonné module M over k yields an isocrystal M [1/p] = M ⊗W (k) K0(k)
over K0(k) with Frobenius automorphism φM ⊗ 1.

(2) Given an isocrystal N over K0(k), its dual N∨ = HomK0(k)(N,K0(k)) is naturally
an isocrystal over K0(k) with

φN∨(f)(n) = σ(f(φ−1
N (n))) for all f ∈ N∨ and n ∈ N.

(3) Given two isocrystals N1 and N2 over K0(k), their tensor product N1 ⊗K0(k) N2 is
naturally an isocrystal over K0(k) with Frobenius automorphism φN1 ⊗ φN2 .

Proof. All statements are straightforward to verify by definition. □

Example 2.3.17. For an isocrystal N of rank r over K0(k), its determinant det(N) := ∧r(N)
is naturally an isocrystal of rank 1 over K0(k) as easily seen by Lemma 2.3.16.
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Definition 2.3.18. We say that a homomorphism of group schemes or p-divisible groups is
an isogeny if it is surjective with finite flat kernel.

Example 2.3.19. We present some examples of isogenies between p-divisible groups.

(1) Given a p-divisible group G over k, the maps [p]G, φG, and ψG are all isogenies by
Proposition 2.1.7 and Proposition 2.1.15.

(2) An isogeny A! B of two abelian varieties over k induces an isogeny A[p∞]! B[p∞].

Proposition 2.3.20. A homomorphism f : G! H of p-divisible groups over k is an isogeny
if and only if it induces an isomorphism D(H)[1/p] ≃ D(G)[1/p].

Proof. Let us first assume that f is an isogeny. Its kernel lies in Gv for some v ≥ 1
and thus is a p-power torsion. Hence Theorem 2.3.12 implies that the map D(H) ! D(G)
induced by f is injective with its cokernel killed by a power of p. We deduce that f induces
an isomorphism D(H)[1/p] ≃ D(G)[1/p].

For the converse, we now assume that f induces an isomorphism D(H)[1/p] ≃ D(G)[1/p].
The map D(H) ! D(G) is injective with D(H) and D(G) having the same rank over W (k).
Hence its cokernel is a p-power torsion by Lemma 2.3.8. Now we deduce from Theorem 2.3.12
that f is an isogeny as desired. □

Definition 2.3.21. Let N be an isocrystal over K0(k).

(1) The degree of N is the largest integer deg(N) with φdet(N)(1) ∈ pdeg(N)W (k), where
we fix an isomorphism det(N) ≃W (k).

(2) We write rk(N) for the rank of N and define the slope of N to be µ(N) :=
deg(N)

rk(N)
.

Example 2.3.22. Let λ = d/r be a rational number written in lowest terms with r > 0. The
simple isocrystal of slope λ over K0(k) is an isocrystal N(λ) over K0(k) of rank r with

φN(λ)(e1) = e2, · · · , φN(λ)(er−1) = er, φN(λ)(er) = pde1,

where e1, · · · , er are basis vectors. It is evident that N(λ) has rank r, degree d, and slope λ.

Proposition 2.3.23. Given a p-divisible group G over k of height h and dimension d, the
associated isocrystal D(G)[1/p] over K0(k) has rank h and degree d.

Proof. As noted in Proposition 2.2.22 and Example 2.3.19, the Frobenius φG is an
isogeny with ker(φG) having order pd. Moreover, Proposition 2.1.15 implies that ker(φG) is
p-torsion. Hence we deduce from Theorem 2.3.12 and Lemma 2.3.8 that φD(G) is injective

with coker(φD(G)) ≃ (W (k)/pW (k))⊕d. Now it is straightforward to verify that D(G)[1/p] has
degree d. Since D(G)[1/p] evidently has rank h over K0(k) by Theorem 2.3.12, we establish
the desired assertion. □

Theorem 2.3.24 (Manin [Man63]). Every isocrystal N over K0(k) admits a unique direct
sum decomposition of the form

N ≃
l⊕

i=1

N(λi)
⊕mi with λ1 < λ2 < · · · < λl.

Example 2.3.25. If an elliptic curve E over Fp is ordinary, we have

D(E[p∞])[1/p] ≃ N(0) ⊕N(1)

as easily seen by Example 2.2.25 and Example 2.3.14.

Remark. If E is supersingular, D(E[p∞])[1/p] turns out to be isomorphic to N(1/2).
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3. Hodge-Tate decomposition

In this section, we finally enter the realm of p-adic Hodge theory. Assuming some technical
results, we prove the Hodge-Tate decomposition for Tate modules of p-divisible groups. The
primary reference for this section is the article of Tate [Tat67].

3.1. Tate twists of p-adic representations

In this subsection, we introduce some basic notions in p-adic Hodge theory, such as p-adic
fields, p-adic representations and their Tate twists. Given a valued field L, we write OL for
its valuation ring, mL for its maximal ideal, and kL for its residue field.

Definition 3.1.1. A p-adic field is an extension of Qp which is discretely valued and complete
with a perfect residue field of characteristic p.

Example 3.1.2. We present some essential examples of p-adic fields.

(1) Every finite extension of Qp is a p-adic field.

(2) Every perfect field k of characteristic p gives rises to a p-adic field K0(k) = W (k)[1/p]
as noted in Lemma 2.3.8.

Remark. We will see in Chapter III, Proposition 2.2.18 that every p-adic field is a finite
extension of K0(k) for some perfect field k of characteristic p.

For the rest of this section, we let K be a p-adic field with absolute Galois group ΓK . We
also write m for its maximal ideal and k for its residue field.

Definition 3.1.3. A p-adic representation of ΓK is a finite dimensional Qp-vector space V
together with a continuous homomorphism ΓK ! GL(V ).

Example 3.1.4. Below are two important examples of p-adic representations.

(1) Given a p-divisible group G over K, its rational Tate module Vp(G) := Tp(G)⊗Zp Qp

is a p-adic ΓK-representation by Proposition 2.1.17.

(2) For a K-variety X, the étale cohomology Hn
ét(XK ,Qp) is a p-adic ΓK-representation.

Definition 3.1.5. Given a Zp[ΓK ]-module M , its n-th Tate twist is the Zp[ΓK ]-module

M(n) :=

{
M ⊗Zp Zp(1)⊗n for n ≥ 0,

M ⊗Zp (Zp(1)∨)⊗−n for n < 0

where we set Zp(1) := Tp(µp∞).

Example 3.1.6. The Galois group ΓK acts on Zp(1) = Tp(µp∞) = lim −µp
v(K), via the

homomorphism χ : ΓK ! Aut(Zp(1)) ∼= Z×
p called the p-adic cyclotomic character of K.

Lemma 3.1.7. Given a Zp[ΓK ]-module M , there exist natural ΓK-equivariant isomorphisms

M(n) ∼= M ⊗Zp Zp(n) and M(n)∨ ∼= M∨(−n) for each n ∈ Z.

Proof. The assertion is evident by definition. □

Lemma 3.1.8. If ΓK acts on a Zp-module M via a homomorphism ρ : ΓK ! Aut(M), it acts
on M(n) for each n ∈ Z via χn · ρ.

Proof. Under the identification M(n) ∼= M ⊗Zp Zp(n) given by Lemma 3.1.7, the Galois
group ΓK acts on M(n) via ρ⊗ χn. □
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Definition 3.1.9. We define the completed algebraic closure of K to be CK := K̂; in other
words, CK is the p-adic completion of the algebraic closure of K.

Remark. The field CK is not a p-adic field as its valuation is not discrete.

Example 3.1.10. If K is an algebraic extension of Qp, we often write Cp = CK and refer to
it as the field of p-adic complex numbers.

Lemma 3.1.11. The action of ΓK on K uniquely extends to a continuous action on CK .

Proof. The assertion is obvious as the ΓK-action on K is continuous. □

Definition 3.1.12. The normalized p-adic valuation on CK is the unique valuation ν on CK
with ν(p) = 1.

Proposition 3.1.13. The field CK is algebraically closed.

Proof. We wish to prove that every nonconstant polynomial f(t) over CK admits a root
in CK . Let us take an element a ∈ OCK

such that af(t) is over OCK
. If we denote the leading

coefficient and the degree of af(t) respectively by b and d, we have abd−1f(t) = g(bt) for some
monic polynomial g(t) over OCK

of degree d. It suffices to show that g(t) has a root in CK .

Let us write

g(t) = td + c1t
d−1 + · · · + cd with ci ∈ OCK

.

For each integer n ≥ 1, we choose a polynomial

gn(t) = td + c1,nt
d−1 + · · · + cd,n

with ci,n ∈ OK and ν(ci − ci,n) ≥ dn. Since OK is integrally closed, each gn(t) admits a
factorization into linear polynomials over OK ; in other words, we have

gn(t) =
d∏
i=1

(t− βn,i) with βn,i ∈ OK . (3.1)

Let us construct a sequence (αn) in OK with gn(αn) = 0 and ν(αn − αn−1) ≥ n− 1. We
set α1 := β1,1 ∈ OK and proceed by induction on n. We have

gn(αn−1) = gn(αn−1) − gn−1(αn−1) =

d∑
i=1

(ci,n − ci,n−1)α
d−i
n−1

and thus find ν(gn(αn−1)) ≥ d(n − 1) as each ci,n − ci,n−1 = (ci,n − ci) + (ci − ci,n−1) has
valuation at least d(n − 1). We deduce from the identity (3.1) that gn(t) admits a root
αn = βn,i ∈ OK with ν(αn−1 − αn) ≥ n− 1 and in turn obtain a desired sequece (αn).

The sequence (αn) is Cauchy by construction and thus converges to an element α ∈ OCK
.

Moreover, for each integer n ≥ 1 we have

g(αn) = g(αn) − gn(αn) =

d∑
i=1

(ci − ci,n)αd−in

and consequently find ν(g(αn)) ≥ dn. Hence we deduce that α is a root of g(t), thereby
completing the proof. □

Remark. We can alternatively derive Proposition 3.1.13 from Krasner’s lemma by modifying
our argument. Moreover, we can use Krasner’s lemma to show that K is not complete; in
particular, we have CK ̸= K.
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We assume the following fundamental result about the Tate twists of CK .

Theorem 3.1.14 (Tate [Tat67], Sen [Sen80]). For the Galois cohomology of CK and its Tate
twists, we have the following statements:

(1) H0(ΓK ,CK) admits a natural isomorphism H0(ΓK ,CK) ∼= K.

(2) H1(ΓK ,CK) is an 1-dimensional vector space over K.

(3) H0(ΓK ,CK(n)) and H1(ΓK ,CK(n)) vanish for n ̸= 0.

Remark. We refer curious readers to the notes of Brinon-Conrad [BC, §14] for a proof, which
involves the higher ramification theory and the local class field theory.

Lemma 3.1.15. Every p-adic ΓK-representation V yields a natural CK-linear map

α̃V :
⊕
n∈Z

(
V ⊗Qp CK(−n)

)ΓK ⊗K CK(n)! V ⊗Qp CK

which is ΓK-equivariant and injective.

Proof. For each n ∈ Z, we have a ΓK-equivariant injective K-linear map

α̃
(n)
V,K :

(
V ⊗Qp CK(−n)

)ΓK ⊗K K(n) ↪−! V ⊗Qp CK(−n) ⊗K K(n) ∼= V ⊗Qp CK .

Let us extend each α̃
(n)
V,K to a ΓK-equivariant CK-linear map

α̃
(n)
V :

(
V ⊗Qp CK(−n)

)ΓK ⊗K CK(n)! V ⊗Qp CK

and take α̃V :=
⊕
n∈Z

α̃
(n)
V . We wish to show that α̃V is injective.

Assume for contradiction that ker(α̃V ) is not trivial. For every n ∈ Z, we choose a

basis (vm,n) of
(
V ⊗Qp CK(−n)

)ΓK ⊗K K(n) over K and regard each vm,n as a vector in

V ⊗Qp CK via the map α̃
(n)
V,K . Our assumption means that there exists a nontrivial linear

relation
∑
cm,nvm,n = 0 with minimum number of nonzero terms. Without loss of generality,

we may set cm0,n0 = 1 for some integer m0 and n0. For every γ ∈ ΓK , we find

0 = γ
(∑

cm,nvm,n

)
− χ(γ)n0

(∑
cm,nvm,n

)
=
∑

(γ(cm,n)χ(γ)n − χ(γ)n0cm,n) vm,n

by Lemma 3.1.8 and the ΓK-equivariance of α̃V . Since the coefficient of vm0,n0 in the last
expression is 0, the minimality of our linear relation implies that all coefficients in the last
expression must vanish and in turn yields the relation

γ(cm,n)χ(γ)n−n0 = cm,n for every γ ∈ ΓK .

Now Lemma 3.1.8 and Theorem 3.1.14 together imply that each cm,n lies in K with cm,n = 0
for n ̸= n0. Hence we have a nontrivial K-linear relation

∑
cm,n0vm,n0 = 0 on the basis

(vm,n0) of
(
V ⊗Qp CK(−n0)

)ΓK ⊗K K(n0), thereby obtaining a desired contradiction. □

Definition 3.1.16. We say that a p-adic ΓK-representation V is Hodge-Tate if the natural
map α̃V in Lemma 3.1.15 is an isomorphism.

Remark. We will see in §3.4 that p-adic representations presented in Example 3.1.4 are
Hodge-Tate in many cases.
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3.2. Points on p-divisible groups

For the rest of this section, we take the base ring to be R = OK . The main objective for
this section is to investigate points on p-divisible groups over OK . We let L denote the p-adic
completion of an algebraic extension of K. A primary example of such a field is CK .

Lemma 3.2.1. The valuation ring OL is m-adically complete; in other words, there exists a
natural isomorphism

OL
∼= lim −OL/m

iOL.

Proof. The ideal m contains p as the residue field k = OK/m is of characteristic p. Since
OK is a discrete valuation ring, we deduce that the p-adic topology coincides with the m-adic
topology and consequently establish the desired assertion by observing that OL is p-adically
complete. □

Definition 3.2.2. Given a p-divisible group G = lim−!Gv over OK , we define its group of
OL-valued points to be

G(OL) := lim −
i

lim−!
v

Gv(OL/m
iOL).

Remark. Readers should be aware that G(OL) is in general not equal to lim−!
v

Gv(OL). This

subtlety comes from the fact that we take points on G as a formal OK-group. In fact, if we
write Gv = Spec (Av) for each v ≥ 1, we argue as in Lemma 2.2.19 to naturally identify G
with a formal OK-group G = Spf(lim −Av) and find G(OL) ∼= G (OL).

Example 3.2.3. We describe the OL-valued points for some p-divisible groups of height 1.

(1) The p-power roots of unity µp∞ admits a natural isomorphism

µp∞(OL) ∼= 1 + mL.

In fact, since mL contains p, we identify lim−!
v

µpv(OL/m
iOL) with the image of 1 +mL

in OL/m
iOL and thus obtain the desired isomorphism by Lemma 3.2.1.

(2) The constant p-divisible group Qp/Zp admits a natural isomorphism

Qp/Zp(OL) ∼= Qp/Zp.

In fact, since OL/m
iOL is connected, we have Z/pvZ(OL/m

iOL) ∼= Z/pvZ and thus
obtain the desired isomorphism.

Proposition 3.2.4. Given a p-divisible group G = lim−!Gv over OK , the group G(OL) is

naturally a Zp-module such that its torsion part G(OL)tors admits a natural identification

G(OL)tors ∼= lim−!
v

lim −
i

Gv(OL/m
iOL).

Proof. Proposition 2.1.7 shows that each lim−!
v

Gv(OL/m
iOL) is a Zp-module and in turn

implies that G(OL) is also a Zp-module. Therefore G(OL)tors consists of p-power torsions. In

addition, we observe by Proposition 2.1.7 that the pv-torsion part of each lim−!
v

Gv(OL/m
iOL)

is Gv(OL/m
iOL). Since filtered colimits are exact in the category of abelian groups as

stated in the Stacks project [Sta, Tag 04B0], we deduce that the pv-torsion part of G(OL) is
lim −
i

Gv(OL/m
iOL). The desired assertion is now evident. □

https://stacks.math.columbia.edu/tag/04B0
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Proposition 3.2.5. Given a p-divisible group G = lim−!Gv over OK with Gv = Spec (Av),
there exists a canonical isomorphism

G(OL) ∼= HomOK−cont(lim −Av,OL).

Proof. For every continuous OK-algebra homomorphism f : lim −Av ! OL, the induced

map fi : lim −Av ! OL/m
iOL for each i ≥ 1 factors through a natural surjection lim −Av ↠ Awi

for some wi ≥ 1. Hence we have a canonical map

HomOK−cont(lim −Av,OL) −! lim −
i

lim−!
v

HomOK
(Av,OL/m

iOL)

which sends each f ∈ HomOK−cont(lim −Av,OL) to (fi) ∈ lim −
i

lim−!
v

HomOK
(Av,OL/m

iOL). It is

not hard to see that this map is an isomorphism by Lemma 3.2.1. Now we obtain the desired
isomorphism from the natural identification

G(OL) ∼= lim −
i

lim−!
v

HomOK
(Av,OL/m

iOL),

thereby completing the proof. □

Remark. Proposition 3.2.5 is equivalent to a canonical isomorphism G(OL) ∼= G (OL) for the
formal OK-group G = Spf(lim −Av).

Proposition 3.2.6. Let G be a p-divisible group over OK .

(1) If G is connected of dimension d, it admits a Zp-module isomorphism

G(OL) ≃ HomOK−cont(OK [[t1, · · · , td]],OL)

where the multiplication by p on the target is induced by [p]µG .

(2) IfG is étale, G(OL) is torsion with a natural isomorphismG(OL) ∼= lim−!Gv(OL/mOL).

Proof. Statement (1) is evident by Lemma 2.2.19 and Proposition 3.2.5. Let us now
assume for statement (2) that G is étale. Each Gv is formally étale by a general fact stated
in the Stacks project [Sta, Tag 02HM]; in particular, there exists a natural isomorphism
Gv(OL/m

iOL) ∼= Gv(OL/m
i+1OL) for each integer i ≥ 1. Hence we find

G(OL) = lim −
i

lim−!
v

Gv(OL/m
iOL) ∼= lim−!Gv(OL/mOL)

and in turn deduce from Proposition 2.1.7 that G(OL) is a torsion group. □

Remark. If L is a finite extension of K, we have mOL = mj
L for some integer j ≥ 1 and

thus find Gét(OL) ∼= lim−!Gét
v (OL/mOL) ∼= lim−!Gét

v (OL/mL) ∼= lim−!Gét
v (kL) where the second

isomorphism follows from the fact that each Gét
v is formally étale as noted in the proof.

Lemma 3.2.7. An OK-algebra homomorphism f : OK [[t1, · · · , tn]] ! L is continuous if and
only if each f(ti) lies in mL.

Proof. The map f is continuous if and only if there exists an integer v with f(tvi ) ∈ mL

for each i = 1, · · · , n. Hence the assertion follows from the fact that OK is reduced. □

Remark. Proposition 3.2.6 and Lemma 3.2.7 together show that every p-divisible group G
over OK of dimension d gives rise to an isomorphism G◦(OL) ≃ m⊕d

L with group law on md
L

induced by µG. It turns out that the multiplication and the inverse on m⊕d
L are analytic

functions; in other words, G◦(OL) ≃ m⊕d
L is a p-adic analytic group.

https://stacks.math.columbia.edu/tag/02HM
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Proposition 3.2.8. Every p-divisible group G = lim−!Gv over OK yields an exact sequence

0 −! G◦(OL) −! G(OL) −! Gét(OL) −! 0.

Proof. The sequence is left exact as limits and filtered colimits are left exact in the
category of abelian groups. Hence we only need show that the map G(OL) ! Gét(OL) is
surjective. For each integer v ≥ 1, we let Av, A

◦
v, and Aét

v respectively denote the affine rings
of Gv, G

◦
v, and Gét

v . In addition, we write A := lim −Av, A ◦ := lim −A
◦
v, and A ét := lim −A

ét
v .

By Proposition 3.2.5, it suffices to prove the surjectivity of the map

HomOK−cont(A ,OL)! HomOK−cont(A
ét,OL). (3.2)

Lemma 2.2.19 yields a homeomorphic OK-algebra isomorphism

A ◦ ≃ OK [[t1, · · · , td]]

where d denotes the dimension of G. Since k is perfect, we apply Proposition 1.4.15 to obtain
a homeomorphic k-algebra isomorphism

(A ét ⊗OK
k)[[t1, · · · , td]] ≃ (A ◦ ⊗OK

k) ⊗̂k(A
ét ⊗OK

k) ∼= A ⊗OK
k.

By Lemma 2.2.18, this map lifts to a surjective OK-algebra homomorphism

θ : A ét[[t1, · · · , td]]! A .

Moreover, Lemma 2.2.18 shows that A is flat over OK and in turn yields the relation
ker(θ) ⊗OK

k = 0 by a general fact stated in the Stacks project [Sta, Tag 00HL]. For each
v ≥ 1, we take an ideal Jv of A ét[[t1, · · · , td]] with A ét[[t1, · · · , td]]/Jv

∼= A◦
v ⊗OK

Aét
v and

obtain a short exact sequence

0 −! ker(θ)/ ker(θ) ∩ Jv −! A ét[[t1, · · · , td]]/Jv −! A /θ(Jv) −! 0.

We have m (ker(θ)/ ker(θ) ∩ Jv) = ker(θ)/ ker(θ) ∩ Jv and thus find ker(θ) = ker(θ) ∩ Jv

for each v ≥ 1 by Lemma 2.2.17 as A ét[[t1, · · · , td]]/Jv
∼= A◦

v ⊗OK
Aét
v is noetherian. Since

we have
⋂

Jv = 0, we see that ker(θ) is trivial and in turn deduce that θ is an isomorphism.

The map θ is continuous as the kernel of each θv : A ! Av is open by the fact that
the R-algebra Av is of finite length. Moreover, with θ being a homeomorphism after base
change to k we observe that every power of the ideal I := (t1, · · · , td) contains an open set
in its image under θ and in turn find that θ is open. Hence θ is a homeomorphic R-algebra
isomorphism. Now θ yields a surjective continuous map A ↠ A ét which splits the natural
map A ét ! A . We conclude that the map (3.2) is surjective as desired. □

Proposition 3.2.9. Let G be a p-divisible group over OK .

(1) For every g ∈ G(OL), we have png ∈ G◦(OL) for each n≫ 0.

(2) If L is algebraically closed, G(OL) is p-divisible in the sense that the multiplication
by p on G(OL) is surjective.

Proof. Since statement (1) is an immediate consequence of Proposition 3.2.6 and Propo-
sition 3.2.8, we only need to establish statement (2). In light of Proposition 3.2.8, it suffices to
show that the multiplication by p is surjective on each Gét(OL) and G◦(OL). The surjectivity
on Gét(OL) follows from Proposition 2.1.7 and Proposition 3.2.6. Moreover, we deduce the
surjectivity on G◦(OL) from Proposition 3.2.6 and the p-divisibility of µG. □

https://stacks.math.columbia.edu/tag/00HL
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3.3. The logarithm for p-divisible groups

We continue to let L denote the p-adic completion of an algebraic extension of K. In
this subsection, we construct and study the logarithm map for p-divisible groups over OK .
For a p-divisible group G over OK of dimension d, we work with a Zp-module isomorphism
G◦(OL) ≃ HomOK−cont(OK [[t1, · · · , td]],OL) given by Proposition 3.2.6.

Definition 3.3.1. Let G be a p-divisible group over OK and M be an OK-module. We write
I for the augmentation ideal of µG.

(1) The tangent space of G with values in M is tG(M) := HomOK -mod(I /I 2,M).

(2) The cotangent space of G with values in M is t∗G(M) := I /I 2 ⊗OK
M .

Remark. We may naturally identify tG and t∗G respectively with the tangent space and
the cotangent space of the formal group GµG associated to µG. Our choice of a Zp-module
isomorphism G◦(OL) ≃ HomOK−cont(OK [[t1, · · · , td]],OL) amounts to a choice of a formal
OK-group isomorphism GµG ≃ Spf(OK [[t1, · · · , td]]).

Proposition 3.3.2. Given a p-divisible group G over OK of dimension d, both tG(L) and
t∗G(L) are vector spaces over L of dimension d.

Proof. We identify the augmentation ideal of µG with I := (t1, · · · , td) ⊆ OK [[t1, · · · , td]]
and obtain the assertion by observing that I /I 2 is a free OK-module of rank d. □

Definition 3.3.3. Given a p-divisible group G over OK , we define the valuation filtration on
the group G◦(OL) to be the collection

{
FilλG◦(OL)

}
λ>0

with

FilλG◦(OL) := { f ∈ G◦(OL) : ν(f(α)) ≥ λ for each α ∈ I }
where I denotes the augmentation ideal of µG.

Remark. We take λ to be a real number as the valuation on L may be nondiscrete.

Lemma 3.3.4. Given a p-divisible group G over OK , we have⋃
λ>0

FilλG◦(OL) = G◦(OL) and
⋂
λ>0

FilλG◦(OL) = 0.

Proof. The assertion is evident by Lemma 3.2.7 and the completeness of OL. □

Lemma 3.3.5. Let G be a p-divisible group over OK and λ be a positive real number. For
every f ∈ FilλG◦(OL), we have pf ∈ FilκG◦(OL) with κ = min(λ+ 1, 2λ).

Proof. Let I denote the augmentation ideal of µG and take an arbitrary element α ∈ I .
We may write [p]µG(α) = pα+ β for some β ∈ I 2 by Lemma 2.2.13 and in turn find

(pf)(α) = f([p]µG(α)) = f(pα+ β) = pf(α) + f(β).

Therefore we have ν((pf)(α)) ≥ min(λ+ 1, 2λ) as desired. □

Lemma 3.3.6. Let G be a p-divisible group over OK . If L is a finite extension of K, we have
∞⋂
n=1

pnG◦(OL) = 0.

Proof. Since the valuation on L is discrete, there exists a minimum positive valuation δ
on OL given by the valuation of the uniformizer. Hence we find pnG◦(OL) ⊆ Filnδ G◦(OL) for
each n ≥ 1 by Lemma 3.3.5 and in turn deduce the desired assertion from Lemma 3.3.4. □
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Lemma 3.3.7. Let G be a p-divisible group over OK and write I for the augmentation ideal
of µG. There exists a map

logG : G(OL)! tG(L)

such that for every g ∈ G(OL) and α ∈ I we have

logG(g)(α) = lim
n!∞

(png)(α)

pn

where α denotes the image of α in I /I 2.

Proof. Let us take arbitrary elements g ∈ G(OL) and α ∈ I . We have png ∈ G◦(OL)
for each n≫ 0 as noted in Proposition 3.2.9. Therefore Lemma 3.3.5 implies that there exists
c ∈ R with png ∈ Filn+cG◦(OL) for each n≫ 0 and in turn yields the inequality

ν

(
(png)(β)

pn

)
≥ 2(n+ c) − n = n+ 2c for each β ∈ I 2. (3.3)

Meanwhile, for each n≫ 0 we find

(pn+1g)(α)

pn+1
− (png)(α)

pn
=

(png)([p]µG(α))

pn+1
− (png)(α)

pn
=

(png)([p]µG(α) − pα)

pn+1
.

Since we have [p]µG(α)−pα ∈ I 2 by Lemma 2.2.13, we deduce from the inequality (3.3) that

the sequence

(
(png)(α)

pn

)
converges in L. Moreover, if α lies in I 2 the inequality (3.3) shows

that the sequence converges to 0. The desired assertion is now evident. □

Definition 3.3.8. Given a p-divisible group G over OK , we refer to the map logG given by
Lemma 3.3.7 as the logarithm of G.

Example 3.3.9. Let us provide an explicit description of logµp∞ . Under the isomorphism

µp∞(OL) ∼= 1 + mL noted in Example 3.2.3, each g ∈ µp∞(OL) ≃ HomOK−cont(OL[[t]],OL)
maps to 1 + g(t). In addition, tµp∞ admits an identification tµp∞ (L) ∼= L. Since we have
µĜm

[p∞] ∼= µp∞ as noted in Example 2.2.12, for each g ∈ µp∞(OL) we find

(png)(t) = g
(
(1 + t)p

n − 1
)

= (1 + g(t))p
n − 1

and thus obtain the identity

logµp∞ (1 + x) = lim
n!∞

(1 + x)p
n − 1

pn
= lim

n!∞

pn∑
i=1

1

pn

(
pn

i

)
xi for each x ∈ mL.

Moreover, for integers i and n we have

1

pn

(
pn

i

)
− (−1)i−1

i
=

(pn − 1) · · · (pn − i+ 1) − (−1)i−1(i− 1)!

i!
.

We observe that the numerator is divisible by pn and in turn find

ν

(
1

pn

(
pn

i

)
− (−1)i−1

i

)
≥ n− ν(i!) ≥ n−

∞∑
j=1

i

pj
= n− i

p− 1
.

Hence we obtain the expression

logµp∞ (1 + x) =

∞∑
i=1

(−1)i−1

i
xi for each x ∈ mL,

which coincides with the p-adic logarithm.
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Let us state the following technical result about the logarithm maps without a proof.

Proposition 3.3.10. Given a p-divisible group G over OK , the map logG is a local homeo-
morphism in the sense that it induces an isomorphism

FilλG◦(OL) ≃
{
τ ∈ tG(L) : ν(τ(f)) ≥ λ for each f ∈ I /I 2

}
for every λ ≥ 1.

Remark. A key fact for the proof of Proposition 3.3.10 is that the multiplication by p on the
group G◦(OL) induces an isomorphism FilλG◦(OL) ∼= Filλ+1G◦(OL) as stated in the book of
Serre [Ser92, Theorem 9.4]. It turns out that logG admits a local inverse expλG on

Filλ tG(L) :=
{
τ ∈ tG(L) : ν(τ(f)) ≥ λ for each f ∈ I /I 2

}
.

In fact, for every τ ∈ Filλ tG(L) we have expλG(τ)(ti) = lim
n!∞

gn(ti) with each gn ∈ FilλG◦(OL)

determined by the relation (pngn)(ti) = pnτ(ti).

Proposition 3.3.11. LetG be a p-divisible group over OK and denote by I the augmentation
ideal of µG.

(1) logG is a group homomorphism.

(2) The kernel of logG is the torsion subgroup G(OL)tors of G(OL).

(3) logG induces an isomorphism G(OL) ⊗Zp Qp ≃ tG(L).

Proof. Let us write A ◦ := OK [[t1, · · · , td]] where d is the dimension of G. Take arbitrary
elements g, h ∈ G(OL) and α ∈ I . We have png, pnh ∈ G◦(OL) for each n≫ 0 as noted in
Proposition 3.2.9. Since the axioms for µG yield the relation

µG(α) ∈ 1 ⊗ α+ α⊗ 1 + (I ⊗̂A ◦I )2,

for each n≫ 0 we may write

(pn(g + h))(α) = (png ⊗ pnh) ◦ µG(α) = (png)(α) + (pnh)(α) + βn

with βn ∈ (png)(I ) · (pnh)(I ). Moreover, we deduce from Lemma 3.3.5 that there exists
c ∈ R with png, pnh ∈ Filn+cG◦(OL) for each n≫ 0 and in turn find ν(βn) ≥ 2(n+ c). Now
we obtain the identity

lim
n!∞

(pn(g + h))(α)

pn
= lim

n!∞

(png)(α)

pn
+ lim
n!∞

(pnh)(α)

pn

and consequently establish statement (1).

For statement (2), we only need to show that ker(logG) lies in G(OL)tors; indeed, we
have G(OL)tors ⊆ ker(logG) by the fact that tG(L) is torsion free for being a vector space
over L. Let us take an arbitrary element g ∈ ker(logG). Proposition 3.2.9 and Lemma 3.3.5
together imply that we have png ∈ Fil1G◦(OL) for some n ≫ 0. Since png lies in ker(logG)
by statement (1), it must vanish by Proposition 3.3.10. We deduce that g is a torsion element
and thus obtain statement (2).

Statement (2) readily implies that logG induces an injective map G(OL)⊗Zp Qp ! tG(L).
Moreover, we observe by Proposition 3.3.10 that this map is also surjective as for each τ ∈
tG(L) there exists an integer n with pnτ ∈ Fil1 tG(L). Hence we establish statement (3),
thereby completing the proof. □
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3.4. Hodge-Tate decomposition for the Tate module

In this subsection, we establish the first main result for this chapter by exploiting our
accumulated knowledge of finite flat group schemes and p-divisible groups.

Lemma 3.4.1. Every p-divisible group G = lim−!Gv over OK yields canonical isomorphisms

Gv(K) ∼= Gv(CK) ∼= Gv(OCK
) for each v ≥ 1.

Proof. Since the generic fiber of each Gv is finite étale as easily seen by Corollary 1.3.11,
the first isomorphism follows from Proposition 3.1.13 and a standard fact stated in the Stacks
project [Sta, Tag 0BND]. The second isomorphism is evident by the valuative criterion. □

Lemma 3.4.2. For every p-divisible group G over OK , we have natural identifications

G(OCK
)ΓK ∼= G(OK) and tG(CK)ΓK ∼= tG(K).

Proof. Theorem 3.1.14 yields canonical identifications CΓK
K = K and OΓK

CK
= OK . Hence

the desired isomorphisms follow from Proposition 3.2.5 and Definition 3.3.1. □

Definition 3.4.3. Let G = lim−!Gv be a p-divisible group over OK .

(1) The Tate module of G is Tp(G) := Tp(G×OK
K) = lim −Gv(K).

(2) The Tate comodule of G is Φp(G) := lim−!Gv(K).

Example 3.4.4. We have Tp(µp∞) = Zp(1) by definition and identify Φp(µp∞) = lim−!µpv(K)

with the group of p-power torsions in K.

Lemma 3.4.5. Given a p-divisible group G = lim−!Gv of height h over OK , its Tate module

Tp(G) is a free Zp-module of rank h.

Proof. We note by Corollary 1.3.11 that the generic fiber of each Gv is finite étale and in
turn deduce from Proposition 1.3.4 that Gv(K) is a finite abelian group of order pvh. Hence
the desired assertion follows from Proposition 2.1.17. □

Remark. We can also show that Φp(G) is isomorphic to (Qp/Zp)⊕h.

Lemma 3.4.6. Every p-divisible group G = lim−!Gv over OK gives rise to a natural surjective

Zp-module homomorphism Tp(G
∨) ↠ Tp((G

◦)∨).

Proof. For each v ≥ 1, Proposition 1.2.13 and Lemma 2.1.6 yield a commutative diagram

0 (Gét
v+1)

∨(K) G∨
v+1(K) (G◦

v+1)
∨(K) 0

0 (Gét
v )∨(K) G∨

v (K) (G◦
v)

∨(K) 0

jv

πv+1

πv

where both rows are exact. We wish to show that for every (wv) ∈ lim −(G◦
v)

∨(K) = Tp((G
◦)∨)

there exists an element (w̃v) ∈ lim −G
∨
v (K) = Tp(G

∨) with πv(w̃v) = wv. Let us choose

w̃1 ∈ G∨
1 (K) with πv(w̃v) = wv and inductively construct (w̃v). If we take an element

w̃′
v+1 ∈ G∨

v+1(K) with πv+1(w̃
′
v+1) = wv+1, we have πv(jv(w̃

′
v+1)) = wv = πv(w̃v) and thus

find jv(w̃
′
v+1) = w̃vw

′′
v for some w′′

v ∈ (Gét
v )∨(K). Now we pick w′′

v+1 ∈ (Gét
v+1)

∨(K) with

jv(w
′′
v+1) = w′′

v and set w̃v+1 := w̃′
v+1(w

′′
v+1)

−1 to deduce the desired assertion. □

Remark. We can alternatively deduce Lemma 3.4.6 from Proposition 1.2.13, Lemma 2.1.6,
and a general fact stated in the Stacks project [Sta, Tag 0598].

https://stacks.math.columbia.edu/tag/0BND
https://stacks.math.columbia.edu/tag/0598
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Proposition 3.4.7. Given a p-divisible group G = lim−!Gv over OK , there exist canonical
ΓK-equivariant Zp-module isomorphisms

Tp(G) ∼= HomZp(Tp(G
∨),Zp(1)) and Φp(G) ∼= HomZp

(
Tp(G

∨),Φp(µp∞)
)
.

Proof. Corollary 1.3.11 implies that the generic fiber of each Gv is finite étale. Hence
each Gv gives rise to a canonical identification

Gv(K) ∼= (G∨
v )∨(K) = HomK-grp

(
(G∨

v )K , (µpv)K
) ∼= Hom(G∨

v (K), µpv(K)) (3.4)

by Theorem 1.2.4, Lemma 1.2.3, and Proposition 1.3.4. We deduce that Tp(G) admits a
natural ΓK-equivariant isomorphism

Tp(G) = lim −Gv(K) ∼= lim −Hom(G∨
v (K), µpv(K))

= HomZp(lim −G
∨
v (K), lim −µp

v(K)) = HomZp(Tp(G
∨),Zp(1)).

Moreover, under the isomorphism Φp(G) = lim−!Gv(K) ∼= lim−!HomZp(G∨
v (K),Φp(µp∞)) given

by the identification (3.4), we have a natural ΓK-equivariant map

HomZp(Tp(G
∨),Φp(µp∞)) = HomZp(lim −G

∨
v (K),Φp(µp∞)) −! Φp(G)

which we verify to be an isomorphism using Lemma 2.1.6. □

Proposition 3.4.8. Every p-divisible group G = lim−!Gv over OK yields a short exact sequence

0 Φp(G) G(OCK
) tG(CK) 0.

logG

Proof. Since G(OCK
) is p-divisible by Proposition 3.1.13 and Proposition 3.2.9, we de-

duce from Proposition 3.3.11 that logG is surjective. In addition, we have

ker(logG) = G(OCK
)tors ∼= lim−!

v

lim −
i

Gv(OCK
/miOCK

) = lim−!
v

Gv(OCK
) ∼= lim−!

v

Gv(K) = Φp(G)

by Proposition 3.3.11, Proposition 3.2.4, Lemma 3.2.1, and Lemma 3.4.1. □

Lemma 3.4.9. Every p-divisible group G over OK yields ΓK-equivariant Zp-module maps

α : G(OCK
)! HomZp(Tp(G

∨), 1 + mCK
) and dα : tG(CK)! HomZp(Tp(G

∨),CK)

via a natural isomorphism Tp(G
∨) ∼= Homp-div grp

(
GOCK

, (µp∞)OCK

)
.

Proof. Let us write G = lim−!Gv where each Gv is a finite flat OK-group. Lemma 3.4.1
and Lemma 1.2.3 together yield a canonical identification

Tp(G
∨) = lim −G

∨
v (K) ∼= lim −G

∨
v (OCK

)

= lim −HomOCK -grp

(
(Gv)OCK

, (µpv)OCK

)
= Homp-div grp

(
GOCK

, (µp∞)OCK

)
. (3.5)

In addition, we have µp∞(OCK
) ∼= 1 + mCK

and tµp∞ (CK) ∼= CK as noted in Example 3.3.9.

Hence each w ∈ Tp(G
∨) gives rise to maps

wOCK
: G(OCK

)! µp∞(OCK
) ∼= 1 + mCK

and dwCK
: tG(CK)! tµp∞ (CK) ∼= CK .

Now we obtain the desired maps α and dα by setting

α(g)(w) := wOCK
(g) and dα(τ)(w) := dwCK

(τ)

for each g ∈ G(OCK
), τ ∈ tG(CK), and w ∈ Tp(G

∨). □
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Proposition 3.4.10. Every p-divisible group G over OK gives rise to a commutative diagram

0 Φp(G) G(OCK
) tG(CK) 0

0 HomZp (Tp(G
∨),Φp(µp∞)) HomZp (Tp(G

∨), 1 + mCK
) HomZp (Tp(G

∨),CK) 0

∼

logG

α dα

with exact rows and ΓK-equivariant vertical arrows.

Proof. Let us first describe the maps in the diagram. The top row comes from Propo-
sition 3.4.8 and is evidently exact. In addition, since we have µp∞(OCK

) ∼= 1 + mCK
and

tµp∞ (CK) ∼= CK as noted in Example 3.3.9, we obtain the bottom row by Proposition 3.4.8

and deduce its exactness as Tp(G
∨) is free over Zp by Proposition 2.1.17. The vertical arrows

are the natural ΓK-equivariant maps given by Proposition 3.4.7 and Lemma 3.4.9.

It is straightforward to verify that the diagram is commutative. Hence it remains to prove
that α and dα are injective. Since we have ker(α) ≃ ker(dα) by the snake lemma, it suffices
to show that dα is injective.

We assert that α is injective on G(OK). Suppose for contradiction that there exists a
nonzero element g ∈ ker(α). The Zp-linear map dα is indeed Qp-linear as both tG(CK) and
HomZp (Tp(G

∨),CK) are vector spaces over Qp. We deduce that ker(α) ≃ ker(dα) is also a
vector space over Qp and thus is torsion free. Now we may assume by Proposition 3.2.9 that
g lies in G◦(OK). Lemma 3.4.9 yields a commutative diagram

G◦(OCK
) G(OCK

)

HomZp(Tp((G
◦)∨), 1 + mCK

) HomZp(Tp(G
∨), 1 + mCK

)

α◦ α

where the injectivity of the horizontal maps follow from Proposition 3.2.8 and Lemma 3.4.6.
Therefore we have g ∈ ker(α◦) ∩ G◦(OK) and also find ker(α◦) ∩ G◦(OK) = ker(α◦)ΓK by
Lemma 3.4.2. Since ker(α◦)ΓK is a vector space over Qp, for every integer n ≥ 0 there exists
an element gn ∈ ker(α◦)∩G◦(OK) with g = pngn. We deduce from Lemma 3.3.6 that g must
be zero and in turn obtain a desired contradiction.

Now we show that dα is injective on tG(K). It is enough to establish the injectivity on
logG(G(OK)) as we have logG(G(OK))⊗Zp Qp = tG(K) by Proposition 3.3.11. Let us take an
arbitrary element h ∈ G(OK) with logG(h) ∈ ker(dα). Since logG induces the isomorphism
ker(α) ≃ ker(dα) by the snake lemma, we find logG(h) = logG(h′) for some h′ ∈ ker(α).
Proposition 3.3.11 implies that h − h′ is torsion, which means that there exists n ≥ 0 with
pn(h − h′) = 0 or equivalently pnh = pnh′. Hence we have pnh ∈ ker(α) ∩ G(OK) and in
turn find pnh = 0 by the injectivity of α on G(OK). We deduce from Proposition 3.3.11 that
logG(h) is zero, which implies that dα is injective on logG(G(OK)).

Our discussion in the previous paragraph shows that dα factors through an injective map

tG(CK) ∼= tG(K) ⊗K CK ↪−! HomZp(Tp(G
∨),CK)ΓK ⊗K CK .

In addition, Lemma 3.1.15 yields an injective map

HomZp(Tp(G
∨),CK)ΓK ⊗K CK ↪−! HomZp(Tp(G

∨),K) ⊗K CK ∼= HomZp(Tp(G
∨),CK)

where the isomorphism comes from the fact that Tp(G
∨) is free over Zp by Lemma 3.4.5.

Now we identify dα with the composition of these maps and in turn establish its injectivity,
thereby completing the proof. □
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Theorem 3.4.11 (Tate [Tat67]). Let G be a p-divisible group over OK .

(1) There exist natural isomorphisms

G(OK) ∼= HomZp(Tp(G
∨), 1 + mCK

)ΓK and tG(K) ∼= HomZp(Tp(G
∨),CK)ΓK .

(2) The tangent spaces tG(CK) and tG∨(CK) are orthogonal complements with respect
to a CK-linear ΓK-equivariant perfect pairing

HomZp(Tp(G),CK) × HomZp(Tp(G
∨),CK)! CK(−1).

Proof. Proposition 3.4.10 and the snake lemma together yield a commutative diagram

0 G(OCK
) HomZp(Tp(G

∨), 1 + mCK
) coker(α) 0

0 tG(CK) HomZp(Tp(G
∨),CK) coker(dα) 0

α

logG

∼

dα

where both rows are exact. We apply Lemma 3.4.2 to obtain a commutative diagram

0 G(OK) HomZp(Tp(G
∨), 1 + mCK

)ΓK coker(α)ΓK

0 tG(K) HomZp(Tp(G
∨),CK)ΓK coker(dα)ΓK

αK

∼

dαK

where both rows are exact. We observe that the middle vertical map induces an injective map

coker(αK) ↪−! coker(dαK). (3.6)

In addition, we switch the roles of G and G∨ to get an injective map

dα∨
K : tG∨(K) ↪−! HomZp(Tp(G),CK)ΓK .

Let us denote the height of G by h. Proposition 2.1.8 and Lemma 3.4.5 together show
that V := HomZp(Tp(G),CK) and W := HomZp(Tp(G

∨),CK) are vector spaces over CK of
dimension h. Moreover, Proposition 3.4.7 yields a ΓK-equivariant Zp-linear perfect pairing

Tp(G) × Tp(G
∨)! Zp(1),

which in turn gives rise to a ΓK-equivariant CK-linear perfect pairing

V ×W ! CK(−1). (3.7)

This pairing maps V ΓK ×WΓK into CK(−1)ΓK , which is zero by Theorem 3.1.14. We deduce
that V ΓK ⊗K CK and WΓK ⊗K CK are orthogonal and consequently find

dimK(V ΓK ) + dimK(WΓK ) ≤ dimCK
(V ) = h.

Meanwhile, the injectivity of dαK and dα∨
K yields the inequality

dimK(V ΓK ) + dimK(WΓK ) ≥ dimK(tG(K)) + dimK(tG∨(K)) = h

where the equality follows from Theorem 2.2.23 and Proposition 3.3.2. Therefore all inequal-
ities are in fact equalities. We deduce that the injective map dαK is an isomorphism and
in turn find by the injective map (3.6) that αK is also an isomorphism. Now we establish
statement (1), which in particular yields natural identifications

tG(CK) ∼= WΓK ⊗K CK and tG∨(CK) ∼= V ΓK ⊗K CK .
Our discussion readily shows that these spaces are orthogonal under the pairing (3.7) with
dimCK

(tG(CK)) + dimCK
(tG∨(CK)) = dimCK

(V ), thereby implying statement (2). □
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Proposition 3.4.12. Given a p-divisible group G of dimension d over OK , we have

d = dimK

(
HomZp(Tp(G

∨),CK)ΓK
)

= dimK(Tp(G) ⊗Zp CK(−1))ΓK .

Proof. The first equality is evident by Proposition 3.3.2 and Theorem 3.4.11. The second
equality follows from the identification

Tp(G) ⊗Zp CK(−1) ∼= HomZp(Tp(G
∨),Zp(1)) ⊗Zp CK(−1) ∼= HomZp(Tp(G

∨),CK)

given by Lemma 3.4.5 and Proposition 3.4.7. □

Remark. Lemma 3.4.5 and Proposition 3.4.12 together show that we can compute the height
and the dimension of G from Tp(G).

Theorem 3.4.13 (Tate [Tat67]). Every p-divisible group G over OK gives rise to a canonical
CK [ΓK ]-module isomorphism

HomZp(Tp(G),CK) ∼= tG∨(CK) ⊕ t∗G(CK)(−1).

Proof. We identify t∗G(CK) with the CK-dual tG(CK) and find

HomCK
(tG(CK),CK(−1)) ∼= t∗G(CK)(−1).

Since Theorem 3.4.11 yields a CK-linear ΓK-equivariant perfect pairing

HomZp(Tp(G),CK) × HomZp(Tp(G
∨),CK)! CK(−1)

under which tG(CK) and tG∨(CK) are orthogonal complements, we get a short exact sequence

0 −! tG∨(CK) −! HomZp(Tp(G),CK) −! t∗G(CK)(−1) −! 0 (3.8)

where all maps are CK-linear and ΓK-equivariant. Let us write d := dimCK
(tG(CK)) and

d∨ := dimCK
(tG∨(CK)). We have isomorphisms

Ext1CK [ΓK ](t
∗
G(CK)(−1), tG∨(CK)) ≃ Ext1CK [ΓK ](CK(−1)⊕d

∨
,C⊕d

K ) ≃ H1(ΓK ,CK(1))⊕dd
∨
,

HomCK [ΓK ](t
∗
G(CK)(−1), tG∨(CK)) ≃ HomCK [ΓK ](CK(−1)⊕d

∨
,C⊕d

K ) ≃ H0(ΓK ,CK(1))⊕dd
∨
.

Theorem 3.1.14 shows that both H0(ΓK ,CK(1)) and H1(ΓK ,CK(1)) vanish. Hence we deduce
that the exact sequence (3.8) canonically splits, thereby establishing the desired assertion. □

Definition 3.4.14. Given a p-divisible group G over OK , we refer to the isomorphism in
Theorem 3.4.13 as the Hodge-Tate decomposition for G.

Corollary 3.4.15. For every p-divisible group G over OK , the rational Tate-module

Vp(G) := Tp(G) ⊗Zp Qp

is a Hodge-Tate p-adic representation of ΓK .

Proof. Let us identify the CK-duals of tG∨(CK) and t∗G(CK) respectively with t∗G∨(CK)
and tG(CK). Theorem 3.4.13 yields a natural decomposition

Vp(G) ⊗Qp CK ∼= t∗G∨(CK) ⊕ tG(CK)(1).

Therefore we apply Theorem 3.1.14 to find

(
Vp(G) ⊗Qp CK(−n)

)ΓK ∼=


t∗G∨(K) for n = 0,

tG(K) for n = 1,

0 for n ̸= 0, 1.

The desired assertion is now evident. □

Remark. Our proof of Corollary 3.4.15 shows that we can find tG(K) from Tp(G).
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Proposition 3.4.16. Let A be an abelian variety over K.

(1) There exists a canonical isomorphism

H1
ét(AK ,Qp) ∼= HomZp(Tp(A[p∞]),Zp) ⊗Zp Qp.

(2) If A has good reduction, its integral model A over OK yields natural isomorphisms

H0(A,Ω1
A/K) ∼= t∗A[p∞](K) and H1(A,OA) ∼= tA∨[p∞](K).

(3) Given integers i, j ≥ 0 and n ≥ 0, we have natural identifications

Hn
ét(AK ,Qp) ∼=

∧n
H1

ét(AK ,Qp),

H i(A,Ωj
A/K) ∼=

∧i
H1(A,OA) ⊗

∧j
H0(A,Ω1

A/K).

Proof. All assertions are standard facts about abelian varieties stated in the notes of
Milne [Mil, §7, §12] and the book of Mumford [Mum70, §4]. □

Theorem 3.4.17. Given an abelian variety A over K with good reduction, there exists have
a canonical ΓK-equivariant isomorphism

Hn
ét(AK ,Qp) ⊗Qp CK ∼=

⊕
i+j=n

H i(A,Ωj
A/K) ⊗K CK(−j) for each n ≥ 1.

Proof. Since A has good reduction, it admits an integeral model A over OK . We have
Tp(A[p∞]) = Tp(A[p∞]) by definition and find A∨[p∞] ∼= A[p∞]∨ by Example 2.1.10. Hence
Theorem 3.4.13 and Proposition 3.4.16 together yield a canonical ΓK-equivariant isomorphism

H1
ét(AK ,Qp) ⊗Qp CK ∼= (H1(A,OA) ⊗K CK) ⊕ (H0(A,Ω1

A/K) ⊗K CK(−1)).

Now we deduce the desired assertion from Proposition 3.4.16. □

Remark. Theorem 3.4.17 is a special case of the Hodge-Tate decomposition theorem that
we have introduced in Chapter I, Theorem 1.2.2. The proof of the Hodge-Tate decomposition
theorem for the general case requires ideas that are beyond the scope of our discussion. We
refer curious readers to the notes of Bhatt [Bha] for a wonderful exposition of the proof by
Scholze [Sch13] using perfectoid spaces.

Corollary 3.4.18. For every abelian variety A over K with good reduction, the étale coho-
mology Hn

ét(AK ,Qp) for each n ≥ 1 is a Hodge-Tate p-adic representation of ΓK .

Proof. Let us take an arbitary integer m. If we have 0 ≤ m ≤ n, Theorem 3.1.14 and
Theorem 3.4.17 together yield a natural isomorphism(

Hn
ét(AK ,Qp) ⊗Qp CK(m)

)ΓK ∼= Hn−m(A,Ωm
A/K).

Otherwise, Theorem 3.1.14 and Theorem 3.4.17 imply that
(
Hn

ét(AK ,Qp) ⊗Qp CK(m)
)ΓK is

trivial. Now the desired assertion is straightforward to verify. □

Remark. In fact, given a proper smooth variety X over K, the Hodge-Tate decomposition
theorem implies that the étale cohomology Hn

ét(XK ,Qp) for each integer n ≥ 1 is a Hodge-Tate
p-adic representation of ΓK .



80 II. FOUNDATIONS OF p-ADIC HODGE THEORY

Exercises

1. In this exercise, we study homomorphisms between the R-groups Ga and Gm.

(1) Show that every homomorphism from Gm to Ga is trivial.

(2) If R is reduced, show that every homomorphism from Ga to Gm is trivial.

(3) If R contains a nonzero element α with α2 = 0, construct a nonzero homomorphism
from Ga to Gm.

2. Assume that R = k is a field of characteristic p.

(1) Show that the k-algebra homomorphism k[t] ! k[t] which sends t to tp − t induces
a k-group homomorphism f : Ga ! Ga.

(2) Show that ker(f) is isomorphic to Z/pZ.

3. Prove that an R-group is separated if and only if its unit section is a closed embedding.

Hint. One can identify the unit section as a base change of the diagonal morphism and
conversely identify the diagonal morphism as a base change of the unit section.

4. Assume that R = k is a field of characteristic p.

(1) Verify that the k-group αp2 := Spec (k[t]/tp
2
) with the natural additive group struc-

ture on αp2(B) =
{
b ∈ B : bp

2
= 0

}
for each k-algebra B is finite flat of order p2.

(2) Show that α∨
p2 admits an isomorphism α∨

p2
∼= Spec (k[t, u]/(tp, up)) with the multi-

plication on α∨
p2(B) ∼=

{
(b1, b2) ∈ B2 : bp1 = bp2 = 0

}
for each k-algebra B given by

(b1, b2) · (b′1, b
′
2) =

(
b1 + b′1, b2 + b′2 −W1(b1, b2)

)
where we write W1(t, u) :=

(t+ u)p − tp − up

p
∈ Z[t, u].

Hint. One can show that a B-algebra homomorphism B[t, t−1]! B[t]/(tp
2
) induces

a B-group homomorphism αp2 ! Gm if and only if the image of t is of the form

f(t) = E(b1t)E(b2t
p) with bp1 = bp2 = 0, where we write E(t) :=

p−1∑
i=0

ti

i!
.

(3) For k = Fp, show that αp2 fits into a nonsplit short exact sequence

0 −! αp −! αp2 −! αp −! 0.

Remark. For k = Fp, there exists a natural identification

Ext1Fp-grp
(αp, αp) ∼= (Z/2Z)2

with elements of Ext1Fp-grp
(αp, αp) given by α2

p, αp2 , α∨
p2 , and the p-torsion part of a super-

singular elliptic curve. In particular, one can identify the p-torsion part of a supersingular
elliptic curve over Fp with the Baer sum of α2

p and αp2 as self-extensions of αp.
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5. Assume that R = k is a perfect field.

(1) Given a finite abelian group M with a continuous Γk-action, show that the scheme

MΓk := Spec (A) for A :=
( ∏
i∈M

k
)Γk

is naturally a finite étale k-group.

Hint. Since M is finite, the Γk-action should factor through a finite quotient.

(2) Prove that the inverse functor for the equivalence in Proposition 1.3.4 maps each
finite abelian group M with a continuous Γk-action to MΓk .

(3) Prove that a finite étale group scheme G over a field k is a constant group scheme if
and only if the Γk-action on G(k) is trivial.

6. In this exercise, we follow the notes of Pink [Pin, §15] to present a counterexample for
Proposition 1.4.15 when k is not perfect. Let us choose c ∈ k which is not a p-th power and

set G :=

p−1∐
i=0

Gi with Gi := Spec
(
k[t]/(tp − ci)

)
.

(1) Given a k-algebra B, verify a natural identification

Gi(B) ∼=
{
b ∈ B : bp = ci

}
for each i = 0, · · · , p− 1

and show that G(B) is a group with multiplication given by the following maps:

• mij : Gi(B) ×Gj(B)! Gi+j(B) for i+ j < p which sends each (g, g′) to gg′,

• mij : Gi(B) × Gj(B) ! Gi+j−p(B) for i + j ≥ p which sends each (g, g′) to
gg′/c.

(2) Show that G yields a nonsplit connected-étale sequence

0 −! µp −! G −! Z/pZ −! 0.

Hint. To show that the sequence does not split, compare G0 with Gi for i ̸= 0.

7. Assume that R = k is a field.

(1) If k has characteristic 0, establish a natural identification Endk-grp(Ga) ∼= k.

(2) If k has characteristic p, show that Endk-grp(Ga) is isomorphic to the (possibly non-
commutative) polynomial ring k⟨φ⟩ with φc = cpφ for any c ∈ k.

8. Assume that R = k is a field.

(1) Give a proof of Theorem 1.3.10 when R = k is a field without using Theorem 1.1.16.

Hint. If k has characteristic 0, one can adjust the proof of Proposition 1.5.20 to
obtain an isomorphism G◦ ≃ Spec (k[t1, · · · , td]) for some integer d ≥ 0 and in turn
find d = 0 by the fact that G◦ is finite flat.

(2) Prove Theorem 1.1.16 when R = k is a field.

Hint. If k has characteristic 0, one can deduce the assertion from the corresponding
theorem for finite groups by observing that G is étale. If k has characteristic p, one
can reduce to the case where G is simple with k algebraically closed.
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9. Use the self-duality of elliptic curves to prove that every elliptic curve over Fp is either
ordinary or supersingular.

10. Assume that R = k is a perfect field.

(1) Show that the dual of every étale p-divisible group over k is connected.

(2) Show that every p-divisible G over k admits a natural decomposition

G ∼= Gll ×Gmult ×Gét

with the following properties:

(i) Gll is connected with (Gll)∨ connected.

(ii) Gmult is connected with (Gmult)∨ étale.

(iii) Gét is étale with (Gét)∨ connected.

11. Assume that R = k is a field of characteristic 0. Establish an isomorphism between the
formal group laws µĜa

and µĜm
over k defined as in Example 2.2.3.

Hint. Consider the map k[[t]]! k[[t]] sending t to exp(t) − 1 =

∞∑
n=1

tn

n!
.

12. Let K be a finite extension of Qp with uniformizer π and residue field Fq.
(1) Show that there exists a unique formal group law µπ over OK of dimension 1 with

an endomorphism [π] : OK [[t]]! OK [[t]] sending t to πt+ tq.

(2) Show that µπ is p-divisible.

Remark. The formal group law µπ is a Lubin-Tate formal group law, introduced by the work
of Lubin-Tate [LT65] as a means to construct the totally ramified abelian extensions of K.

13. For a supersingular elliptic curve E over Fp, show that ker(φE[p]) is isomorphic to αp.

14. Recall that every α ∈ Zp admits a unique p-adic expansion α =
∞∑
n=0

anp
n where each an

is an integer with 0 ≤ an < p.

(1) Show that the 2-adic expansion agrees with the Teichmüler expansion on Z2.

(2) Show that the p-adic expansion does not agree with the Teichmüler expansion on Zp
for p > 2.

(3) Find the 3-adic expansion for [2] ∈ Z3.

(4) Find the first four coefficients of the 5-adic expansion for [2] ∈ Z5.

Hint. The Teichmüler lift of an element a ∈ Fp is the unique lift [a] ∈ Zp with [a]p = [a].
One can inductively find its image in Zp/pnZp = Z/pnZ for each n ≥ 1 by Hensel’s lemma.
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15. Assume that R = k is a perfect field of characteristic p. For each λ ∈ Q, show that there
exists a natural isomorphism N(λ)∨ ∼= N(−λ).

16. Let A be an abelian variety over Fp of dimension g.

(1) Show that the isocrystal D(A[p∞])[1/p] is self-dual by using the fact that A is isoge-
nous to its dual.

(2) If A is ordinary in the sense that A[p](Fp) is isomorphic to (Z/pZ)⊕g, show that
there exists an isomorphism

A[p∞] ≃ (Qp/Zp)g × (µp∞)g.

Hint. Show that A[p∞]◦ has étale dual, possibly by establishing an isomorphism
D(A[p∞])[1/p] ≃ N(0)⊕g ⊕N(1)⊕g.

17. Let K be a p-adic field.

(1) Prove that its algebraic closure K is not p-adically complete.

Hint. There are at least two ways to proceed as follows:

(a) One can observe that K is a countable union of nowhere dense subspaces and
apply the Baire category theorem to conclude.

(b) Alternatively, one can use Krasner’s lemma to produce a Cauchy sequence in K
whose limit is not algebraic over K.

(2) Prove that CK is not discretely valued.

18. Give a proof of Proposition 3.3.10 for G = µp∞ .

19. Let K be a p-adic field and E be an elliptic curve over OK .

(1) Prove that E gives rise to a ΓK-equivariant Zp-linear perfect pairing

Tp(E[p∞]) × Tp(E[p∞])! Zp(1). (3.9)

(2) Deduce that the determinant character of the ΓK-representation Tp(E[p∞]) coincides
with the p-adic cyclotomic character.

Remark. The perfect pairing (3.9) coincides with the Weil pairing on E.

20. Describe the canonical identification

Ext1CK [ΓK ](CK(−1),CK) ∼= H1(ΓK ,CK(1))

used in the proof of Theorem 3.4.13

Hint. Given a ΓK-representation V over CK with a ΓK-equivariant short exact sequence

0 −! CK −! V −! CK(−1) −! 0,

the action of ΓK on V (1) admits a matrix representation(
χ c
0 1

)
for some map c : ΓK ! CK(1). Show that c is a 1-cocycle on ΓK in CK(1) with its class in
H1(ΓK ,CK(1)) uniquely determined by the isomorphism class of V .





CHAPTER III

Period rings and functors

1. Fontaine’s formalism on period rings

The main goal of this section is to discuss the formalism developed by Fontaine [Fon94]
for p-adic period rings and their associated functors. Our primary references for this section
are the notes of Brinon-Conrad [BC, §5] and the notes of Fontaine-Oiyang [FO, §2.1].

Throughout this chapter, we let K be a p-adic field with absolute Galois group ΓK , inertia
group IK , and residue field k. In addition, we write RepQp

(ΓK) for the category of p-adic
ΓK-representations and χ for the p-adic cyclotomic character of K.

1.1. Basic definitions and examples

In this subsection, we define some key notions for our formalism and relate them to
Hodge-Tate representations.

Definition 1.1.1. An integral domain B over Qp with an action of ΓK is (Qp,ΓK)-regular if
it satisfies the following conditions:

(i) We have BΓK = CΓK , where C denotes the fraction field of B endowed with a natural
ΓK-action extending the ΓK-action on B.

(ii) An element b ∈ B is a unit if Qp · b := { c · b : c ∈ Qp } is stable under the ΓK-action.

Remark. For any field F and any group G, we can similarly define (F,G)-regular rings. The
formalism that we develop in this section readily extends to (F,G)-regular rings.

Example 1.1.2. Every field extension of Qp with an action of ΓK is (Qp,ΓK)-regular.

Definition 1.1.3. Let B be a (Qp,ΓK)-regular ring with E := BΓK .

(1) We define the functor associated to B to be DB : RepQp
(ΓK) −! VectE with

DB(V ) := (V ⊗Qp B)ΓK for every V ∈ RepQp
(ΓK),

where VectE denotes the category of vector spaces over E.

(2) We say that V ∈ RepQp
(ΓK) is B-admissible if it satisfies the identity

dimE DB(V ) = dimQp V.

Remark. We can show that the B-admissibility for V ∈ RepQp
(ΓK) is equivalent to the

triviality of the ΓK-action on V ⊗Qp B.

Example 1.1.4. We record some examples of admissible representations.

(1) For every (Qp,ΓK)-regular ringB, trivial ΓK-representations over Qp areB-admissible.

(2) Essentially by Hilbert’s Theorem 90, a p-adic representation V of ΓK is K-admissible
if and only if the action of ΓK on V factors through a finite quotient.

(3) By a deep result of Sen [Sen80], a p-adic representation V of ΓK is CK-admissible
if and only if the action of IK on V factors through a finite quotient.

85
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Definition 1.1.5. Given a character η : ΓK −! Q×
p and a Qp[ΓK ]-module M , we define the

twist of M by η to be the Qp[ΓK ]-module

M(η) := M ⊗Qp Qp(η)

where Qp(η) denotes the ΓK-representation on Qp given by η.

Example 1.1.6. Given a Qp[ΓK ]-module M , we have an identification M(n) ∼= M(χn) for
every n ∈ Z by Lemma 3.1.8 in Chapter II.

Lemma 1.1.7. The group χ(IK) is infinite.

Proof. We have ker(χ) =
⋂
v≥1

Gal(K(µpv(K))/K) as χ encodes the action of ΓK on

Zp(1) = lim −µp
v(K). Let us write ev for the ramification degree of K(µpv(K)) over K and e

for the ramification degree of K over Qp. We find eve ≥ pv−1(p − 1) by noting that eve and

pv−1(p− 1) are respectively equal to the ramification degrees of K(µpv(K)) and Qp(µpv(K))
over Qp. We deduce that ev grows arbitrarily large and thus obtain the desired assertion. □

Theorem 1.1.8 (Tate [Tat67], Sen [Sen80]). Let η : ΓK −! Z×
p be a continuous character.

(1) If η(IK) is finite, both H0(ΓK ,CK(η)) and H1(ΓK ,CK(η)) are 1-dimensional vector
spaces over K.

(2) If η(IK) is infinite, both H0(ΓK ,CK(η)) and H1(ΓK ,CK(η)) vanish.

Remark. Since we have CK(n) ∼= CK(χn) for each n ∈ Z as noted in Example 1.1.6, we can
deduce Theorem 3.1.14 in Chapter II from Lemma 1.1.7 and Theorem 1.1.8.

Definition 1.1.9. The Hodge-Tate period ring is BHT :=
⊕
n∈Z

CK(n).

Proposition 1.1.10. The Hodge-Tate period ring BHT is (Qp,ΓK)-regular.

Proof. Let us first show the identity BΓK
HT = CΓK

HT for the fraction field CHT of BHT. We
consider a natural action of ΓK on CK((t)) with γ(t) = χ(γ)t. Lemma 3.1.8 in Chapter IIyields

ΓK-equivariant isomorphisms BHT ≃ CK [t, t−1] and CHT ≃ CK(t). Since we have BΓK
HT = K

by Theorem 3.1.14 in Chapter II, it suffices to establish the identity CK((t))ΓK = K. The
group ΓK acts on each f(t) =

∑
cnt

n ∈ CK((t)) via the relation

γ
(∑

cnt
n
)

=
∑

γ(cn)χ(γ)ntn for every γ ∈ ΓK .

Hence f(t) =
∑
cnt

n ∈ CK((t)) is ΓK-invariant if and only if we have cn = γ(cn)χ(γ)n for
each n ∈ Z and γ ∈ ΓK , or equivalently cn ∈ CK(n)ΓK for every n ∈ Z by Lemma 3.1.8 in
Chapter II. The desired identity CK((t))ΓK = K follows from Theorem 3.1.14 in Chapter II.

It remains to verify that every b ∈ BHT with Qp · b stable under ΓK is a unit. Under the
isomorphism BHT ≃ CK [t, t−1], we identify b with a function f(t) =

∑
cnt

n ∈ CK [t, t−1]. Let
us take m ∈ Z with cm ̸= 0. It suffices to show the identity cn = 0 for each n ̸= m.

Let η : ΓK ! Q×
p be the character that encodes the ΓK-action on Qp · f(t). We note that

η is continuous as the ΓK-action on each CK(n) is continuous; in particular, we may regard η
as a character with values in Z×

p . For each n ∈ Z and γ ∈ ΓK , we find η(γ)cn = γ(cn)χ(γ)n or

equivalently cn = (η−1χn)(γ)γ(dn). Hence we have cn ∈ CK(η−1χn)ΓK for every n ∈ Z and
in turn deduce from Theorem 1.1.8 that (η−1χn)(IK) is finite for every n ∈ Z with cn ̸= 0.

Suppose for contradiction that we have cn ̸= 0 for some n ̸= m. Since both (η−1χn)(IK)
and (η−1χm)(IK) are finite, IK has a finite image under χn−m = (η−1χn) · (η−1χm)−1. Hence
we obtain a desired contradiction by Lemma 1.1.7, thereby completing the proof. □
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Proposition 1.1.11. A p-adic representation V of ΓK is Hodge-Tate if and only if it is
BHT-admissible.

Proof. Since we have

DBHT
(V ) = (V ⊗Qp BHT)ΓK =

⊕
n∈Z

(V ⊗Qp CK(n))ΓK , (1.1)

the desired assertion follows from Lemma 3.1.15 in Chapter II. □

Example 1.1.12. Given a p-adic ΓK-representation V which fits into an exact sequence

0 −! Qp(m) −! V −! Qp(n) −! 0

with m ̸= n, we assert that V is Hodge-Tate. For every i ∈ Z, we have an exact sequence

0 −! CK(i+m) −! V ⊗Qp CK(i) −! CK(i+ n) −! 0

by the flatness of CK(i) over Qp and consequently obtain a long exact sequence

0 −! CK(i+m)ΓK −! (V ⊗Qp CK(i))ΓK −! CK(i+ n)ΓK −! H1(ΓK ,CK(i+m)).

Therefore Theorem 3.1.14 in Chapter II yields an identification

(V ⊗Qp CK(i))ΓK ∼=

{
K for i = −m,−n,
0 for i ̸= −m,−n.

Now we find

dimK DBHT
(V ) =

∑
i∈Z

dimK(V ⊗Qp CK(i))ΓK = 2 = dimQp V

and in turn establish the desired assertion.

Remark. On the other hand, a self extension of Qp is not necessarily Hodge-Tate. For
example, by a difficult result of Sen [Sen80], the two-dimensional vector space over Qp where

each γ ∈ ΓK acts via the matrix

(
1 logp(χ(γ))
0 1

)
is not Hodge-Tate.

Proposition 1.1.13. Given a continuous character η : ΓK −! Z×
p , the ΓK-representation

Qp(η) is Hodge-Tate if and only if there exists some n ∈ Z with (ηχn)(IK) finite.

Proof. By Lemma 3.1.15 in Chapter II, the 1-dimensional ΓK-representation Qp(η) is
Hodge-Tate if and only if there exists some n ∈ Z with (Qp(η) ⊗Qp CK(n))ΓK ̸= 0, or equiva-

lently CK(ηχn)ΓK ̸= 0 by Example 1.1.6. Hence the assertion follows from Theorem 1.1.8. □

Definition 1.1.14. Given a Hodge-Tate representation V , an integer n ∈ Z is a Hodge-Tate
weight of V with multiplicity m if we have

dimK(V ⊗Qp CK(n))ΓK = m > 0.

Remark. Readers should be aware that many authors use the opposite sign convention for
Hodge-Tate weights. We will explain the reason for our choice in §2.4.

Example 1.1.15. We record the Hodge-Tate weights for some Hodge-Tate representations.

(1) For every n ∈ Z, the Tate twist Qp(n) of Qp has Hodge-Tate weight −n.

(2) For every p-divisible group G over OK , the rational Tate module Vp(G) has Hodge-
Tate weights 0 or −1 (possibly both) by Theorem 3.4.13 in Chapter II.

(3) For an abelian varietyA overK with good reduction, the étale cohomologyHn
ét(AK ,Qp)

has Hodge-Tate weights 0, 1, · · · , n as easily seen by Theorem 3.4.17 in Chapter II.
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1.2. Formal properties of admissible representations

Throughout this subsection, we fix a (Qp,ΓK)-regular ring B and write E := BΓK . In

addition, we denote by RepBQp
(ΓK) the category of B-admissible p-adic ΓK-representations.

Theorem 1.2.1. Let V be a p-adic ΓK-representation.

(1) There exists a natural map

αV : DB(V ) ⊗E B −! V ⊗Qp B

which is B-linear, ΓK-equivariant, and injective.

(2) V satisfies the inequality

dimE DB(V ) ≤ dimQp V (1.2)

with equality precisely when αV is an isomorphism.

Proof. Let us first consider statement (1). We have the natural map

αV : DB(V ) ⊗E B −! (V ⊗Qp B) ⊗E B ∼= V ⊗Qp (B ⊗E B) −! V ⊗Qp B,

which is clearly B-linear and ΓK-equivariant. We wish to show that αV is injective. Since the
fraction field C of B is (Qp,ΓK)-regular as noted in Example 1.1.2, we obtain a natural map

βV : DC(V ) ⊗E C −! V ⊗Qp C

which fits into a commutative diagram

DB(V ) ⊗E B V ⊗Qp B

DC(V ) ⊗E C V ⊗Qp C

αV

βV

with injective vertical maps. It suffices to prove that βV is injective. Suppose for contradiction
that ker(βV ) is not trivial. Let us take an E-basis (ei) of DC(V ) = (V ⊗Qp C)ΓK and regard
each ei as a vector in V ⊗Qp C. By our assumption, there exists a nontrivial C-linear relation∑
ciei = 0 with minimal number of nonzero terms. Without loss of generality, we may set

cj = 1 for some j. For every γ ∈ ΓK we find

0 = γ
(∑

ciei

)
−
∑

ciei =
∑

(γ(ci) − ci)ei.

Since the coefficient of ej is zero, the minimality of our relation yields the identity ci = γ(ci)
for each ci and in turn implies that ci lies in CΓK = E. Hence we have a nontrivial E-linear
relation

∑
ciei = 0 for the E-basis (ei) of DC(V ), thereby obtaining a desired contradiction.

It remains to verify statement (2). Since the inequality (1.2) is evident by statement (1), we
only need to consider the equality condition. If αV is an isomorphism, the inequality becomes
an equality. For the converse, we henceforth assume the identity dimE DB(V ) = dimQp V .

Let us choose a basis (ui) of DB(V ) = (V ⊗Qp B)ΓK over E and a basis (vi) of V over Qp. We
may represent αV by a d×d matrix MV with d := dimE DB(V ) = dimQp V . We wish to show
that det(MV ) is a unit in B. We have det(MV ) ̸= 0 as the map DB(V ) ⊗E C ! V ⊗Qp C
induced by αV is an isomorphism for being an injective map between vector spaces of equal
dimension. Let us consider the identity (∧dαV )(u1 ∧ · · · ∧ ud) = det(MV )(v1 ∧ · · · ∧ vd). The
group ΓK acts trivially on u1 ∧ · · · ∧ ud and by some Qp-valued character η on v1 ∧ · · · ∧ vd.
Since αV is ΓK-equivariant, we deduce that ΓK acts on det(MV ) by η−1. Hence we find
det(MV ) ∈ B× as B is (Qp,ΓK)-regular, thereby completing the proof. □
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Proposition 1.2.2. The functor DB is exact and faithful on RepBQp
(ΓK).

Proof. Let V and W be arbitrary B-admissible representations. Theorem 1.2.1 yields
natural ΓK-equivariant B-linear isomorphisms

DB(V ) ⊗E B ∼= V ⊗Qp B and DB(W ) ⊗E B ∼= W ⊗Qp B.

Given f ∈ HomQp[ΓK ](V,W ) with the associated map DB(f) : DB(V )! DB(W ) being zero,
we observe that the map V ⊗Qp B !W ⊗Qp B induced by f is zero and in turn deduce that

f must be zero. Therefore the functor DB is faithful on RepBQp
(ΓK).

It remains to verify that DB is exact on RepBQp
(ΓK). Let us consider an arbitrary short

exact sequence of B-admissible representations

0 −! U −! V −!W −! 0.

Since every algebra over a field is faithfully flat, B is faithfully flat over both Qp and E.
Therefore we obtain a short exact sequence

0 −! U ⊗Qp B −! V ⊗Qp B −!W ⊗Qp B −! 0,

which we naturally identify with a short exact sequence

0 −! DB(U) ⊗E B −! DB(V ) ⊗E B −! DB(W ) ⊗E B −! 0

by Theorem 1.2.1. The desired assertion is now evident as B is faithfully flat over E. □

Remark. The functor DB is not fully faithful on RepBQp
(ΓK) with values in the category

of vector spaces over E; indeed, the isomorphism class of DB(V ) for every V ∈ RepBQp
(ΓK)

depends only on the dimension of V . In practice, however, we enhance DB to a functor that
takes values in a category of vector spaces over E with some additional structures, as briefly
described in Chapter I, §1.3. We will see in §3 that such an enhanced functor is fully faithful
for the crystaline period ring B = Bcris.

Proposition 1.2.3. The category RepBQp
(ΓK) is closed under taking subquotients.

Proof. Consider a short exact sequence of p-adic representations

0 −! U −! V −!W −! 0 (1.3)

with V ∈ RepBQp
(ΓK). We wish to show that both U and W are B-admissible. Since the

functor DB is left exact on RepQp
(ΓK) by construction, we have an exact sequence

0 −! DB(U) −! DB(V ) −! DB(W ). (1.4)

In addition, by Theorem 1.2.1 we have

dimE DB(U) ≤ dimQp U and dimE DB(W ) ≤ dimQp W. (1.5)

Now the exact sequences (1.3) and (1.4) together yield inequalities

dimE DB(V ) ≤ dimE DB(U) + dimE DB(W ) ≤ dimQp U + dimQp W = dimQp V.

Since V is B-admissible, all inequalities are in fact equalities. Therefore we deduce that both
U and W are B-admissible as desired. □

Remark. In general, the category RepBQp
(ΓK) is not closed under taking extensions. For

example, the category of Hodge-Tate representations is not closed under taking extensions by
the remark following Example 1.1.12.
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Proposition 1.2.4. Given V, W ∈ RepBQp
(ΓK), we have V ⊗Qp W ∈ RepBQp

(ΓK) with a

natural isomorphism

DB(V ) ⊗E DB(W ) ∼= DB(V ⊗Qp W ).

Proof. Theorem 1.2.1 yields natural ΓK-equivariant B-linear isomorphisms

αV : DB(V ) ⊗E B
∼
−! V ⊗Qp B and αW : DB(W ) ⊗E B

∼
−!W ⊗Qp B.

Let us consider the natural map

DB(V ) ⊗E DB(W ) −! (V ⊗Qp B) ⊗E (W ⊗Qp B) −! (V ⊗Qp W ) ⊗Qp B (1.6)

with the first arrow given by the identifications

DB(V ) = (V ⊗Qp B)ΓK and DB(W ) = (W ⊗Qp B)ΓK .

Since the second arrow is evidently ΓK-equivariant, we obtain a natural E-linear map

DB(V ) ⊗E DB(W ) −!
(
(V ⊗Qp W ) ⊗Qp B

)ΓK ∼= DB(V ⊗Qp W ). (1.7)

This map is injective since the map (1.6) extends to a B-linear map

(DB(V ) ⊗E DB(W )) ⊗E B
(
(V ⊗Qp B) ⊗E (W ⊗Qp B)

)
⊗E B (V ⊗Qp W ) ⊗Qp B

which coincides with the isomorphism αV ⊗ αW under the identifications

(DB(V ) ⊗E DB(W )) ⊗E B ∼= (DB(V ) ⊗E B) ⊗B (DB(W ) ⊗E B),(
(V ⊗Qp B) ⊗E (W ⊗Qp B)

)
⊗E B ∼= (V ⊗Qp B ⊗E B) ⊗B (W ⊗Qp B ⊗E B),

(V ⊗Qp W ) ⊗Qp B
∼= (V ⊗Qp B) ⊗B (W ⊗Qp B).

Therefore we find

dimE DB(V ⊗Qp W ) ≥ (dimE DB(V )) · (dimE DB(W )) = dimQp V ⊗Qp W

where the equality follows from the B-admissibility of V and W . We see by Theorem 1.2.1
that this inequality is indeed an equality and in turn deduce that V ⊗Qp W is a B-admissible
representation with the natural isomorphism (1.7). □

Proposition 1.2.5. For every V ∈ RepBQp
(ΓK), we have ∧n(V ), Symn V ∈ RepBQp

(ΓK) with

natural isomorphisms

∧n(DB(V )) ∼= DB(∧n(V )) and Symn(DB(V )) ∼= DB(Symn(V )).

Proof. Let us only consider exterior powers here, as the same argument works with
symmetric powers. Proposition 1.2.4 implies that V ⊗n is B-admissible with a natural isomor-
phism DB(V ⊗n) ∼= DB(V )⊗n. We find ∧n(V ) ∈ RepBQp

(ΓK) by Proposition 1.2.3 and in turn

obtain a natural surjective E-linear map

DB(V )⊗n
∼
−! DB(V ⊗n) ↠ DB(∧n(V ))

by Proposition 1.2.2. It is straightforward to check that this map factors through the natural
surjection DB(V )⊗n ↠ ∧n(DB(V )). Hence we have a natural surjective E-linear map

∧n(DB(V )) ↠ DB(∧n(V )),

which turns out to be an isomorphism since we have

dimE ∧n(DB(V )) = dimE DB(∧n(V ))

by the B-admissibility of V and ∧n(V ). □
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Proposition 1.2.6. For every V ∈ RepBQp
(ΓK), we have V ∨ ∈ RepBQp

(ΓK) with the natural

E-linear map

DB(V ) ⊗E DB(V ∨) ∼= DB(V ⊗Qp V
∨) −! DB(Qp) ∼= E (1.8)

being a perfect pairing.

Proof. Let us first consider the case where V has dimension 1 over Qp. We fix a nonzero
vector v ∈ V and take f ∈ V ∨ = HomQp(V,Qp) with f(v) = 1. We represent the ΓK-action

on V by a continuous character η : ΓK −! Q×
p and obtain the relations

γ(v) = η(γ)v and γ(f) = η(γ)−1f for every γ ∈ ΓK .

Since DB(V ) = (V ⊗Qp B)ΓK is 1-dimensional over E by the B-admissibility of V , it admits
a basis given by a vector v ⊗ b for some b ∈ B. Now we find

v ⊗ b = γ(v ⊗ b) = γ(v) ⊗ γ(b) = η(γ)v ⊗ γ(b) = v ⊗ η(γ)γ(b) for every γ ∈ ΓK

or equivalently

b = η(γ)γ(b) for every γ ∈ ΓK .

Moreover, we have b ∈ B× as v⊗ b yields a B-basis for V ⊗Qp B via the natural isomorphism

DB(V ) ⊗E B ∼= V ⊗Qp B given by Theorem 1.2.1. Hence DB(V ∨) = (V ∨ ⊗Qp B)ΓK contains

a nonzero vector f ⊗ b−1. We deduce that the inequality

dimE DB(V ∨) ≤ dimQp V
∨ = 1

given by Theorem 1.2.1 must be an equality, which means that V ∨ is B-admissible. We also
observe that f ⊗ b−1 yields an E-basis for DB(V ∨) and in turn find that the map (1.8) is a
perfect pairing.

We now establish the B-admissibility of V ∨ in the general case. Let us write d := dimQp V
for notational convenience. We have a natural ΓK-equivariant isomorphism

∆ : det(V ∨) ⊗Qp ∧d−1V
∼
−! V ∨

given by the relation

∆ ((f1 ∧ · · · ∧ fd) ⊗ (v2 ∧ · · · ∧ vd)) (v1) = det(fi(vj)) for all fi ∈ V ∨ and vj ∈ V.

Proposition 1.2.5 implies that both det(V ) = ∧dV and ∧d−1V are B-admissible. Moreover,
our discussion in the preceding paragraph shows that det(V ∨) ∼= det(V )∨ is also B-admissible
as det(V ) has dimension 1 over Qp. Therefore V ∨ is B-admissible by Proposition 1.2.4.

It remains to prove that the map (1.8) is a perfect pairing in the general case. Since both
V and V ∨ are B-admissible, we find

d = dimE DB(V ) = dimE DB(V ∨).

Upon choosing E-bases for DB(V ) and DB(V ∨), we can represent the pairing (1.8) by a d×d
matrix M . It suffices to show that det(M) is not zero or equivalently that the induced pairing

det(DB(V )) ⊗E det(DB(V ∨)) −! E

is perfect. Since we have natural identifications

det(DB(V )) ∼= DB(det(V )) and det(DB(V ∨)) ∼= DB(det(V ∨))

given by Proposition 1.2.5, the desired assertion is evident by our discussion in the first
paragraph. □
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2. de Rham representations

In this section, we define and study the de Rham period ring and de Rham representations.
The primary references for this section are the notes of Brinon-Conrad [BC, §4 and §6] and
the article of Scholze [Sch12].

2.1. Perfectoid fields and their tilts

Let us begin with the notion of perfectoid fields, which provides a modern perspective of
Fontaine’s original work.

Definition 2.1.1. A perfectoid field is a complete nonarchimedean field C of residue charac-
teristic p with the following properties:

(i) The valuation on C is nondiscrete.

(ii) The p-th power map on OC/pOC is surjective.

Remark. By convention, we assume that the valuation on a nonarchimedean field is not
trivial. On the other hand, the valuation on a valued field may be trivial.

Lemma 2.1.2. Let C be a complete nonarchimedean field of residue characteristic p. If the
p-th power map on C is surjective, the field C is a perfectoid field.

Proof. Let us denote by ν the valuation on C and take an arbitrary element x ∈ C.
Since the p-th power map on C is surjective by our assumption, there exists an element y ∈ C
with x = yp. If x has positive valuation, we find

0 < ν(y) = ν(x)/p < ν(x). (2.1)

We deduce that C does not have an element with minimum positive valuation, which in
particular implies that the valuation ν is not discrete. In addition, we observe that the p-th
power map on OC is surjective; indeed, if x lies in OC we have x = yp with y ∈ OC by the
relation (2.1). Hence the p-th power map on OC/pOC is also surjective. The desired assertion
is now evident. □

Remark. The converse of Lemma 2.1.2 does not hold; in other words, the p-th power map
on a perfectoid field is not neccessarily surjective.

Example 2.1.3. Since CK is algebraically closed as noted in Chapter II, Proposition 3.1.13,
it is a perfectoid field by Lemma 2.1.2.

Remark. In fact, Lemma 2.1.2 shows that every complete nonarchimedean algebraically
closed field of residue characteristic p is a perfectoid field.

Proposition 2.1.4. A nonarchimedean field of characteristic p is perfectoid if and only if it
is complete and perfect.

Proof. By definition, every perfectoid field of characteristic p is complete and perfect.
Conversely, every complete nonarchimedean perfect field of characteristic p is perfectoid by
Lemma 2.1.2. □

Definition 2.1.5. Let C be a perfectoid field.

(1) The tilt of C is C♭ := lim −
x 7!xp

C endowed with the natural multiplication.

(2) The sharp map associated to C is the map C♭ ! C which sends each c = (cn) ∈ C♭

to the first component c♯ := c0.
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For the rest of this subsection, we fix a perfectoid field C with the valuation ν. Its tilt C♭

is a priori a multiplicative monoid. We aim to show that C♭ is naturally a perfectoid field of
characteristic p.

Proposition 2.1.6. Fix an element ϖ ∈ C× with 0 < ν(ϖ) ≤ ν(p).

(1) Given arbitrary elements x, y ∈ OC with x− y ∈ ϖOC we have

xp
n − yp

n ∈ ϖn+1OC for each integer n ≥ 0.

(2) The natural projection OC ↠ OC/ϖOC induces a multiplicative bijection

lim −
x 7!xp

OC
∼= lim −

x 7!xp
OC/ϖOC . (2.2)

(3) The monoid lim −
x 7!xp

OC is naturally a ring of characteristic p via the map (2.2).

Proof. The inequality ν(ϖ) ≤ ν(p) implies that p is divisible by ϖ in OC . In addition,
for elements x, y ∈ OC and an integer n ≥ 1 we find

xp
n − yp

n
=
(
yp

n−1
+ (xp

n−1 − yp
n−1

)
)p

− yp
n

for each n ≥ 1.

Hence we obtain statement (1) by a simple induction.

Let us now consider statement (2). We wish to construct an inverse map

f : lim −
x 7!xp

OC/ϖOC −! lim −
x7!xp

OC .

Take an arbitrary element c = (cn) ∈ lim −
x 7!xp

OC/ϖOC and choose a lift cn ∈ OC of each cn.

We have

cp
l

n+m+l − cn+m ∈ ϖOC for all l,m, n ≥ 0,

and consequently find

cp
m+l

n+m+l − cp
m

n+m ∈ ϖm+1OC for all n,m ≥ 0

by statement (1). Hence for each n ≥ 0 the sequence (cp
m

n+m)m≥0 converges in OC for being

Cauchy. In addition, statement (1) implies that the limit of the sequence (cp
m

n+m)m≥0 for each
n ≥ 0 does not depend on the choice of cn. Now we write

fn(c) := lim
m!∞

cp
m

n+m for each n ≥ 0

and obtain the desired inverse by setting

f(c) := (fn(c)) ∈ lim −
x 7!xp

OC .

It remains to verify statement (3). Since ϖ divides p in OC as already noted in the first
paragraph, the ring OC/ϖOC is of characteristic p and thus induces a natural ring structure
on lim −

x 7!xp
OC

∼= lim −
x 7!xp

OC/ϖOC . Moreover, this ring structure does not depend on ϖ; indeed,

for arbitrary elements a = (an) and b = (bn) in lim −
x 7!xp

OC we find

ab = (anbn) and a+ b =
(

lim
m!∞

(am+n + bm+n)p
m
)
.

Now we establish statement (3) as lim −
x 7!xp

OC is evidently of characteristic p. □
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Proposition 2.1.7. The tilt C♭ of C is naturally a field of characteristic p which is complete
with respect to the valuation ν♭ given by ν♭(c) = ν(c♯) for every c ∈ C♭ with OC♭ = lim −

x 7!xp
OC .

Proof. Let us fix an element ϖ ∈ C× with 0 < ν(ϖ) ≤ ν(p). Proposition 2.1.6 shows
that O := lim −

x 7!xp
OC is naturally a ring of characteristic p with a canonical identification

O ∼= lim −
x7!xp

OC/ϖOC . (2.3)

We may identify C♭ with the fraction field of O, which is evidently perfect of characteristic p.

We assert that the function ν♭ on C♭ with ν♭(c) = ν(c♯) for every c ∈ C♭ is indeed a

valuation. It is clear by construction that ν♭ is a multiplicative homomorphism. Let us take
arbitrary elements a = (an) and b = (bn) in C♭. Without loss of generality, we may assume

ν♭(a) ≥ ν♭(b) or equivalently ν(a0) ≥ ν(b0). Since we have

ν(an) =
1

pn
ν(a0) ≥

1

pn
ν(b0) = ν(bn) for each n ≥ 0,

we may write a = bu for some u ∈ O and find

ν♭(a+ b) = ν♭((u+ 1)b) = ν♭(u+ 1) + ν♭(b) ≥ ν♭(b) = min(ν♭(a), ν♭(b))

where the inequality follows from the observation that u + 1 is an element of O. Therefore
we deduce that ν♭ is a valuation.

Let us now take an arbitrary element c = (cn) ∈ C♭. We find

ν(cn) =
1

pn
ν(c0) =

1

pn
ν♭(c) for each n ≥ 0

and in turn verify that O is indeed the valuation ring of C♭. Moreover, given an arbitrary
integer m > 0 we have ν(cn) ≥ ν(ϖ) for each n ≤ m if and only if c satisfies the in-

equality ν♭(c) ≥ pmν(ϖ). Hence the isomorphism (2.3) is a homeomorphism with O and

lim −
x 7!xp

OC/ϖOC respectively endowed with the ν♭-adic topology and the inverse limit topology.

It is not hard to see that lim −
x 7!xp

OC/ϖOC is complete, which consequently implies that both

OC♭ = O and C♭ are complete. □

Remark. Proposition 2.1.6 and Proposition 2.1.7 remain valid if we replace C by an arbitrary
complete nonarchimedean field L with its “tilt” L♭ := lim −

c 7!cp
L. However, if L is not perfectoid

the valuation on L♭ may be trivial. For example, if L is a p-adic field L♭ is isomorphic to its
residue field with the trivial valuation.

Lemma 2.1.8. For every c ∈ OC there exists an element c♭ ∈ OC♭ with c− (c♭)
♯ ∈ pOC .

Proof. Proposition 2.1.6 and Proposition 2.1.7 together yield a natural isormohpsim

OC♭
∼= lim −

x 7!xp
OC/pOC

Let c denote the image of c in OC/pOC . Since the p-th power map on OC/pOC is surjective,

we obtain the desired assertion by taking c♭ = (c♭n) ∈ lim −
x 7!xp

OC/pOC
∼= OC♭ with c♭0 = c. □

Remark. Such an element c♭ ∈ OC♭ is not unique unless C is of characteristic p.
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Proposition 2.1.9. The map OC♭ ! OC/pOC which sends each c ∈ OC♭ to the image of c♯

in OC/pOC is a surjective ring homomorphism.

Proof. Since we have OC♭ = lim −
x 7!xp

OC as noted in Proposition 2.1.7, the assertion is

straightforward to verify by Proposition 2.1.6 and Lemma 2.1.8. □

Remark. The sharp map associated to C is a multiplicative map but is not a ring homomor-
phism unless C is of characteristic p.

Proposition 2.1.10. The valued fields C and C♭ have the same value groups.

Proof. Let ν♭ denote the valuation on C♭. Since we have ν♭
(
(C♭)×

)
⊆ ν(C×) by Propo-

sition 2.1.7, we only need to show the relation ν(C×) ⊆ ν♭
(
(C♭)×

)
. Let us consider an

arbitrary element c ∈ C×. We wish to find an element c♭ ∈ (C♭)× with ν♭(c♭) = ν(c). Since
ν is nondiscrete, we can choose an element ϖ ∈ OC with 0 < ν(ϖ) < ν(p). Let us write

c = ϖnu for some n ∈ Z and u ∈ OC with ν(u) < ν(ϖ). Lemma 2.1.8 yields elements ϖ♭ and

u♭ in OC♭ with ϖ − (ϖ♭)
♯ ∈ pOC and u− (u♭)

♯ ∈ pOC . By Proposition 2.1.7 we find

ν♭(ϖ♭) = ν((ϖ♭)
♯
) = ν

(
ϖ − (ϖ − (ϖ♭)

♯
)
)

= ν(ϖ),

ν♭(u♭) = ν((u♭)
♯
) = ν

(
u− (u− (u♭)

♯
)
)

= ν(u).

Hence we obtain the desired assertion by taking c♭ = (ϖ♭)nu♭. □

Proposition 2.1.11. The field C♭ is a perfectoid field of characteristic p.

Proof. Proposition 2.1.10 implies that the value group of C♭ is not trivial. Since C♭ is
perfect by construction, the assertion follows from Proposition 2.1.4 and Proposition 2.1.7. □

Remark. Scholze [Sch12] shows that C and C♭ satisfy the following additional properties:

(i) Every finite extension of C is perfectoid.

(ii) There exists a canonical bijection

{ Finite extensions of C } ∼
−!

{
Finite extensions of C♭

}
which sends each finite extension L of C to its tilt L♭.

(iii) The residue fields of C and C♭ are naturally isomorphic.

Example 2.1.12. Since CK is a perfectoid field as noted in Example 2.1.3, its tilt F := C♭K
is a perfectoid field of characteristic p by Proposition 2.1.11.

Remark. Since CK is algebraically closed as noted in Chapter II, Proposition 3.1.13, the
remark after Proposition 2.1.11 shows that F is algebraically closed. We will present a proof
of this fact in Chapter IV. If K is a finite extension of Qp, we can naturally identify F = C♭K
with the t-adic completion of Fp((t)).

Proposition 2.1.13. If C is of characteristic p, there exists a natural identification C♭ ∼= C.

Proof. The assertion is evident as C is perfect by Proposition 2.1.4. □
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2.2. The de Rham period ring BdR

For the rest of this chapter, we write ν for the normalized p-adic valuation on CK and ν♭

for the valuation on F = C♭K with ν♭(c) = ν(c♯) for every c ∈ F .

Lemma 2.2.1. The ring OF is a perfect Fp-algebra.

Proof. The assertion is evident by Proposition 2.1.4 and Proposition 2.1.11. □

Definition 2.2.2. The infinitesimal period ring is Ainf := W (OF ).

Remark. Our definition of Ainf relies on Lemma 2.2.1. It is worthwhile to mention that the
ring Ainf is not (Qp,ΓK)-regular in any meaningful way.

Proposition 2.2.3. There exists a surjective ring homomorphism θ : Ainf ↠ OCK
with

θ

( ∞∑
n=0

[cn]pn

)
=

∞∑
n=0

c♯np
n for all cn ∈ OF . (2.4)

Proof. Proposition 2.1.9 yields a surjective ring homomorphism θ : OF ↠ OCK
/pOCK

with θ(c) = c♯ for each c ∈ OF , where c♯ denotes the image of c♯ in OCK
/pOCK

. Moreover,

by construction θ lifts to a multiplicative map θ̂ : OF ! OCK
with θ̂(c) = c♯ for each c ∈ OF .

Hence we obtain a ring homomorphism θ : Ainf ! OCK
which satisfies the identity (2.4) by

Theorem 2.3.1 in Chapter II.

It remains to establish the surjectivity of θ. Let x be an arbitrary element in OCK
. Since

OCK
is p-adically complete, it suffices to find a sequence (cn) in OF with

x−
m∑
n=0

c♯np
n ∈ pm+1OCK

for each m ≥ 0.

In fact, we can use Lemma 2.1.8 to inductively construct such a sequence by setting each cm
to be an element in OF with

1

pm

(
x−

m−1∑
n=0

c♯np
n

)
− c♯m ∈ pOCK

,

thereby completing the proof. □

Remark. Our proof remains valid if we replace CK by an arbitrary perfectoid field C; in other
words, every perfectoid field C yields a surjective ring homomorphism θC : W (OC♭) ↠ OC .

Definition 2.2.4. We refer to the map θ in Proposition 2.2.3 as the Fontaine map and let
θ[1/p] : Ainf [1/p]! CK denote the ring homomorphism induced by θ.

Remark. As explained by Brinon-Conrad [BC, Lemma 4.4.1], we can construct the Fontaine
map θ without using Theorem 2.3.1 from Chapter II. In this approach, we first define θ as a
set theoretic map given by the identity (2.4) and show that θ is indeed a ring homomorphism
using descriptions of the ring operations on Ainf = W (OF ).

Proposition 2.2.5. The ring homomorphism θ[1/p] : Ainf [1/p]! CK is surjective.

Proof. For every c ∈ CK , there exists an integer n ≥ 0 with pnc ∈ OCK
. Hence the

assertion immediately follows from Proposition 2.2.3. □
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Definition 2.2.6. We define the de Rham local ring to be

B+
dR := lim −

i

Ainf [1/p]/ ker(θ[1/p])i

and let θ+dR : B+
dR ↠ Ainf [1/p]/ ker(θ[1/p]) denote the natural projection.

Remark. We will soon define the de Rham period ring BdR to be the fraction field of B+
dR

after verifying that B+
dR is a discrete valuation ring. At this point, it is instructive to explain

Fontaine’s insight behind the construction of BdR. As briefly discussed in Chapter I, Fontaine
introduced the rings BHT and BdR respectively to formulate the Hodge-Tate decomposition
and the de Rham comparison isomorphism. Since the de Rham cohomology admits the Hodge
filtration with the Hodge cohomology as its graded vector space, Fontaine aimed to construct
BdR as a ring which admits a canonical filtration with BHT as its graded ring. He sought
BdR as the fraction field of a complete discrete valuation ring B+

dR with residue field CK
so that it admits a filtration { Filn(BdR) }n∈Z :=

{
tnB+

dR

}
n∈Z for a uniformizer t ∈ B+

dR
with its graded ring isomorphic to BHT. For a perfect field k of characteristic p, the theory
of Witt vectors naturally yields a complete discrete valuation ring with residue field k as
noted in Chapter II, Lemma 2.3.8. Fontaine judiciously adjusted the construction of Witt
vectors for the field CK of characteristic 0 by passing to characteristic p, or by tilting the
perfectoid field CK in modern language. He began by taking the ring OCK

/pOCK
which is

evidently of characteristic p. As OCK
/pOCK

turns out to be not perfect, Fontaine considered
its perfection lim −

x 7!xp
OCK

/pOCK
∼= OF by adding all p-power roots of elements in OCK

/pOCK
.

Fontaine then discovered that Ainf = W (OF ) gives rise to a surjective ring homomorphism
θ[1/p] : Ainf [1/p] ↠ CK . Moreover, as we will soon see, ker(θ[1/p]) turned out to be a principal
ideal. Therefore Fontaine obtained the desired ring B+

dR as the completion of Ainf [1/p] with
respect to ker(θ[1/p]).

Lemma 2.2.7. For each integer n ≥ 0 we have ker(θ) ∩ pnAinf = pn ker(θ).

Proof. Since we evidently have pn ker(θ) ⊆ ker(θ) ∩ pnAinf , we only need to show that
every a ∈ ker(θ) ∩ pnAinf is an element of pn ker(θ). Let us write a = pnb for some b ∈ Ainf .
From the identity

0 = θ(a) = θ(pnb) = pnθ(b)

we find θ(b) = 0 as OCK
is torsion free. Therefore we deduce that a = pnb lies in pn ker(θ) as

desired. □

Lemma 2.2.8. The sharp map associated to CK is surjective.

Proof. The assertion follows from the fact that CK is algebraically closed as noted in
Chapter II, Proposition 3.1.13. □

Remark. It is worthwhile to mention that Lemma 2.2.8 is not essential for our discussion.
In fact, we use Lemma 2.2.8 only to give a simple description of an element generating ker(θ).
For an arbitrary perfectoid field C, we can still show that the kernel of the surjective ring
homomorphism θC : W (OC♭) ↠ OC is principal by explicitly presenting a generator.

Definition 2.2.9. A distinguished element of Ainf is an element of the form ξ = [p♭]−p ∈ Ainf

for some p♭ ∈ OF with (p♭)
♯

= p.

Remark. The existence of p♭ follows from Lemma 2.2.8. We may regard p♭ as a system of
p-power roots of p in CK .
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For the rest of this chapter, we fix a distinguished element ξ = [p♭] − p ∈ Ainf .

Lemma 2.2.10. Every element a ∈ ker(θ) is an Ainf -linear combination of ξ and p.

Proof. We wish to show that a lies in the ideal generated by ξ and p, or equivalently by
[p♭] and p. Let us write

a =
∑
n≥0

[cn]pn = [c0] + p
∑
n≥1

[cn]pn−1 with cn ∈ OF .

It suffices to show that [c0] is divisible by [p♭]. Since we have 0 = θ(a) =
∑
n≥0

c♯np
n, we deduce

that c♯0 is divisible by p and consequently find

ν♭(c0) = ν(c♯0) ≥ ν(p) = ν((p♭)
♯
) = ν♭(p♭).

Hence there exists an element u ∈ OF with c0 = p♭u or equivalently [c0] = [p♭][u]. □

Proposition 2.2.11. The element ξ ∈ Ainf generates the ideal ker(θ) in Ainf .

Proof. The ideal ker(θ) contains ξ as we have

θ(ξ) = θ([p♭] − p) = (p♭)
♯ − p = p− p = 0.

Hence we only need to show that every a ∈ ker(θ) lies in the ideal ξAinf . Since Ainf is p-adically
complete by construction, it suffices to present a sequence (cn) in Ainf with

a−
m∑
n=0

cnξp
n ∈ pm+1Ainf for each m ≥ 0.

We take c0 ∈ Ainf with a− c0ξ ∈ pAinf given by Lemma 2.2.10 and inductively construct cm
for each m ≥ 1. In fact, by Lemma 2.2.7 we have

a−
m−1∑
n=0

cnξp
n ∈ ker(θ) ∩ pmAinf = pm ker(θ)

and thus find bm, cm ∈ Ainf with

a−
m−1∑
n=0

cnξp
n = pm(pbm + cmξ)

or equivalently

a−
m∑
n=0

cnξp
n = pm+1bm

as desired. □

Remark. Proposition 2.2.11 yields a natural isomorphism Ainf/ξAinf
∼= OCK

, which turns
out to be a homeomorphism. Since the construction of Ainf depends only on the field F , the
principal deal ξAinf ⊆ Ainf contains all necessary information for recovering the perfectoid
field CK from its tilt F . In fact, as we will see in Chapter IV, every perfectoid field C with
C♭ ≃ F arises as the fraction field of Ainf/I for a unique principal ideal I ⊆ Ainf .

Proposition 2.2.12. The element ξ ∈ Ainf generates the ideal ker(θ[1/p]) in Ainf [1/p].

Proof. For every a ∈ ker(θ[1/p]), we have pna ∈ ker(θ) for some n > 0. Hence the
assertion follows from Proposition 2.2.11. □
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Lemma 2.2.13. Every a ∈ Ainf [1/p] with ξa ∈ Ainf is an element in Ainf .

Proof. We have θ(ξa) = θ[1/p](ξa) = 0 by Proposition 2.2.12 and in turn find ξa ∈ ξAinf

or equivalently a ∈ Ainf as Ainf is an integral domain. □

Lemma 2.2.14. For each integer i ≥ 1, we have Ainf ∩ ker(θ[1/p])i = ker(θ)i.

Proof. Since we clearly have ker(θ)i ⊆ Ainf ∩ ker(θ[1/p])i, we only need to show that
every a ∈ Ainf ∩ ker(θ[1/p])i lies in ker(θ)i. Proposition 2.2.12 yields an element b ∈ Ainf [1/p]
with a = ξib. Hence we find b ∈ Ainf by Lemma 2.2.13 and consequently deduce the desired
assertion from Proposition 2.2.11. □

Proposition 2.2.15. We have

∞⋂
i=1

ker(θ)i =

∞⋂
i=1

ker(θ[1/p])i = 0.

Proof. By Lemma 2.2.14 we have
∞⋂
i=1

ker(θ[1/p])i =

( ∞⋂
i=1

ker(θ)i

)
[1/p].

Hence it suffices to establish the identity
∞⋂
i=1

ker(θ)i = 0. Let us take an arbitrary element

c ∈
∞⋂
i=1

ker(θ)i and write c =
∑

[cn]pn with cn ∈ OF . Proposition 2.2.11 shows that c is

divisible by every power of ξ = [p♭]− p in Ainf , which in particular implies that c0 is divisible

by every power of p♭ in OF . Since we have ν♭(p♭) = ν((p♭)
♯
) = ν(p) = 1 > 0, we find c0 = 0

and in turn write c = pc′ for some c′ ∈ Ainf . Moreover, Lemma 2.2.14 yields the relation

c′ ∈ Ainf ∩

( ∞⋂
i=1

ker(θ)i

)
[1/p] = Ainf ∩

( ∞⋂
i=1

ker(θ[1/p])i

)
=

∞⋂
i=1

ker(θ)i.

Now a simple induction shows that c is infinitely divisible by p and thus is zero. □

Proposition 2.2.16. The ring B+
dR is a complete discrete valuation ring with ker(θ+dR) as the

maximal ideal, CK as the residue field, and ξ as a uniformizer.

Proof. Since we have B+
dR/ ker(θ+dR) ∼= CK by Proposition 2.2.5, we deduce from ssome

general facts stated in the Stacks project [Sta, Tag 05GI and Tag 07BH] that B+
dR is a local

ring with ker(θ+dR) as the maximal ideal and CK as the residue field. Let us now consider an

arbitrary nonzero element b ∈ B+
dR. For each integer i ≥ 0, we write bi and ξi respectively

for the images of b and ξ under the projection B+
dR ↠ Ainf [1/p]/ ker(θ[1/p])i. In addition, we

take the largest integer j ≥ 0 with bj = 0. Proposition 2.2.11 implies that for each i > j we

may write bi = ξji ui with ui /∈ ker(θ[1/p])/ ker(θ[1/p])i. For each i > j we let u′i denote the
image of ui in Ainf [1/p]/ ker(θ[1/p])i−j . We observe that the sequence (u′i)i>j depends only on
b and gives rise to a unique unit u ∈ B+

dR with b = ξju. Therefore B+
dR is a discrete valuation

ring with ξ as a uniformizer. Now we deduce from Proposition 2.2.11 and Proposition 2.2.15
that B+

dR is complete, thereby establishing the desired assertion. □

Remark. Our argument so far in this subsection remains valid if we replace CK by an
arbitrary algebraically closed perfectoid field of characteristic 0.

Definition 2.2.17. The de Rham period ring BdR is the fraction field of B+
dR.

https://stacks.math.columbia.edu/tag/05GI
https://stacks.math.columbia.edu/tag/07BH
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Proposition 2.2.18. Let K0 denote the fraction field of W (k).

(1) The field K is a finite totally ramified extension of K0.

(2) There exists a natural commutative diagram

K0 Ainf [1/p]

K B+
dR

CK

θ+dR

where the diagonal map is the natural inclusion.

Proof. Let us take a uniformizer π of OK . There exists an integer e > 0 with p = πeu
for some unit u ∈ OK . Hence we obtain a natural ring homomorphism

k = OK/πOK −! OK/π
eOK = OK/pOK (2.5)

which identifies OK/pOK as a k-algebra with a basis given by 1, π, · · · , πe−1. The map (2.5)
induces a ring homomorphism W (k)! OK by Theorem 2.3.1 in Chapter II.

We assert that 1, π, · · · , πe−1 generate OK over W (k). Take an arbitrary element c ∈ OK .
Since OK is p-adically complete, it suffices to find sequences (a0,n), · · · , (ae−1,n) in W (k) with

c−
e−1∑
i=0

m∑
n=0

ai,np
nπi ∈ pm+1OK for each m ≥ 0.

In fact, we use the map (2.5) to inductively obtain a0,m, · · · , ae−1,m ∈W (k) with

1

pm

(
c−

e−1∑
i=0

m−1∑
n=0

ai,np
nπi

)
−

e−1∑
i=0

ai,mπ
i ∈ pOK

and consequently obtain the desired assertion.

Our discussion in the previous paragraph shows that K is a finite extension of K0 and
in turn yields statement (1) as both K0 and K have residue field k. Hence it remains to
establish statement (2). The map (2.5) induces a ring homomorphism k ! OCK

/pOCK
.

Since k is perfect, this map gives rise to a natural homomorphism

k −! lim −
x!xp

OCK
/pOCK

∼= OF

with the isomorphism given by Proposition 2.1.6 and in turn yields the top horizontal map
by Theorem 2.3.1 in Chapter II. Moreover, we get the left vertical map from statement (1)
and take the right vertical map to be the natural map

Ainf [1/p]! lim −
i

Ainf [1/p]/ ker(θ[1/p])i = B+
dR

which is injective by Proposition 2.2.15. We may now identify K0 as a subring of B+
dR.

Statement (1) and Proposition 2.2.16 together show that K is a separable algebraic extension
of K0 which lies in the residue field CK of the complete discrete valuation ring B+

dR. Therefore

Hensel’s lemma implies that K admits a unique embedding into B+
dR which fits in the desired

diagram. □
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In order to study some additional properties of BdR, we invoke the following technical
result without a proof.

Proposition 2.2.19. There exists a refinement of the discrete valuation topology on B+
dR

with the following properties:

(i) The natural map Ainf ! B+
dR identifies Ainf as a closed subring of B+

dR.

(ii) The map θ[1/p] is continuous and open with respect to the p-adic topology on CK .

(iii) There exists a continuous map log : Zp(1)! B+
dR with

log(c) =
∞∑
n=1

(−1)n+1 ([c] − 1)n

n
for every c ∈ Zp(1)

under the natural identification Zp(1) = lim −µp
v(K) =

{
c ∈ OF : c♯ = 1

}
.

(iv) The multiplication by every uniformizer yields a closed embedding on B+
dR.

(v) The ring B+
dR is complete.

Remark. We will eventually prove Proposition 2.2.19 in Chapter IV after constructing the
Fargues-Fontaine curve. There will be no circular reasoning as the construction of the Fargues-
Fontaine curve relies only on results that we have discussed prior to Proposition 2.2.19. Read-
ers can find a sketch of the proof in the notes of Brinon-Conrad [BC, Exercise 4.5.3].

Let us briefly explain why Proposition 2.2.19 is essential for our discussion. The discrete
valuation topology on B+

dR has a major defect of not carrying much information about the

p-adic topology on CK . In fact, if we only consider the discrete valuation topology on B+
dR the

map θ[1/p] is not continuous with respect to the p-adic topology on CK . Proposition 2.2.19
allows us to incoorporates the p-adic topology on CK in our discussion, which is essential for
studying continuous ΓK-representations.

Definition 2.2.20. We refer to the map log : Zp(1) ! B+
dR given by Proposition 2.2.19 as

the logarithm map on Zp(1).

Remark. In Chapter IV, we will describe the relationship between this logarithm map and
the p-adic logarithm logµp∞ .

Lemma 2.2.21. Let ε be a basis element of Zp(1) = lim −µp
v(K) =

{
c ∈ OF : c♯ = 1

}
over Zp.

(1) The element ξ divides [ε] − 1 in Ainf .

(2) We have ν♭(ε− 1) =
p

p− 1
.

Proof. We have θ([ε] − 1) = ε♯ − 1 = 1 − 1 = 0 and thus deduce statement (1) follows
from Proposition 2.2.11. Let us now write ε = (ζpn) where each ζpn is a primitive pn-th root

of unity in K. We use Proposition 2.1.7 and the continuity of ν to find

ν♭(ε− 1) = ν
(

(ε− 1)♯
)

= ν
(

lim
n!∞

(ζpn − 1)p
n
)

= lim
n!∞

pnν(ζpn − 1).

The irreducible polynomial of ζpn − 1 over Qp is f(x) =

p−1∑
i=0

(x+ 1)ip
n−1

of degree pn−1(p− 1)

with constant term p. Hence we have

ν(ζpn − 1) =
ν(p)

pn−1(p− 1)
=

1

pn−1(p− 1)

and consequently establish statement (2). □
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Proposition 2.2.22. Let ε be a basis element of Zp(1) =
{
c ∈ OF : c♯ = 1

}
over Zp.

(1) The element t := log(ε) ∈ B+
dR is a uniformizer.

(2) For every m ∈ Zp we have log(εm) = m log(ε).

Proof. Let us first consider statement (1). By Proposition 2.2.18 and Lemma 2.2.21, we

have [ε] − 1 ∈ ξAinf and
([ε] − 1)n

n
∈ ξ2B+

dR for each n ≥ 2. Hence we find

t =
∞∑
n=1

(−1)n+1 ([ε] − 1)n

n
∈ ([ε] − 1) + ξ2B+

dR.

Since ξ is a uniformizer of B+
dR as noted in Proposition 2.2.16, it suffices to show that [ε] − 1

is not divisible by ξ2 in B+
dR,

Suppose for contradiction that [ε]− 1 lies in ξ2B+
dR. Proposition 2.2.16 shows that [ε]− 1

maps to 0 under the projection B+
dR ↠ Ainf [1/p]/ ker(θ[1/p])2. Hence Proposition 2.2.11 and

Lemma 2.2.14 together imply that [ε] − 1 is an element of ker(θ[1/p])2 ∩Ainf = ξ2Ainf , which
means that [ε]−1 is divisible by ξ2 in Ainf . Since the first terms in the Teichmüller expansions

for [ε] − 1 and ξ2 are respectively [ε− 1] and [(p♭)2], we have

ν♭(ε− 1) ≥ ν♭((p♭)2) = 2ν♭(p♭) = 2ν((p♭)
♯
) = 2ν(p) = 2.

If p is odd, we find ν♭(ε− 1) < 2 by Lemma 2.2.21 and in turn obtain a desired contradiction.
For p = 2, we write [ε] − 1 = ξ2a for some a ∈ Ainf and compare the coefficients of p in
the Teichmüller expansions using Proposition 2.3.6 from Chapter II to obtain the relation
ε− 1 = c21(p

♭)4 where c1 denotes the coefficient of p in the Teichmüller expansion of a. Hence
for p = 2 we have

ν♭(ε− 1) ≥ ν♭((p♭)4) = 4ν♭(p♭) = 4ν((p♭)
♯
) = 4ν(p) = 4

and in turn obtain a desired contradiction by Lemma 2.2.21.

It remains to establish statement (2). If m is an integer, we have

log((1 + x)m) = m log(1 + x)

as formal power series and thus set x = ε−1 to find log(εm) = m log(ε). For the general case,
let us choose a sequence (mi) of integers with each mi−m divisible by pi. Since t = log(ε) is
a uniformizer of B+

dR, we find

lim
i!∞

mi log(ε) = m log(ε)

by Proposition 2.2.19. In addition, it is straightforward to verify the identity

lim
i!∞

εmi = εm

with respect to the valuation topology on F . Hence we have

log(εm) = log

(
lim
i!∞

εmi

)
= lim

i!∞
log(εmi) = lim

i!∞
mi log(ε) = m log(ε)

where the second identity follows from the continuity of the logarithm map as noted in Propo-
sition 2.2.19. □

Remark. Statement (2) shows that log is a Zp-linear homomorphism.

Definition 2.2.23. A cyclotomic uniformizer of B+
dR is an element of the form t = log(ε) for

some basis element ε of Zp(1).
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Theorem 2.2.24 (Fontaine [Fon82]). The ring BdR admits a natural action of ΓK with the
following properties:

(i) The logarithm map and θ+dR are ΓK-equivariant.

(ii) Given a cyclotomic uniformizer t ∈ B+
dR, we have γ(t) = χ(γ)t for every γ ∈ ΓK .

(iii) Every cyclotomic uniformizer t ∈ B+
dR yields a natural ΓK-equivariant isomorphism⊕

n∈Z
tnB+

dR/t
n+1B+

dR
∼=
⊕
n∈Z

CK(n) = BHT.

(iv) BdR is (Qp,ΓK)-regular with a canonical identification BΓK
dR

∼= K.

Proof. Let us first describe the natural action of ΓK on BdR. The action of ΓK on CK
naturally induces an action on F = lim −

x 7!xp
CK as the p-th power map on CK is ΓK-equivariant.

In fact, given an arbitrary element x = (xn) ∈ F we have γ(x) = (γ(xn)) for every γ ∈ ΓK .
Since OF is stable under the action of ΓK , we apply Theorem 2.3.1 in Chapter II to obtain a
natural action of ΓK on Ainf [1/p] with

γ
(∑

[cn]pn
)

=
∑

[γ(cn)]pn for each γ ∈ ΓK and cn ∈ OF .

Now we find that θ and θ[1/p] are both ΓK-equivariant by construction, whicn in particular
implies that both ker(θ) and ker(θ[1/p]) are stable under the action of ΓK . Hence ΓK naturally
acts on B+

dR = lim −iAinf [1/p]/ ker(θ[1/p])i and its fraction field BdR.

With our discussion in the preceding paragraph, property (i) is straightforward to verify.
Moreover, property (i) and Proposition 2.2.22 togther show that every γ ∈ ΓK acts on a
cyclotomic uniformizer t = log(ε) ∈ B+

dR by the relation

γ(t) = γ(log(ε)) = log(γ(ε)) = log(εχ(γ)) = χ(γ) log(ε) = χ(γ)t

and thus yield property (ii). Now we note by property (i) that the natural isomorphism

B+
dR/tB

+
dR = B+

dR/ ker(θ+dR) ∼= CK
is ΓK-equivariant and in turn obtain a ΓK-equivariant isomorphism

tnB+
dR/t

n+1B+
dR ≃ CK(n) for every n ∈ Z

by property (ii) and Lemma 3.1.8 in Chapter II. Since Proposition 2.2.22 implies that a
cyclotomic uniformizer of B+

dR is unique up to Z×
p -multiple, we deduce that this isomorphism

is canonical and consequently establish property (iii).

It remains to verify property (iv). Example 1.1.2 shows that BdR is (Qp,ΓK)-regular for
being a field extension of Qp. In addition, property (i) implies that the natural injective

homomorphism K ↪! B+
dR given by Proposition 2.2.18 is ΓK-equivariant and in turn induces

an injective homomorphism

K = K
ΓK ↪−! (B+

dR)ΓK ↪−! BΓK
dR . (2.6)

Now by property (iii) we get an injective K-algebra homomorphism⊕
n∈Z

(BΓK
dR ∩ tnB+

dR)/(BΓK
dR ∩ tn+1B+

dR) ↪−! BΓK
HT .

Since we have BΓK
HT

∼= K by Theorem 3.1.14 in Chapter II, the K-algebra on the source has

dimension at most 1. Hence we find dimK B
ΓK
dR ≤ 1 and in turn deduce that the map (2.6) is

an isomorphism, thereby completing the proof. □
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2.3. Filtered vector spaces

In this subsection we set up a categorical framework for our discussion of BdR-admissible
representations in the next subsection.

Definition 2.3.1. Let L be an arbitrary field.

(1) A filtered vector space over L is a vector space V over L along with a collection of
subspaces { Filn(V ) }n∈Z that satisfies the following properties:

(i) Filn(V ) ⊇ Filn+1(V ) for every n ∈ Z.

(ii)
⋂
n∈Z

Filn(V ) = 0 and
⋃
n∈Z

Filn(V ) = V .

(2) A graded vector space over L is a vector space V over L along with a direct sum

decomposition V =
⊕
n∈Z

Vn.

(3) A L-linear map between two filtered vector spaces V and W over L is called a
morphism of filtered vector spaces if it maps each Filn(V ) into Filn(W ).

(4) A L-linear map between two graded vector spaces V =
⊕
n∈Z

Vn and W =
⊕
n∈Z

Wn over

L is called a morphism of graded vector spaces if it maps each Vn into Wn.

(5) For a filtered vector space V over L, we define its associated graded vector space by

gr(V ) :=
⊕
n∈Z

Filn(V )/Filn+1(V )

and write grn(V ) := Filn(V )/Filn+1(V ) for every n ∈ Z.

(6) We denote by FilL the category of finite dimensional filtered vector spaces over L.

Example 2.3.2. We present some motivating examples for our discussion.

(1) Theorem 2.2.24 shows that BdR is a filtered K-algebra with Filn(BdR) := tnB+
dR and

gr(BdR) ∼= BHT where t is a cyclotomic uniformizer of B+
dR.

(2) For a proper smooth variety X over K, the de Rham cohomology Hn
dR(X/K) with

the Hodge filtration is a filtered vector space over K whose associated graded vector
space recovers the Hodge cohomology.

(3) For every V ∈ RepQp
(ΓK), we may regard DBdR

(V ) = (V ⊗Qp BdR)ΓK as a filtered
vector space over K with

Filn(DBdR
(V )) := (V ⊗Qp t

nB+
dR)ΓK .

Remark. For an arbitrary proper smooth variety X over K, we have a canonical ΓK-
equivariant isomorphism of filtered vector spaces

DBdR
(Hn

ét(XK ,Qp)) ∼= Hn
dR(X/K)

by Theorem 1.2.3 in Chapter I. In particular, we can recover the Hodge filtration onHn
dR(X/K)

from the ΓK-action on Hn
ét(XK ,Qp).

Lemma 2.3.3. Let V be a finite dimensional filtered vector space over a field L. There exists
a basis (vi,j) for V such that for every n ∈ Z the vectors vi,j with i ≥ n form a basis for
Filn(V ).

Proof. Since V is finite dimensional, we have Filn(V ) = 0 for all sufficiently large n and
Filn(V ) = 0 for all sufficiently small n. Hence we can construct such a basis by inductively
extending a basis for Filn(V ) to a basis for Filn−1(V ). □
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Definition 2.3.4. Let L be an arbitrary field.

(1) Given two filtered vector spaces V and W over L, we define the convolution filtration
on V ⊗LW by

Filn(V ⊗LW ) :=
∑
i+j=n

Fili(V ) ⊗L Filj(W ).

(2) For every filtered vector space V over L, we define the dual filtration on the dual
space V ∨ = HomL(V,L) by

Filn(V ∨) :=
{
f ∈ V ∨ : Fil1−n(V ) ⊆ ker(f)

}
.

(3) We define the unit object L[0] in FilL to be the vector space L with the filtration

Filn(L[0]) :=

{
L if n ≤ 0,

0 if n > 0.

Remark. The use of Fil1−n(V ) rather than Fil−n(V ) in (2) is to ensure that L[0] is self-dual.

Proposition 2.3.5. Let V be a filtered vector space over a field L. Then we have canonical
isomorphisms of filtered vector spaces

V ⊗L L[0] ∼= L[0] ⊗L V ∼= V and (V ∨)∨ ∼= V.

Proof. For every n ∈ Z we find

Filn(V ⊗L L[0]) =
∑
i+j=n

Fili(V ) ⊗L Filj(L[0]) ∼=
∑
i≥n

Fili(V ) = Filn(V ),

and consequently obtain an identification of filtered vector spaces

V ⊗L L[0] ∼= L[0] ⊗L V ∼= V.

Moreover, the natural evaluation isomorphism e : V ∼= (V ∨)∨ yields an isomorphism of filtered
vector spaces since for every n ∈ Z we have

Filn
(
(V ∨)∨

) ∼= { v ∈ V : Fil1−n(V ∨) ⊆ ker(e(v))
}

=
{
v ∈ V : f(v) = 0 for all f ∈ Fil1−n(V ∨)

}
=
{
v ∈ V : f(v) = 0 for all f ∈ V ∨ with Filn(V ) ⊆ ker(f)

}
= Filn(V ).

Therefore we complete the proof. □

Proposition 2.3.6. Let V and W be finite dimensional filtered vector spaces over a field L.
Then we have a natural identification of filtered vector spaces

(V ⊗LW )∨ ∼= V ∨ ⊗LW
∨.

Proof. By Lemma 2.3.3 we can choose bases (vi,k) and (wj,l) for V and W such that
for every n ∈ Z the vectors (vi,k)i≥n and (wj,l)j≥n respectively form bases for Filn(V ) and
Filn(W ). Let (fi,k) and (gj,l) be the dual bases for V ∨ and W∨. Then the vectors (fi,k ⊗ gj,l)
form a basis for the vector space (V ⊗L W )∨ ∼= V ∨ ⊗L W

∨. Moreover, for every n ∈ Z the
vectors (fi,k)i≤−n and (gj,l)j≤−n respectively form bases for Filn(V ∨) and Filn(W∨). Hence
we find that for every n ∈ Z both Filn ((V ⊗LW )∨) and Filn(V ∨⊗LW

∨) are spanned by the
vectors (fi,k ⊗ gj,l)i+j≤−n, thereby deducing the desired assertion. □
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Lemma 2.3.7. Let V =
⊕
n∈Z

Vn and W =
⊕
n∈Z

Wn be graded vector spaces over a field L. A

morphism f : V −!W of graded vector spaces is an isomorphism if and only if it is bijective.

Proof. The assertion immediately follows by observing that f is the direct sum of the
induced morphisms fn : Vn −!Wn. □

Proposition 2.3.8. Let L be an arbitrary field. A bijective morphism f : V −! W in FilL
is an isomorphism in FilL if and only if the induced map gr(f) : gr(V ) −! gr(W ) is bijective.

Proof. If f is an isomorphism of filtered vector spaces, then gr(f) is clearly an isomor-
phism. Let us now assume that gr(f) is an isomorphism. We wish to show that for every
n ∈ Z the induced map Filn(f) : Filn(V ) −! Filn(W ) is an isomorphism. Since each Filn(f)
is injective by the bijectivity of f , it suffices to show

dimL Filn(V ) = dimL Filn(W ) for every n ∈ Z.
The map gr(f) is an isomorphism of graded vector spaces by Lemma 2.3.7, and consequently
induces an isomorphism

grn(V ) ≃ grn(W ) for every n ∈ Z.
Hence for every n ∈ Z we find

dimL Filn(V ) =
∑
i≥n

dimL gri(V ) =
∑
i≥n

dimL gri(W ) = dimL Filn(W )

as desired. □

Example 2.3.9. Let us define L[1] to be the vector space L with the filtration

Filn(L[1]) :=

{
L if n ≤ 1,

0 if n > 1.

The bijective morphism L[0] −! L[1] given by the identity map on L is not an isomorphism
in FilL since Fil1(L[0]) = 0 and Fil1(L[1]) = L are not isomorphic. Moreover, the induced
map gr(L[0]) −! gr(L[1]) is a zero map.

Proposition 2.3.10. Let L be an arbitrary field. For any V,W ∈ FilL there exists a natural
isomorphism of graded vector spaces

gr(V ⊗LW ) ∼= gr(V ) ⊗L gr(W ).

Proof. Since we have a direct sum decomposition

gr(V ) ⊗L gr(W ) =
⊕
n∈Z

 ⊕
i+j=n

gri(V ) ⊗L grj(W )

 ,

it suffices to find a natural isomorphism

grn(V ⊗LW ) ∼=
⊕
i+j=n

gri(V ) ⊗L grj(W ) for every n ∈ Z. (2.7)

By Lemma 2.3.3 we can choose bases (vi,k) and (wj,l) for V and W such that for every
n ∈ Z the vectors (vi,k)i≥n and (wj,l)j≥n respectively span Filn(V ) and Filn(W ). Let vi,k
denote the image of vi,k under the map Fili(V ) ↠ gri(V ), and let wj,l denote the image of

wj,l under the map Filj(W ) ↠ grj(W ). Since each Filn(V ⊗L W ) is spanned by the vectors
(vi,k ⊗wj,l)i+j≥n, we obtain the identification (2.7) by observing that both sides are spanned
by the vectors (vi,k ⊗ wj,l)i+j=n. □
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2.4. Properties of de Rham representations

Definition 2.4.1. We say that V ∈ RepQp
(ΓK) is de Rham if it is BdR-admissible. We

write RepdR
Qp

(ΓK) := RepBdR
Qp

(ΓK) for the category of de Rham p-adic ΓK-representations. In

addition, we write DHT and DdR respectively for the functors DBHT
and DBdR

.

Example 2.4.2. Below are some important examples of de Rham representations.

(1) For every n ∈ Z the Tate twist Qp(n) of Qp is de Rham; indeed, the inequality

dimK DdR(Qp(n)) ≤ dimQp Qp(n) = 1

given by Theorem 1.2.1 is an equality, as DdR(Qp(n)) = (Qp(n)⊗QpBdR)ΓK contains

a nonzero element 1 ⊗ t−n by Theorem 2.2.24.

(2) Every CK-admissible representation is de Rham by a result of Sen.

(3) For every proper smooth variety X over K, the étale cohomology Hn
ét(XK ,Qp) is de

Rham by a theorem of Faltings as briefly discussed in Chapter I, Theorem 1.2.3.

The general formalism discussed in §1 readily yields a number of nice properties for de
Rham representations and the functor DdR. Our main goal in this subsection is to extend
these properties in order to incorporate the additional structures induced by the filtration{
tnB+

dR

}
n∈Z on BdR.

Lemma 2.4.3. Given any n ∈ Z, every V ∈ RepQp
(ΓK) is de Rham if and only if V (n) is de

Rham.

Proof. Since we have identifications

V (n) ∼= V ⊗Qp Qp(n) and V ∼= V (n) ⊗Qp Qp(−n),

the assertion follows from Proposition 1.2.4 and the fact that every Tate twist of Qp is de
Rham as noted in Example 2.4.2. □

Proposition 2.4.4. Let V be a de Rham representation of ΓK . Then V is Hodge-Tate with
a natural K-linear isomorphism of graded vector spaces

gr(DdR(V )) ∼= DHT(V ).

Proof. For every n ∈ Z we have a short exact sequence

0 tn+1B+
dR tnB+

dR tnB+
dR/t

n+1B+
dR 0,

which induces an exact sequence

0
(
V ⊗Qp t

n+1B+
dR

)ΓK
(
V ⊗Qp t

nB+
dR

)ΓK
(
V ⊗Qp (tnB+

dR/t
n+1B+

dR)
)ΓK

and consequently yields an injective K-linear map

grn(DdR(V )) = Filn(DdR(V ))/Filn+1(DdR(V )) ↪−!
(
V ⊗Qp (tnB+

dR/t
n+1B+

dR)
)ΓK .

Therefore we obtain an injective K-linear map of graded vector spaces

gr(DdR(V )) ↪−!
⊕
n∈Z

(
V ⊗Qp (tnB+

dR/t
n+1B+

dR)
)ΓK ∼= (V ⊗Qp BHT)ΓK = DHT(V )

where the middle isomorphism follows from Theorem 2.2.24. We then find

dimK DdR(V ) = dimK gr(DdR(V )) ≤ dimK DHT(V ) ≤ dimQp V

where the last inequality follows from Theorem 1.2.1. Since V is de Rham, both inequalities
should be in fact equalities, thereby yielding the desired assertion. □
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Example 2.4.5. Let V be an extension of Qp(m) by Qp(n) with m < n. We assert that V
is de Rham. By Lemma 2.4.3 we may assume m = 0. Then we have a short exact sequence

0 Qp(n) V Qp 0. (2.8)

Since the functor DdR is left exact by construction, we obtain a left exact sequence

0 DdR(Qp(n)) DdR(V ) DdR(Qp).

We wish to show dimK DdR(V ) = dimQp V = 2. Since we have

dimK DdR(Qp(n)) = dimK DdR(Qp) = 1

by Example 2.4.2, it suffices to show the surjectivity of the map DdR(V ) −! DdR(Qp) ∼= K.

As B+
dR is faithfully flat over Qp, the sequence (2.8) yields a short exact sequence

0 Qp(n) ⊗Qp B
+
dR V ⊗Qp B

+
dR Qp ⊗Qp B

+
dR 0.

In addition, by Theorem 2.2.24 and Proposition 2.2.18 we have identifications

(Qp(n) ⊗Qp B
+
dR)ΓK ∼= (tnB+

dR)ΓK = 0,

(Qp ⊗Qp B
+
dR)ΓK ∼= (B+

dR)ΓK ∼= K.

We thus obtain a long exact sequence

0 0 (V ⊗Qp B
+
dR)ΓK K H1(ΓK , t

nB+
dR).

Since we have (V ⊗Qp B
+
dR)ΓK ⊆ (V ⊗Qp BdR)ΓK = DdR(V ), it suffices to prove

H1(ΓK , t
nB+

dR) = 0. (2.9)

By Theorem 2.2.24 we have a short exact sequence

0 tn+1B+
dR tnB+

dR CK(n) 0,

which in turn yields a long exact sequence

CK(n)ΓK H1(ΓK , t
n+1B+

dR) H1(ΓK , t
nB+

dR) H1(ΓK ,CK(n)).

Then by Theorem 3.1.14 in Chapter II we obtain an identification

H1(ΓK , t
n+1B+

dR) ∼= H1(ΓK , t
nB+

dR). (2.10)

Hence by induction we only need to prove (2.9) for n = 1.

Take an arbitrary element α1 ∈ H1(ΓK , tB
+
dR). We wish to show α1 = 0. Regarding α1 as

a cocycle, we use (2.10) to inductively construct sequences (αm) and (ym) with the following
properties:

(i) αm ∈ H1(ΓK , t
mB+

dR) and ym ∈ tmB+
dR for all m ≥ 1,

(ii) αm+1(γ) = αm(γ) + γ(ym) − ym for all γ ∈ ΓK and m ≥ 1.

Now, since t is a uniformizer in B+
dR as noted in Proposition 2.2.22, we may take an element

y =
∑
ym ∈ B+

dR. Then we have

α1(γ) + γ(y) − y ∈ H1(ΓK , t
mB+

dR) for all γ ∈ ΓK and m ≥ 0,

and consequently find α1(γ) +γ(y)− y = 0 for all γ ∈ ΓK . We thus deduce α1 = 0 as desired.
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Remark. It is a highly nontrivial fact that every non-splitting extension of Qp(1) by Qp in
RepQp

(ΓK) is Hodge-Tate but not de Rham. The existence of such an extension follows from
the identification

Ext1Qp[ΓK ](Qp(1),Qp) ∼= H1(ΓK ,Qp(−1)) ∼= K

where the second isomorphism is a consequence of the Tate local duality for p-adic represen-
tations. Moreover, such an extension is Hodge-Tate as noted in Example 1.1.12. The difficult
part is to prove that such an extension is not de Rham. For this part we need a very deep
result that every de Rham representation is potentially semistable.

Proposition 2.4.6. Let V be a de Rham representation of ΓK . For every n ∈ Z we have
grn(DdR(V )) ̸= 0 if and only if n is a Hodge-Tate weight of V .

Proof. This is an immediate consequence of Proposition 2.4.4 and Definition 1.1.14. □

Remark. Proposition 2.4.6 provides the main reason for our choice of the sign convention in
the definition of Hodge-Tate weights. In fact, under our convention the Hodge-Tate weights of
a de Rham representation V indicate where the filtration of DdR(V ) has a jump. In particular,
for a proper smooth variety X over K, the Hodge-Tate weights of the étale cohomology
Hn

ét(XK ,Qp) give the positions of “jumps” for the Hodge filtration on the de Rham cohomology
Hn

dR(X/K) by the isomorphism of filtered vector spaces

DdR(Hn
ét(XK ,Qp)) ∼= Hn

dR(X/K).

Example 2.4.7. The Tate twist Qp(m) of Qp is a 1-dimensional de Rham representation
with the Hodge-Tate weight −m as noted in Example 1.1.15 and Example 2.4.2. Hence by
Proposition 2.4.6 we find

Filn(DdR(Qp(m))) ∼=

{
K for n ≤ −m,
0 for n > −m.

In particular, for m = 0 we obtain an identification DdR(Qp) ∼= K[0].

Proposition 2.4.8. For every V ∈ RepdR
Qp

(ΓK), we have a natural ΓK-equivariant isomor-

phism of filtered vector spaces

DdR(V ) ⊗K BdR
∼= V ⊗Qp BdR.

Proof. Since V is de Rham, Theorem 1.2.1 implies that the natural map

DdR(V ) ⊗K BdR −! (V ⊗Qp BdR) ⊗K BdR
∼= V ⊗Qp (BdR ⊗K BdR) −! V ⊗Qp BdR

is a ΓK-equivariant isomorphism of vector spaces over BdR. Moreover, this map is a morphism
of filtered vector spaces as each arrow above is easily seen to be a morphism of filtered vector
spaces. Hence by Proposition 2.3.8 it suffices to show that the induced map

gr(DdR(V ) ⊗K BdR) −! gr(V ⊗Qp BdR) (2.11)

is an isomorphism. By Proposition 2.3.10, Proposition 2.4.4 and Theorem 2.2.24 we obtain
identifications

gr(DdR(V ) ⊗K BdR) ∼= gr(DdR(V )) ⊗K gr(BdR) ∼= DHT(V ) ⊗K BHT,

gr(V ⊗Qp BdR) ∼= V ⊗Qp gr(BdR) ∼= V ⊗Qp BHT.

We thus identify the map (2.11) with the natural map

DHT(V ) ⊗K BHT −! V ⊗Qp BHT

given by Theorem 1.2.1. The desired assertion now follows by Proposition 2.4.4. □
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Proposition 2.4.9. The functor DdR with values in FilK is faithful and exact on RepdR
Qp

(ΓK).

Proof. Let VectK denote the category of finite dimensional vector spaces over K. The
faithfulness of DdR on RepdR

Qp
(ΓK) is an immediate consequence of Proposition 1.2.2 since the

forgetful functor FilK −! VectK is faithful. Hence it remains to verify the exactness of DdR

on RepdR
Qp

(ΓK). Consider an exact sequence of de Rham representations

0 U V W 0. (2.12)

The functor DdR with values in FilK is left exact by construction. In other words, for every
n ∈ Z we have a left exact sequence

0 Filn(DdR(U)) Filn(DdR(V )) Filn(DdR(W )). (2.13)

We wish to show that this sequence extends to a short exact sequence. By Proposition 1.2.2
the sequence (2.12) induces a short exact sequence of vector spaces

0 DHT(U) DHT(V ) DHT(W ) 0.

Moreover, by the definition of DHT we find that this sequence is indeed a short exact sequence
of graded vector spaces. Then by Proposition 2.4.4 we may rewrite this sequence as

0 gr(DdR(U)) gr(DdR(V )) gr(DdR(W )) 0.

by Proposition 2.4.4. Hence for every n ∈ Z we have

dimK Filn(DdR(V )) =
∑
i≥n

dimK gri(DdR(V ))

=
∑
i≥n

dimK gri(DdR(U)) +
∑
i≥n

dimK gri(DdR(W ))

= dimK Filn(DdR(U)) + dimK Filn(DdR(W )),

thereby deducing that the sequence (2.13) extends to a short exact sequence as desired. □

Corollary 2.4.10. Let V be a de Rham representation. Every subquotient W of V is a de
Rham representation with DdR(W ) naturally identified as a subquotient of DdR(V ) in FilK .

Proof. This is an immediate consequence of Proposition 1.2.3 and Proposition 2.4.9. □

Proposition 2.4.11. Given any V,W ∈ RepdR
Qp

(ΓK), we have V ⊗Qp W ∈ RepdR
Qp

(ΓK) with a

natural isomorphism of filtered vector spaces

DdR(V ) ⊗K DdR(W ) ∼= DdR(V ⊗Qp W ). (2.14)

Proof. By Proposition 1.2.4 we find V ⊗Qp W ∈ RepdR
Qp

(ΓK) and obtain the desired

isomorphism (2.14) as a map of vector spaces. Moreover, since the construction of the map
(2.14) rests on the multiplicative structure of BdR as shown in the proof of Proposition 1.2.4, it
is straightforward to verify that the map (2.14) is a morphism in FilK . Hence by Proposition
2.3.8 it suffices to show that the induced map

gr(DdR(V ) ⊗K DdR(W )) −! gr(DdR(V ⊗Qp W )) (2.15)

is an isomorphism. Since both V and W are Hodge-Tate by Proposition 2.4.4, we have a
natural isomorphism

DHT(V ) ⊗K DHT(W ) ∼= DHT(V ⊗Qp W ) (2.16)

by Proposition 1.2.4. Therefore we complete the proof by identifying the maps (2.15) and
(2.16) using Proposition 2.3.10 and Proposition 2.4.4. □
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Proposition 2.4.12. For every de Rham representation V , we have ∧n(V ) ∈ RepdR
Qp

(ΓK) and

Symn(V ) ∈ RepdR
Qp

(ΓK) with natural isomorphisms of filtered vector spaces

∧n(DdR(V )) ∼= DdR(∧n(V )) and Symn(DdR(V )) ∼= DdR(Symn(V )).

Proof. Proposition 1.2.5 implies that both ∧n(V ) and Symn(V ) are de Rham for every
n ≥ 1. In addition, Proposition 1.2.5 yields the desired isomorphisms as maps of vector
spaces. Then Corollary 2.4.10 and Proposition 2.4.11 together imply that these maps are
isomorphisms in FilK . □

Proposition 2.4.13. For every de Rham representation V , the dual representation V ∨ is de
Rham with a natural perfect paring of filtered vector spaces

DdR(V ) ⊗K DdR(V ∨) ∼= DdR(V ⊗Qp V
∨) −! DdR(Qp) ∼= K[0]. (2.17)

Proof. By Proposition 1.2.6 we find V ∨ ∈ RepdR
Qp

(ΓK) and obtain the desired perfect

pairing as a map of vector spaces. Moreover, Proposition 2.4.11 implies that this pairing is a
morphism in FilK . We thus obtain a bijective morphism of filtered vector spaces

DdR(V )∨ −! DdR(V ∨).

Therefore by Proposition 2.3.8 it suffices to show that the induced map

gr(DdR(V )) −! gr(DdR(V ∨)) (2.18)

is an isomorphism. Since V is Hodge-Tate by Proposition 2.4.4, we have a natural isomorphism

DHT(V )∨ ∼= DHT(V ∨) (2.19)

by Proposition 1.2.6. We thus deduce the desired assertion by identifying the maps (2.18)
and (2.19) using Proposition 2.4.4. □

Let us now discuss some additional facts about de Rham representations and the functor
DdR.

Proposition 2.4.14. Let V be a p-adic representation of ΓK . Let L be a finite extension of
K with absolute Galois group ΓL.

(1) There exists a natural isomorphism of filtered vector spaces

DdR,K(V ) ⊗K L ∼= DdR,L(V )

where we set DdR,K(V ) := (V ⊗Qp BdR)ΓK and DdR,L(V ) := (V ⊗Qp BdR)ΓL .

(2) V is de Rham if and only if it is de Rham as a representation of ΓL.

Proof. We only need to prove the first statement, as the second statement immediately
follows from the first statement. Let L′ be the Galois closure of L over K with the absolute
Galois group ΓL′ and set DdR,L′(V ) := (V ⊗Qp BdR)ΓL′ . Then we have identifications

DdR,K(V ) ⊗K L = (DdR,K(V ) ⊗K L′)Gal(L′/L) and DdR,L(V ) = DdR,L′(V )Gal(L′/L).

Hence we may replace L by L′ to assume that L is Galois over K. Moreover, since the
construction of BdR depends only on CK , we get a natural L-linear map

DdR,K(V ) ⊗K L −! DdR,L(V ).

It is evident that this map induces a morphism of filtered vector spaces over L where the
filtrations on the source and the target are given as in Example 2.4.2. We then have

Filn(DdR,K(V )) = Filn(DdR,L(V ))Gal(L/K) for all n ∈ Z,
thereby deducing the desired assertion by the Galois descent for vector spaces. □
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Remark. Proposition 2.4.14 extends to any complete discrete-valued extension L of K inside
CK , based on the “completed unramified descent argument” as explained in [BC, Proposition
6.3.8]. This fact has the following immediate consequences:

(1) Every potentially unramified p-adic representation is de Rham; indeed, we have
already mentioned this in Example 2.4.2 since being CK-admissible is the same as
being potentially unramified as noted in Example 1.1.4.

(2) For one-dimensional p-adic representations, being de Rham is the same as being
Hodge-Tate by Proposition 1.1.13 and Lemma 2.4.3.

Example 2.4.15. Let η : ΓK −! Z×
p be a continuous character with finite image. Then

there exists a finite extension L of K with absolute Galois group ΓL such that Qp(η) is trivial
as a representation of ΓL. Hence by Example 2.4.7 and Proposition 2.4.14 we find that Qp(η)
is de Rham with an isomorphism of filtered vector spaces

DdR(Qp(η)) ⊗K L ∼= L[0],

and consequently obtain an identification

DdR(Qp(η)) ∼= K[0] ∼= DdR(Qp).

In particular, we deduce that the functor DdR on RepdR
Qp

(ΓK) with values in FilK is not full.

We close this section by introducing a very important conjecture, known as the Fontaine-
Mazur conjecture, which predicts a criterion for the “geometricity” of global p-adic represen-
tations.

Conjecture 2.4.16 (Fontaine-Mazur [FM95]). Fix a number field E, and denote by OE the
ring of integers in E. Let V be a finite dimensional representation of Gal(Q/E) over Qp with
the following properties:

(i) For all but finitely many prime ideals p of OE , the representation V is unramified at
p in the sense that the action of the inertia group at p is trivial.

(ii) For all prime ideals of OE lying over p, the restriction of V to Gal(Qp/Ep) is de
Rham.

Then there exist a proper smooth variety X over E such that V appears as a subquotient of
the étale cohomology Hn

ét(XQ,Qp(m)) for some m,n ∈ Z.

Remark. If V is one-dimensional, then Conjecture 2.4.16 follows essentially by the class field
theory. For two-dimensional representations, Conjecture 2.4.16 has been verified in many
cases by the work of Kisin and Emerton. However, Conjecture 2.4.16 remains wide open for
higher dimensional representations.

The local version of Conjecture 2.4.16 is known to be false. More precisely, there exists a
de Rham representation of ΓK which does not arises as a subquotient of Hn

ét(XK ,Qp)(m) for
any proper smooth variety X over K and integers n,m.



3. CRYSTALLINE REPRESENTATIONS 113

3. Crystalline representations

In this section we define and study the crystalline period ring and crystalline representa-
tions. Our primary reference for this section is Brinon and Conrad’s notes [BC, §9].

3.1. The crystalline period ring Bcris

Throughout this section, we write W (k) for the ring of Witt vectors over k, and K0 for

its fraction field. Recall that we have fixed an element p♭ ∈ OF with (p♭)
♯

= p and set

ξ = [p♭] − p ∈ Ainf .

Definition 3.1.1. We define the integral crystalline period ring by

Acris :=

{ ∞∑
n=0

an
ξn

n!
∈ B+

dR : an ∈ Ainf with lim
n!∞

an = 0

}
,

and write B+
cris := Acris[1/p].

Remark. In the definition of Acris above, it is vital to consider the refinement of the discrete
valuation topology on B+

dR as described in Proposition 2.2.19. While the convergence of

the infinite sum
∑
n≥0

an
ξn

n!
relies on the discrete valuation topology on B+

dR, the limit of the

coefficients an should be taken with respect to the p-adic topology on Ainf .

We warn the readers that the terminology given in Definition 3.1.1 is not standard at
all. In fact, most authors do not give a separate name for the ring Acris. Our choice of the
terminology comes from the fact that Acris plays the role of the crystalline period ring in the
integral p-adic Hodge theory.

Proposition 3.1.2. We have t ∈ Acris and tp−1 ∈ pAcris.

Proof. By Lemma 2.2.21 we may write [ε] − 1 = ξc for some c ∈ Ainf . Then we obtain
an expression

t =
∞∑
n=1

(−1)n+1 ([ε] − 1)n

n
=

∞∑
n=1

(−1)n+1(n− 1)!cn · ξ
n

n!
. (3.1)

We thus find t ∈ Acris as we have lim
n!∞

(n− 1)!cn = 0 in Ainf relative to the p-adic topology.

It remains to show tp−1 ∈ pAcris. Let us set

ť :=

p∑
n=1

(−1)n+1 ([ε] − 1)n

n
. (3.2)

Since (n− 1)! is divisible by p for all n > p, we find t− ť ∈ pAcris by (3.1). Hence it suffices
to prove ťp−1 ∈ pAcris.

The terms for n < p in (3.2) are all divisible by [ε]−1 in Acris, whereas the term for n = p
in (3.2) can be written as

(−1)p+1 ([ε] − 1)p

p
= (−1)p+1 ([ε] − 1)p−1

p
· ([ε] − 1).

In other words, we may write

ť = ([ε] − 1)

(
a+ (−1)p+1 ([ε] − 1)p−1

p

)
for some a ∈ Acris. It is therefore enough to show ([ε] − 1)p−1 ∈ pAcris.
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Since we have ([ε]−1)−[ε− 1] ∈ pAinf ⊆ pAcris, we only need to prove [(ε− 1)p−1] ∈ pAcris.
In addition, by Lemma 2.2.21 we have

ν♭
(
(ε− 1)p−1

)
= p = ν♭

(
(p♭)p

)
,

and consequently find that [(ε− 1)p−1] is divisible by [p♭]p = (ξ + p)p. We thus deduce the
desired assertion by observing that ξp = p · (p− 1)! · (ξp/p!) is divisible by p in Acris. □

Remark. As a consequence, we find

tp

p!
=
tp−1

p
· t

(p− 1)!
∈ Acris.

In fact, it is not hard to prove that for every a ∈ Acris with θ+dR(a) = 0 we have an/n! ∈ Acris

for all n ≥ 1.

Corollary 3.1.3. We have an identification B+
cris[1/t] = Acris[1/t].

Proof. Proposition 3.1.2 implies that p is a unit in Acris[1/t], thereby yielding

B+
cris[1/t] = Acris[1/p, 1/t] = Acris[1/t]

as desired. □

Definition 3.1.4. We define the crystalline period ring by

Bcris := B+
cris[1/t] = Acris[1/t].

Remark. Let us briefly explain Fontaine’s insight behind the construction of Bcris. The main
motivation for constructing the crystalline period ring Bcris is to obtain the Grothendieck mys-
terious functor as described in Chapter I. Recall that, for a proper smooth variety X over K
with a proper smooth integral model X over OK , the crystalline cohomology Hn

cris(Xk,W (k))
admits a natural Frobenius action and refines the de Rham cohomology Hn

dR(X/K) via a
canonical isomorphism

Hn
cris(Xk,W (k))[1/p] ⊗K0 K

∼= Hn
dR(X/K).

In addition, since Ainf is by construction the ring of Witt vectors over a perfect Fp-algebra
OF , it admits the Frobenius automorphism φinf as noted in Chapter II, Proposition 2.3.4.
Fontaine sought to construct Bcris as a sufficiently large subring of BdR on which φinf naturally
extends. For BdR there is no natural extension of φinf since ker(θ[1/p]) is not stable under
φinf . Fontaine’s key observation is that by adjoining to Ainf the elements of the form ξn/n!
for n ≥ 1 we obtain a subring of Ainf [1/p] such that the image of ker(θ[1/p]) is stable under
φinf . This observation led Fontaine to consider the ring Acris defined in Definition 3.1.1. The
only issue with Acris is that it is not (Qp,ΓK)-regular, which turns out to be resolved by
considering the ring Bcris = Acris[1/t].

Proposition 3.1.5. The ring Bcris is naturally a filtered subalgebra of BdR over K0 which is
stable under the action of ΓK .

Proof. By construction we have

Ainf [1/p] ⊆ Acris[1/p] = B+
cris ⊆ Bcris ⊆ BdR.

In addition, the proof of Proposition 2.2.18 yields a unique homomorphism K −! BdR which
extends a natural homomorphism K0 −! Ainf [1/p]. Hence by Example 2.3.2 we naturally
identify Bcris as a filtered subalgebra of BdR over K0 with Filn(Bcris) := Bcris ∩ tnB+

dR.

It remains to show that Bcris = Acris[1/t] is stable under the action of ΓK . Since ΓK acts
on t by the cyclotomic character as noted in Theorem 2.2.24, we only need to show that Acris
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is stable under the action of ΓK . Consider an arbitrary element γ ∈ ΓK and an arbitrary
sequence (an) in Ainf with lim

n!∞
an = 0. Since ker(θ) is stable under the ΓK-action as noted

in Theorem 2.2.24, we may write γ(ξ) = cγξ for some cγ ∈ Ainf by Proposition 2.2.11. We
then have lim

n!∞
γ(an)cnγ = 0 as the ΓK-action on Ainf is evidently continuous with respect to

the p-adic topology. Hence we find

γ

( ∞∑
n=0

an
ξn

n!

)
=

∞∑
n=0

γ(an)cnγ
ξn

n!
∈ Acris

as desired. □

Remark. We provide a functorial perspective for the ΓK-actions on Bcris and BdR which can
be useful in many occasions. Since the definitions of Bcris and BdR only depend on the valued
field CK , we may regard Bcris and BdR as functors which associate topological rings to each
complete and algebraically closed valued field. Then by functoriality the action of ΓK on CK
induces the actions of ΓK on Bcris and BdR. In particular, since Bcris is a subfunctor of BdR

we deduce that the ΓK-action on Bcris is given by the restriction of the ΓK-action on BdR as
asserted in Proposition 3.1.5.

We also warn that Fil0(Bcris) = Bcris∩B+
dR is not equal to B+

cris. For example, the element

α =
[ε1/p

2
] − 1

[ε1/p] − 1

lies in Bcris ∩B+
dR but not in B+

cris.

In order to study the ΓK-action on Bcris we invoke the following crucial (and surprisingly
technical) result without proof.

Proposition 3.1.6. The natural ΓK-equivariant map Bcris ⊗K0 K −! BdR is injective.

Remark. The original proof by Fontaine in [Fon94] is incorrect. A complete proof involving
the semistable period ring can be found in Fontaine and Ouyang’s notes [FO, Theorem 6.14].
Note however that the assertion is obvious if we have K = K0, which amounts to the condition
that K is unramified over Qp.

Proposition 3.1.7. There exists a natural isomorphism of graded K-algebras

gr(Bcris ⊗K0 K) ∼= gr(BdR) ∼= BHT.

Proof. We only need to establish the first identification as the second identification
immediately follows from Theorem 2.2.24 as noted in Example 2.3.2. By Proposition 3.1.6
the natural map Bcris ⊗K0 K −! BdR induces an injective morphism of graded K-algebras

gr(Bcris ⊗K0 K) ↪−! gr(BdR). (3.3)

In particular, we have an injective map

gr0(Bcris ⊗K0 K) ↪−! gr0(BdR) ∼= CK
where the isomorphism is induced by θ+dR. Moreover, this map is surjective since the image

of Bcris ⊗K0 K in BdR contains Ainf [1/p] and consequently maps onto CK by θ+dR. Therefore
we obtain an isomorphism

gr0(Bcris ⊗K0 K) ∼= gr0(BdR) ∼= CK .
This implies that each grn(Bcris⊗K0K) is a vector space over CK . Moreover, each grn(Bcris⊗K0

K) contains a nonzero element given by tn ⊗ 1. Hence the injective map (3.3) must be an
isomorphism since each grn(BdR) has dimension 1 over CK . □
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Theorem 3.1.8 (Fontaine [Fon94]). The ring Bcris is (Qp,ΓK)-regular with BΓK
cris

∼= K0.

Proof. Let Ccris denote the fraction field of Bcris. Proposition 3.1.5 implies that Ccris is

a subfield of BdR which is stable under the action of ΓK . Hence we have K0 ⊆ BΓK
cris ⊆ CΓK

cris.
Then Proposition 3.1.6 and Theorem 2.2.24 together yield injective maps

BΓK
cris ⊗K0 K ↪−! BΓK

dR
∼= K and CΓK

cris ⊗K0 K ↪−! BΓK
dR

∼= K,

thereby implying K0 = BΓK
cris = CΓK

cris.

It remains to check the condition (ii) in Definition 1.1.1. Consider an arbitrary nonzero
element b ∈ Bcris on which ΓK acts via a character η : ΓK −! Q×

p . We wish to show that b
is a unit in Bcris.

By Proposition 2.2.22 we may write b = tib′ for some b′ ∈ (B+
dR)× and i ∈ Z. Since t is a

unit in Bcris by construction, the element b is a unit in Bcris if and only if b′ is a unit in Bcris.
Moreover, Theorem 2.2.24 implies that ΓK acts on b′ = b · t−i via the character ηχ−i. Hence
we may replace b by b′ to assume that b is a unit in B+

dR.

Since θ+dR is ΓK-equivariant as noted in Theorem 2.2.24, the action of ΓK on θ+dR(b) ∈ CK
is given by the character η. Then by the continuity of the ΓK-action on CK we find that
η is continuous. Therefore we may consider η as a character with values in Z×

p . Moreover,

we have θ+dR(b) ̸= 0 as b is assumed to be a unit in B+
dR. Hence Theorem 1.1.8 implies that

η−1(IK) is finite.

Let us denote by Kun the maximal unramified extension of K in K, and by K̂un the p-adic

completion of Kun. By definition K̂un is a p-adic field with IK as the absolute Galois group.
Therefore by our discussion in the preceding paragraph there exists a finite extension L of

K̂un with the absolute Galois group ΓL such that η−1 becomes trivial on ΓL ⊆ IK . Since ΓK
acts on θ+dR(b) via η, we find θ+dR(b) ∈ CΓL

K = CΓL
L = L by Theorem 3.1.14 in Chapter II.

Let us write W (k) for the ring of Witt vectors over k, and K̂un
0 for the fraction field of

W (k). Proposition 2.2.18 yields a commutative diagram

K̂un
0 Ainf [1/p]

L B+
dR

CK

θ+dR

(3.4)

where all maps are ΓK-equivariant. Moreover, both horizontal maps are injective as K̂un
0 and

L are fields. We henceforth identify K̂un
0 and L with their images in BdR. Then we have

K̂un
0 ⊆ Ainf [1/p] ⊆ Bcris. (3.5)

We assert that b lies in (the image of) L. Let us write b̂ := θ+dR(b). If suffices to show

b = b̂. Suppose for contradiction that b and b̂ are distinct. Since we have θ+dR(b̂) = b̂ = θ+dR(b)

by the commutativity of the diagram (3.4), we may write b − b̂ = tju for some j > 0 and
u ∈ (B+

dR)×. Moreover, we find

γ(b− b̂) = γ(b) − γ(b̂) = η(γ)(b− b̂) for every γ ∈ ΓK .
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Then under the ΓK-equivariant isomorphism

tjB+
dR/t

j+1B+
dR

∼= CK(j)

given by Theorem 2.2.24, the element b − b̂ ∈ tjB+
dR yields a nonzero element in CK(j) on

which ΓK acts via the character η. Therefore Theorem 1.1.8 implies that (χjη−1)(IK) is finite.
Since η−1(IK) is also finite as noted above, we deduce that χj(IK) is finite as well, thereby
obtaining a desired contradiction by Lemma 1.1.7.

Let us now regard b as an element in L. Proposition 2.2.18 implies that L is a finite

extension of K̂un
0 . Hence we can choose a minimal polynomial equation

bd + a1b
d−1 + · · · + ad−1b+ ad = 0 with an ∈ K̂un

0 .

Since the minimality of the equation implies ad ̸= 0, we obtain an expression

b−1 = −a−1
d (bd−1 + a1b

d−2 + · · · + ad−1).

We then find b−1 ∈ Bcris by (3.5), thereby completing the proof. □

Our final goal in this subsection is to construct the Frobenius endomorphism on Bcris. To
this end we state another technical result without proof.

Proposition 3.1.9. Let A0
cris be the Ainf -subalgebra in Ainf [1/p] generated by the elements

of the form ξn/n! with n ≥ 0.

(1) The ring Acris is naturally identified with the p-adic completion of A0
cris.

(2) The action of ΓK on Acris is continuous.

Remark. In fact, Fontaine originally defined the ring Acris as the p-adic completion of A0
cris,

and obtained an identification with our definition of Acris. The proof requires yet another
description of the ring Acris as a p-adically completed tensor product. The readers can find a
sketch of the proof in [BC, Proposition 9.1.1 and Proposition 9.1.2].

Lemma 3.1.10. The Frobenius automorphism of Ainf uniquely extends to a ΓK-equivariant
continuous endomorphism φ+ on B+

cris.

Proof. The Frobenius automorphism of Ainf uniquely extends to an automorphism on
Ainf [1/p], which we denote by φinf . By construction we have

φinf(ξ) = [(p♭)p] − p = [p♭]p − p = (ξ + p)p − p. (3.6)

Hence we may write φinf(ξ) = ξp + pc for some c ∈ Ainf .

Let us define A0
cris as in Proposition 3.1.9. Then we have

φinf(ξ) = p · (c+ (p− 1)! · (ξp/p!)),

and consequently find

φinf(ξ
n/n!) = (pn/n!) · (c+ (p− 1)! · (ξp/p!))n ∈ A0

cris for all n ≥ 1

by observing that pn/n! is an element of Zp. Hence A0
cris is stable under φinf . Moreover, by

construction φinf is ΓK-equivariant and continuous on Ainf [1/p] with respect to the p-adic
topology. We thus deduce by Proposition 3.1.9 that the endomorphism φinf on A0

cris uniquely
extends to a continuous ΓK-equivariant endomorphism φ+ on B+

cris = Acris[1/p]. □

Remark. The identity (3.6) shows that φinf(ξ) is not divisible by ξ, which implies that ker(θ)
is not stable under φinf . Hence the endomorphism φ+ onB+

cris (or the Frobenius endomorphism
on Bcris that we are about to construct) is not compatible with the filtration on BdR.
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Proposition 3.1.11. The Frobenius automorphism ofAinf naturally extends to a ΓK-equivariant
endomorphism φ on Bcris with φ(t) = pt.

Proof. As noted in Lemma 3.1.10, the Frobenius automorphism of Ainf uniquely ex-
tends to a ΓK-equivariant continuous endomorphism φ+ on B+

cris. In addition, the proof of
Proposition 3.1.2 shows that the power series expression

t =

∞∑
n=1

(−1)n+1 ([ε] − 1)n

n

converges with respect to the p-adic topology in Acris. Hence we use Proposition 2.2.22 and
the continuity of φ+ on Acris to find

φ+(t) =
∞∑
n=1

(−1)n+1 (φ([ε]) − 1)n

n
=

∞∑
n=1

(−1)n+1 ([εp] − 1)n

n
= log(εp) = p log(ε) = pt.

Since ΓK acts on t via χ, it follows that φ+ uniquely extends to a ΓK-equivariant endomor-
phism φ on Bcris = B+

cris[1/t]. □

Remark. The endomorphism φ is not continuous on Bcris, even though it is a unique ex-
tension of the continuous endomorphism φ+ on B+

cris. The issue is that, as pointed out by

Colmez in [Col98], the natural topology on B+
cris induced by the p-adic topology on Acris does

not agree with the subspace topology inherited from Bcris.

Definition 3.1.12. We refer to the endomorphism φ in Proposition 3.1.11 as the Frobenius
endomorphism of Bcris. We also write

Be := { b ∈ Bcris : φ(b) = b }

for the ring of Frobenius-invariant elements in Bcris.

Remark. In Chapter IV, we will use the Fargues-Fontaine curve to prove a surprising fact
that Be is a principal ideal domain.

We close this subsection by stating two fundamental results about φ without proof.

Theorem 3.1.13. The Frobenius endomorphism φ of Bcris is injective.

Theorem 3.1.14. The natural sequence

0 Qp Be BdR/B
+
dR 0

is exact.

Remark. We will prove both Theorem 3.1.13 and Theorem 3.1.14 in Chapter IV using the
Fargues-Fontaine curve. There will be no circular reasoning; the construction of the Fargues-
Fontaine curve does not rely on anything that we haven’t discussed so far in this section. The
readers can also find a proof of Theorem 3.1.14 in [FO, Theorem 6.26]. We also remark that,
as mentioned in [BC, Theorem 9.1.8], there was no published proof of Theorem 3.1.13 prior
to the work of Fargues-Fontaine [FF18].

Definition 3.1.15. We refer to the exact sequence in Theorem 3.1.14 as the fundamental
exact sequence of p-adic Hodge theory.
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3.2. Properties of crystalline representations

Definition 3.2.1. We say that V ∈ RepQp
(ΓK) is crystalline if it is Bcris-admissible. We

write Repcris
Qp

(ΓK) := RepBcris
Qp

(ΓK) for the category of crystalline p-adic ΓK-representations.

In addition, we write Dcris the functors DBcris .

Example 3.2.2. We record some essential examples of crystalline representations.

(1) Every Tate twist Qp(n) of Qp is crystalline; indeed, the inequality

dimK Dcris(Qp(n)) ≤ dimQp Qp(n) = 1

given by Theorem 1.2.1 is an equality, as Dcris(Qp(n)) = (Qp(n)⊗QpBcris)
ΓK contains

a nonzero element 1 ⊗ t−n by Theorem 2.2.24.

(2) For every proper smooth variety X over K with with a proper smooth integral
model X over OK , the étale cohomology Hn

ét(XK ,Qp) is crystalline by a theorem of
Faltings as discussed in Chapter I, Theorem 1.2.4; moreover, there exists a canonical
isomorphism

Dcris(H
n
ét(XK ,Qp)) ∼= Hcris(Xk/K0) = Hn

cris(Xk/W (k))[1/p]

where Hcris(Xk/W (k)) denotes the crystalline cohomology of Xk.
(3) For every p-divisible group G over OK , the rational Tate module Vp(G) is crystalline

as proved by Fontaine; indeed, there exists a natural identification

Dcris(Vp(G)) ∼= D(G)[1/p]

where D(G) denotes the Dieudonné module associated to G := G×OK
k as described

in Chapter II, Theorem 2.3.12.

We aim to promote Dcris to a functor that incorporates both the Frobenius endomorphism
and the filtration on Bcris. Let us denote by σ the Frobenius automorphism of K0. The readers
may wish to review the definition and basic properties of isocrystals as discussed in Chapter
II, Definition 2.3.15 and Lemma 2.3.16.

Definition 3.2.3. A filtered isocrystal over K is an isocrystal N over K0 together with a
collection of K-spaces { Filn(NK) } which yields a structure of a filtered vector space over K
on NK := N ⊗K0 K. We denote by MFφK the category of filtered isocrystals over K with the
natural notions of morphisms, tensor products, and duals inherited from the corresponding
notions for FilK and the category of isocrystals over K0.

Remark. Many authors use an alternative terminology filtered φ-modules.

Example 3.2.4. Let X be a proper smooth variety over K with a proper smooth integral
model X over OK . The crystalline cohomology Hcris(Xk/K0) = Hn

cris(Xk/W (k))[1/p] is natu-
rally a filtered isocrystal over K with the Frobenius automorphism φ∗

Xk
induced by the relative

Frobenius of XK and the filtration on Hn
cris(Xk/K0) ⊗K0 K given by the Hodge filtration on

the de Rham cohomology Hn
dR(X/K) via the canonical comparison isomorphism

Hn
cris(Xk/K0) ⊗K0 K

∼= Hn
dR(X/K).

Lemma 3.2.5. The automorphism σ on K0 extends to the endomorphism φ on Bcris.

Proof. By the proof of Proposition 2.2.18, the natural injective map K0 ↪−! Ainf [1/p] is
a unique lift of the natural map k −! OF . Hence σ extends to φinf on Ainf [1/p] by definition,
and consequently extends to φ by Proposition 3.1.12. □
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Lemma 3.2.6. LetN be a finite dimensional vector space overK0. Every injective σ-semilinear
additive map f : N −! N is bijective.

Proof. The additivity of f implies that f(N) is closed under addition. Moreover, for all
c ∈ K0 and n ∈ N we have

cf(n) = σ(σ−1(c))f(n) = f(σ−1(c)n) ∈ f(N).

Therefore f(N) is a subspace of N over K0. We wish to show f(N) = N . Let us choose a
basis (ni) for N over K0. It suffices to prove that the vectors f(ni) are linearly independent
over K0. Assume for contradiction that there exists a nontrivial a relation

∑
cif(ni) = 0 with

ci ∈ K0. Then we find f (
∑
σ(ci)ni) = 0 by the σ-semilinearity of f , and consequently obtain

a relation
∑
σ(ci)ni = 0 by the injectivity of f . Hence we have a nontrivial relation among

the vectors ni as σ is an automorphism on K0, thereby obtaining contradiction as desired. □

Proposition 3.2.7. Let V be a p-adic representation of ΓK . Then Dcris(V ) = (V ⊗QpBcris)
ΓK

is naturally a filtered isocrystal over K with the Frobenius automorphism 1 ⊗ φ and the
filtration on Dcris(V )K = Dcris(V ) ⊗K0 K given by

Filn(Dcris(V )K) := (V ⊗Qp Filn(Bcris ⊗K0 K))ΓK .

Proof. Since ΓK acts trivially on K, we have a natural identification

Dcris(V )K = (V ⊗Qp Bcris)
ΓK ⊗K0 K = (V ⊗Qp (Bcris ⊗K0 K))ΓK .

Then Proposition 3.1.6 implies that Dcris(V )K is a filtered vector space over K with the
filtration Filn(Dcris(V )K) as defined above. Therefore it remains to verify that the map 1⊗φ
is σ-semilinear and bijective on Dcris(V ). For arbitrary v ∈ V, b ∈ Bcris, and c ∈ K0 we have

(1 ⊗ φ)(c(v ⊗ b)) = (1 ⊗ φ)(v ⊗ bc) = v ⊗ φ(b)φ(c) = φ(c) · (1 ⊗ φ)(v ⊗ b).

Hence by Lemma 3.2.5 we find that the additive map 1 ⊗ φ is σ-semilinear. Moreover, the
map 1 ⊗ φ is injective on Dcris(K) by Theorem 3.1.13 and the left exactness of the functor
Dcris. Thus we deduce the desired assertion by Lemma 3.2.6. □

Proposition 3.2.8. Let V be a crystalline representation of ΓK . Then V is de Rham with a
natural isomorphism of filtered vector spaces

Dcris(V )K = Dcris(V ) ⊗K0 K
∼= DdR(V ).

Proof. Proposition 3.1.5 and Proposition 3.1.6 together imply that the natural map
Bcris ⊗K0 K −! BdR identifies Bcris ⊗K0 K as a filtered subspace of BdR over K; in other
words, we have an identification

Filn(Bcris ⊗K0 K) = (Bcris ⊗K0 K) ∩ Filn(BdR) for every n ∈ Z.

Therefore Proposition 3.2.7 yields a natural injective morphism of filtered vector spaces

Dcris(V )K = (V ⊗Qp (Bcris ⊗K0 K))ΓK ↪−! (V ⊗Qp BdR)ΓK = DdR(V )

with an identification

Filn(Dcris(V ) ⊗K0 K) = (Dcris(V ) ⊗K0 K) ∩ Filn(DdR(V )) for every n ∈ Z.

We then find

dimK0 Dcris(V ) = dimK Dcris(V )K ≤ dimK DdR(V ) ≤ dimQp V

where the last inequality follows from Theorem 1.2.1. Since V is crystalline, both inequalities
should be in fact equalities, thereby yielding the desired assertion. □
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Example 3.2.9. Let η : ΓK −! Q×
p be a nontrivial continuous character which factors

through Gal(L/K) for some totally ramified finite extension L of K. Then Qp(η) is de
Rham by Proposition 2.4.14. We assert that Qp(η) is not crystalline. Let us write ΓL for

the absolute Galois group of L. Since L is totally ramified over K, we have BΓL
cris

∼= K0 by
Theorem 3.1.8 and the fact that the construction of Bcris depends only on CK . Moreover, we
have Qp(η)ΓL = Qp(η) and Qp(η)Gal(L/K) = 0 by construction. Hence we find an identification

Dcris(Qp(η)) = (Qp(η) ⊗Qp Bcris)
ΓK =

(
(Qp(η) ⊗Qp Bcris)

ΓL
)Gal(L/K)

=
(
Qp(η) ⊗Qp B

ΓL
cris

)Gal(L/K) ∼= (Qp(η) ⊗Qp K0)
Gal(L/K)

= Qp(η)Gal(L/K) ⊗Qp K0 = 0,

thereby deducing the desired assertion.

We now adapt the argument in §2.4 to verify that the general formalism discussed in §1
extends to the category of crystalline representations with the enhanced functor Dcris that
takes values in MFφK .

Proposition 3.2.10. Every V ∈ Repcris
Qp

(ΓK) induces a natural ΓK-equivariant isomorphism

Dcris(V ) ⊗K0 Bcris
∼= V ⊗Qp Bcris

which is compatible with the natural Frobenius endomorphisms on both sides and induces a
K-linear isomorphism of filtered vector spaces

Dcris(V )K ⊗K (Bcris ⊗K0 K) ∼= V ⊗Qp (Bcris ⊗K0 K).

Proof. Since V is crystalline, Theorem 1.2.1 implies that the natural map

Dcris(V ) ⊗K0 Bcris −! (V ⊗Qp Bcris) ⊗K0 Bcris
∼= V ⊗Qp (Bcris ⊗K0 Bcris) −! V ⊗Qp Bcris

is a ΓK-equivariant Bcris-linear isomorphism. Moreover, this map is visibly compatible with
the natural Frobenius endomorphisms on Dcris(V )⊗K0 Bcris = (V ⊗Qp Bcris)

ΓK ⊗K0 Bcris and
V ⊗Qp Bcris respectively given by 1 ⊗ φ ⊗ φ and 1 ⊗ φ. Let us now consider the induced
K-linear bijective map

(Dcris(V )K ⊗K (Bcris ⊗K0 K) −! V ⊗Qp (Bcris ⊗K0 K).

It is straightforward to check that this map is a morphism of filtered vector spaces. Therefore
by Proposition 2.3.8 it suffices to show that the induced map

gr (Dcris(V )K ⊗K (Bcris ⊗K0 K)) −! gr
(
V ⊗Qp (Bcris ⊗K0 K)

)
(3.7)

is an isomorphism. As V is crystalline, it is also Hodge-Tate with the natural isomorphism of
graded vector spaces

gr(Dcris(V )K) ∼= gr(DdR(V )) ∼= DHT(V )

by Proposition 3.2.8 and Proposition 2.4.4. Hence Proposition 2.3.10 and Proposition 3.1.7
together yield identifications

gr (Dcris(V )K ⊗K (Bcris ⊗K0 K)) ∼= gr(Dcris(V )K) ⊗K gr(Bcris ⊗K0 K) ∼= DHT(V ) ⊗K BHT,

gr
(
V ⊗Qp (Bcris ⊗K0 K)

) ∼= V ⊗Qp gr(Bcris ⊗K0 K) ∼= V ⊗Qp BHT.

We thus identify the map (3.7) with the natural map

DHT(V ) ⊗K BHT −! V ⊗Qp BHT

given by Theorem 1.2.1, thereby deducing the desired assertion by the fact that V is Hodge-
Tate. □
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Proposition 3.2.11. The functorDcris with values in MFφK is faithful and exact on Repcris
Qp

(ΓK).

Proof. Let VectK0 denote the category of finite dimensional vector spaces over K0. The
faithfulness of Dcris on Repcris

Qp
(ΓK) follows immediately from Proposition 1.2.2 since the for-

getful functor MFφK −! VectK0 is faithful. Hence it remains to verify the exactness of Dcris

on Repcris
Qp

(ΓK). Consider an arbitrary exact sequence of crystalline representations

0 U V W 0.

We wish to show that the sequence

0 Dcris(U) Dcris(V ) Dcris(W ) 0 (3.8)

is exact in MFφK . This sequence is exact in VectK0 by Proposition 1.2.2, and thus is also
exact in the category of isocrystals over K0. Moreover, Proposition 3.2.8 and Proposition
2.4.9 together imply that we can identify the induced sequence of filtered vector spaces

0 Dcris(U)K Dcris(V )K Dcris(W )K 0

with the exact sequence of filtered vector spaces

0 DdR(U) DdR(V ) DdR(W ) 0

induced by (3.2). We thus deduce that the sequence (3.8) is exact in MFφK as desired. □

Corollary 3.2.12. Let V be a crystalline representation. Every subquotient W of V is a
crystalline representation with Dcris(W ) naturally identified as a subquotient of DdR(V ).

Proof. This is an immediate consequence of Proposition 1.2.3 and Proposition 3.2.11. □

Proposition 3.2.13. Given any V,W ∈ Repcris
Qp

(ΓK), we have V ⊗Qp W ∈ Repcris
Qp

(ΓK) with

a natural isomorphism of filtered isocrystals

Dcris(V ) ⊗K0 Dcris(W ) ∼= Dcris(V ⊗Qp W ). (3.9)

Proof. By Proposition 1.2.4 we find V ⊗Qp W ∈ Repcris
Qp

(ΓK) and obtain the desired

isomorphism (3.9) as a map of vector spaces. Moreover, since the construction of the map
(3.9) rests on the multiplicative structure of Bcris as shown in the proof of Proposition 1.2.4,
it is straightforward to verify that the map (3.9) is a morphism of isocrystals over K0. In
addition, Proposition 3.2.8 implies that we can identify the induced bijective K-linear map

Dcris(V )K ⊗K Dcris(W )K −! Dcris(V ⊗Qp W )K .

with the natural isomorphism of filtered vector spaces

DdR(V ) ⊗K DdR(W )K ∼= DdR(V ⊗Qp W )

given by Proposition 2.4.11. Therefore we deduce that the map (3.9) is an isomorphism in
MFφK as desired. □

Proposition 3.2.14. For every crystalline representation V , we have ∧n(V ) ∈ Repcris
Qp

(ΓK)

and Symn(V ) ∈ Repcris
Qp

(ΓK) with natural isomorphisms of filtered isocrystals

∧n(Dcris(V )) ∼= Dcris(∧n(V )) and Symn(Dcris(V )) ∼= Dcris(Symn(V )).

Proof. Proposition 1.2.5 implies that both ∧n(V ) and Symn(V ) are crystalline for every
n ≥ 1. In addition, Proposition 1.2.5 yields the desired isomorphisms as maps of vector
spaces. Then Corollary 3.2.12 and Proposition 3.2.13 together imply that these maps are
isomorphisms in MFφK . □
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Proposition 3.2.15. For every crystalline representation V , the dual representation V ∨ is
crystalline with a natural perfect pairing of filtered isocrystals

Dcris(V ) ⊗K0 Dcris(V
∨) ∼= Dcris(V ⊗Qp V

∨) −! Dcris(Qp).

Proof. By Proposition 1.2.6 we find V ∨ ∈ Repcris
Qp

(ΓK) and obtain the desired perfect

pairing as a map of vector spaces. Moreover, Proposition 3.2.13 implies that this pairing is a
morphism in MFφK . We thus obtain a bijective morphism of filtered isocrystals

Dcris(V )∨ −! Dcris(V
∨). (3.10)

Furthermore, by Proposition 3.2.8 we identify the induced morphism of filtered vector spaces

Dcris(V )∨K −! Dcris(V
∨)K

with the natural isomorphism DdR(V ) ∼= DdR(V ∨) in FilK given by Proposition 2.4.13. Hence
we deduce that the map (3.10) is an isomorphism in MFφK , thereby completing the proof. □

Finally, we discuss some additional key properties of crystalline representations and the
functor Dcris which resolve the main defects of de Rham representations and the functor DdR.

Definition 3.2.16. Let M be a module over a ring R with an additive endomorphism f . For
every r ∈ R, we refer to the subgroup

Mf=r := {m ∈M : f(m) = rm }
as the eigenspace of f with eigenvalue r.

Lemma 3.2.17. We have an identification

Bφ=1
cris ∩ Fil0(Bcris ⊗K0 K) = Bφ=1

cris ∩B+
dR = Qp.

Proof. By Proposition 3.1.6 and Theorem 3.1.14 we find

Bφ=1
cris ∩ Fil0(Bcris ⊗K0 K) ⊆ Bφ=1

cris ∩ Fil0(BdR) = Bφ=1
cris ∩B+

dR = Qp,

and thus obtain the desired identification as both Bφ=1
cris and Fil0(Bcris⊗K0K) contain Qp. □

Proposition 3.2.18. Every V ∈ Repcris
Qp

(ΓK) admits canonical isomorphisms

V ∼= (Dcris(V ) ⊗K0 Bcris)
φ=1 ∩ Fil0 (Dcris(V )K ⊗K (Bcris ⊗K0 K))

∼= (Dcris(V ) ⊗K0 Bcris)
φ=1 ∩ Fil0 (Dcris(V )K ⊗K BdR) .

Proof. Proposition 3.2.10 yields a natural ΓK-equivariant isomorphism

Dcris(V ) ⊗K0 Bcris
∼= V ⊗Qp Bcris

which is compatible with the natural Frobenius endomorphisms on both sides and induces an
isomorphism of filtered vector spaces

Dcris(V )K ⊗K (Bcris ⊗K0 K) ∼= V ⊗Qp (Bcris ⊗K0 K).

In addition, there exists a canonical isomorphism of filtered vector spaces

Dcris(V )K ⊗K BdR
∼= DdR(V ) ⊗K BdR

∼= V ⊗Qp BdR

given by Proposition 3.2.8 and Proposition 2.4.8. Therefore we have identifications

(Dcris(V ) ⊗K0 Bcris)
φ=1 ∼= V ⊗Qp B

φ=1
cris ,

Fil0 (Dcris(V )K ⊗K (Bcris ⊗K0 K)) ∼= V ⊗Qp Fil0(Bcris ⊗K0 K),

Fil0 (Dcris(V )K ⊗K BdR) ∼= V ⊗Qp B
+
dR.

The desired assertion now follows by Lemma 3.2.17. □
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Theorem 3.2.19 (Fontaine [Fon94]). The functor Dcris with values in MFφK is exact and

fully faithful on Repcris
Qp

(ΓK).

Proof. By Proposition 3.2.11 we only need to establish the fullness ofDcris on Repcris
Qp

(ΓK).

Let V and W be arbitrary crystalline representations. Consider an arbitrary morphism
f : Dcris(V ) −! Dcris(W ) in MFφK . Then f gives rise to a ΓK-equivariant map

V ⊗Qp Bcris
∼= Dcris(V ) ⊗K0 Bcris Dcris(W ) ⊗K0 Bcris

∼= W ⊗Qp Bcris
f⊗1

(3.11)

where the isomorphisms are given by Proposition 3.2.10. Moreover, Proposition 3.2.18 implies
that this map restricts to a linear map ϕ : V −! W . In other words, we may identify the
map (3.11) as ϕ ⊗ 1. In particular, since the isomorphisms in (3.11) are ΓK-equivariant, we
recover f as the restriction of ϕ⊗ 1 on (V ⊗Qp Bcris)

ΓK ∼= (Dcris(V ) ⊗K0 Bcris)
ΓK ∼= Dcris(V ).

This precisely means that f is induced by ϕ via the functor Dcris. □

Proposition 3.2.20. Let V be a p-adic representation of ΓK . Let L be a finite unramified
extension of K with the residue field extension l of k. Denote by ΓL the absolute Galois group
of L and by L0 the fraction field of the ring of Witt vectors over l.

(1) There exists a natural isomorphism of filtered isocrystals

Dcris,K(V ) ⊗K0 L0
∼= Dcris,L(V )

where we set Dcris,K(V ) := (V ⊗Qp Bcris)
ΓK and Dcris,L(V ) := (V ⊗Qp Bcris)

ΓL .

(2) V is crystalline if and only if it is crystalline as a representation of ΓL.

Proof. We only need to prove the first statement, as the second statement immediately
follows from the first statement. By definition L and L0 are respectively unramified extensions
of K and K0 with the residue field extension l of k. Hence L and L0 are respectively Galois
over K and K0 with Gal(L/K) ∼= Gal(L0/K0). Furthermore, since the construction of Bcris

depends only on CK , we have an identification

Dcris,K(V ) = Dcris,L(V )Gal(L/K) = Dcris,L(V )Gal(L0/K0).

Then by the Galois descent for vector spaces we obtain a natural bijective L0-linear map

Dcris,K(V ) ⊗K0 L0 −! Dcris,L(V ). (3.12)

This map is evidently compatible with the natural Frobenius automorphisms on both sides
induced by φ as explained in Lemma 3.2.5 and Proposition 3.2.7. Moreover, Proposition
2.4.14 and Proposition 3.2.8 together imply that the map (3.12) induces a natural L-linear
isomorphism of filtered vector spaces

(Dcris,K(V ) ⊗K0 K) ⊗K L ∼= Dcris,L(V ) ⊗L0 L.

We thus deduce that the map (3.12) is an isomorphism of filtered isocrystals over L. □

Remark. Proposition 3.2.20 also holds when L is the completion of the maximal unramified
extension of K. As a consequence, we have the following facts:

(1) Every unramified p-adic representation is crystalline.

(2) For a continuous character η : ΓK −! Z×
p , we have Qp(η) ∈ Repcris

Qp
(ΓK) if and only

if there exists some n ∈ Z such that ηχn is trivial on IK .
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On the other hand, Example 3.2.9 shows that Proposition 3.2.20 fails when L is a ramified
extension of K. Fontaine interpreted this “failure” as a good feature of the crystalline con-
dition, and conjectured that the crystalline condition should provide a p-adic analogue of the
Néron-Ogg-Shafarevich criterion introduced in Theorem 1.1.2 of Chapter I; more precisely,
Fontaine conjectured that an abelian variety A over K has good reduction if and only if the
rational Tate module Vp(A[p∞]) is crystalline. Fontaine’s conjecture is now known to be true
by the work of Coleman-Iovita and Breuil.

We conclude this section with a discussion of a classical example which is enlightening in
many ways. We assume the following technical result without proof.

Proposition 3.2.21. The continuous map log : Zp(1) −! B+
dR extends to a ΓK-equivariant

homomorphism log : Ainf [1/p]
× −! B+

dR such that log([p♭]) is transcendental over the fraction
field of Bcris.

Example 3.2.22. The Tate curve Ep is an elliptic curve over K with Ep(K) ∼= K
×
/pZ where

we set pZ := { pn : n ∈ Z }. We assert that the rational Tate module Vp(Ep[p
∞]) is de Rham

but not crystalline. It is evident by construction that ε and p♭ form a basis of Vp(Ep[p
∞])

over Qp. Moreover, for every γ ∈ ΓK we have

γ(ε) = εχ(γ) and γ(p♭) = p♭εc(γ) (3.13)

for some c(γ) ∈ Zp. Hence Vp(Ep[p
∞]) is an extension of Qp by Qp(1) in RepQp

(ΓK), and
thus is de Rham by Example 2.4.5.

We aim to present a basis for DdR(Vp(Ep[p
∞])) = (Vp(Ep[p

∞])⊗Qp BdR)ΓK . By (3.13) we

find ε⊗ t−1 ∈ DdR(Vp(Ep[p
∞])). Let us now consider the homomorphism log : Ainf [1/p]

× −!
B+

dR as in Proposition 3.2.21 and set u := log([p♭]). Then for γ ∈ ΓK we find

γ(u) = γ(log([p♭]) = log([γ(p♭)]) = log([p♭εc(γ)]) = log([p♭]) + c(γ) log([ε]) = u+ c(γ)t

by (3.13) and Proposition 2.2.22, and consequently obtain

γ(−ε⊗ ut−1 + p♭ ⊗ 1) = −εχ(γ) ⊗ (u+ c(γ)t)χ(γ)−1t−1 + p♭εc(γ) ⊗ 1

= −ε⊗ (ut−1 + c(γ)) + c(γ) · (ε⊗ 1) + p♭ ⊗ 1

= −ε⊗ ut−1 + p♭ ⊗ 1

by (3.13) and Theorem 2.2.24. In particular, we have −ε⊗ ut−1 + p♭⊗ 1 ∈ DdR(Vp(Ep[p
∞])).

Since the elements ε ⊗ t−1 and −ε ⊗ ut−1 + p♭ ⊗ 1 are linearly independent over BdR, they
form a basis for DdR(Vp(Ep[p

∞])) = (Vp(Ep[p
∞]) ⊗Qp BdR)ΓK .

Let us now consider an arbitrary element x ∈ Dcris(Vp(Ep[p
∞])) = (Vp(Ep[p

∞]) ⊗Qp

Bcris)
ΓK . We may uniquely write x = ε⊗ c+ p♭ ⊗ d for some c, d ∈ Bcris. Moreover, since we

have Dcris(Vp(Ep[p
∞])) ⊆ DdR(Vp(Ep[p

∞])) there exist some r, s ∈ K with

x = r · (ε⊗ t−1) + s · (−ε⊗ ut−1 + p♭ ⊗ 1) = ε⊗ (r − su)t−1 + p♭ ⊗ s.

Then we find c = (r−su)t−1, and consequently obtain s = 0 by Proposition 3.2.21. Therefore
we deduce that every element in Dcris(Vp(Ep[p

∞])) ⊗K0 K is a K-multiple of ε ⊗ t−1. In
particular, we find dimK0 Dcris(Vp(Ep[p

∞])) ≤ 1, thereby concluding that Vp(Ep[p
∞]) is not

crystalline.

Remark. Fontaine constructed the semistable period ring Bst as the Bcris-subalgebra of BdR

generated by log([p♭]).





CHAPTER IV

The Fargues-Fontaine curve

1. Construction

Our main objective in this section is to discuss the construction of the Fargues-Fontaine
curve. The primary references are Fargues and Fontaine’s survey paper [FF12] and Lurie’s
notes [Lur].

1.1. Untilts of a perfectoid field

Throughout this chapter, we let F be an algebraically closed perfectoid field F of charac-
teristic p with the valuation νF , and write mF for the maximal ideal of OF . We also denote
by Ainf = W (OF ) the ring of Witt vectors over OF , and by W (F ) the ring of Witt vectors
over F . In addition, for every c ∈ F we write [c] for its Teichmüller lift in W (F ).

Definition 1.1.1. An untilt of F is a perfectoid field C together with a continuous isomor-
phism ι : F ≃ C♭.

Example 1.1.2. The trivial untilt of F is the field F with the natural isomorphism F ∼= F ♭

given by Proposition 2.1.13 in Chapter III.

Definition 1.1.3. Let C be an untilt of F with a continuous isomorphism ι : F ≃ C♭.

(1) We define the sharp map associated to C as the composition of the maps

F C♭ = lim −
x7!xp

C Cι
∼

where the last arrow is the projection to the first component.

(2) For every c ∈ F , we denote its image under the sharp map by c♯C , or often by c♯.

(3) We define the normalized valuation on C to be the unique valuation νC with νF (c) =
νC(c♯) for all c ∈ F as given by Proposition 2.1.7 from Chapter III.

Our first goal in this subsection is to prove that every untilt of F is algebraically closed.

Lemma 1.1.4. Let L be a complete nonarchimedean field, and let f(x) be an irreducible monic
polynomial over L with f(0) ∈ OL. Then f(x) is a polynomial over OL.

Proof. Let us choose a valuation νL on L. Take a finite Galois extension L′ of L such
that f(x) factors as

f(x) =
d∏
i=1

(x− ri) with ri ∈ L′.

The valuation νL uniquely extends to a Gal(L′/L)-equivariant valuation νL′ on L′. In par-
ticular, the roots ri all have the same valuation as they belong to the same Gal(L′/L)-orbit.
Since we have f(0) = (−1)dr1r2 · · · rd ∈ OL, we find that each ri has a nonnegative valuation.
Hence each coefficient of f(x) has a nonnegative valuation as well. □
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Proposition 1.1.5. Let C be an untilt of F , and let f(x) be an irreducible monic polynomial
of degree d over C. For every y ∈ C, there exists an element z ∈ C with

νC(y − z) ≥ νC(f(y))/d and νC(f(z)) ≥ νC(p) + νC(f(y)).

Proof. We may replace f(x) by f(x + y) to assume y = 0. Our assertion is that there
exists an element z ∈ C with

νC(z) ≥ νC(f(0))/d and νC(f(z)) ≥ νC(p) + νC(f(0)). (1.1)

If we have f(0) = 0, the assertion is trivial as we can simply take z = 0. We henceforth
assume f(0) ̸= 0. Since F is algebraically closed, the multiplication by d is surjective on the
value group of F . Hence Proposition 2.1.10 in Chapter III implies that the multiplication by
d is also surjective on the value group of C. In particular, there exists an element a ∈ C with
dνC(a) = νC(f(0)). Then we can rewrite the inequalities in (1.1) as

νC(z/a) ≥ 0 and νC

(
f(a · (z/a))/ad

)
≥ νC(p).

Therefore we may replace f(x) by the monic polynomial f(a · x)/ad to assume νC(f(0)) = 0.
Then our assertion amounts to the existence of an element z ∈ OC with f(z) ∈ pOC .

Lemma 1.1.4 implies that f(x) is a polynomial over OC . In other words, we may write
f(x) = xd + a1x

d−1 + · · · + ad with ai ∈ OC . Then by Lemma 2.1.8 in Chapter III we

find elements ci ∈ OF with ai − c♯i ∈ pOC . Since F is algebraically closed, the polynomial

g(x) := xd + c1x
d−1 + · · · + cd over OF has a root α in OF . Now we find

f(α♯) = (α♯)d + a1(α
♯)d−1 + · · · + ad

= (α♯)d + c♯1(α
♯)d−1 + · · · + c♯d mod pOC

= (αd + c1α
d−1 + · · · + cd)

♯
mod pOC

= g(α)♯ = 0

where the third identity follows from Proposition 2.1.9 in Chapter III. Hence we complete the
proof by taking z = α♯. □

Proposition 1.1.6. Every untilt of F is algebraically closed.

Proof. Let C be an untilt of F , and let f(x) an arbitrary monic irreducible polynomial
of degree d over C. We wish to show that f(x) has a root in C. We may replace f(x) by
pndf(x/pn) for sufficiently large n to assume that f(x) is a polynomial over OC . Let us set
y0 := 0 so that we have νC(f(y0)) = νC(f(0)) ≥ 0. By Proposition 1.1.5 we can inductively
construct a sequence (yn) in C with

νC(yn−1 − yn) ≥ (n− 1)νC(p)/d and νC(f(yn)) ≥ nνC(p) for each n ≥ 1.

Then the sequence (yn) is Cauchy by construction, and thus converges to an element y ∈ C.
Hence we find

f(y) = f
(

lim
n!∞

yn

)
= lim

n!∞
f(yn) = 0,

thereby deducing the desired assertion. □

Remark. In order to avoid a circular reasoning, we should not deduce Proposition 1.1.6 as
a special case of the tilting equivalence for perfectoid fields. In fact, the only known proof of
the tilting equivalence (due to Scholze) is based on Proposition 1.1.6.

Corollary 1.1.7. For every untilt C of F , the associated sharp map is surjective.
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We now aim to parametrize all untilts of F by certain principal ideals of Ainf .

Definition 1.1.8. Let C1 and C2 be untilts of F with continuous isomorphisms ι1 : F ≃ C♭1
and ι2 : F ≃ C♭2. We say that C1 and C2 are equivalent if there exists a continuous isomorphism

C1 ≃ C2 such that the induced isomorphism C♭1 ≃ C♭2 fits into the commutative diagram

C♭1 C♭2

F

∼

∼
ι1

∼
ι2

.

Example 1.1.9. Proposition 2.1.13 in Chapter III implies that the trivial untilt of F repre-
sents a unique equivalence class of characteristic p untilts of F .

Proposition 1.1.10. Let C be a perfectoid field.

(1) Every continuous isomorphism F ≃ C♭ induces an isomorphism OF /ϖOF ≃ OC/pOC

for some ϖ ∈ mF .

(2) Every isomorphism OF /ϖOF ≃ OC/pOC for some ϖ ∈ mF uniquely lifts to a

continuous isomorphism F ≃ C♭.

Proof. Let us first consider the statement (1). We regard C as an untilt of F with the

given continuous isomorphism F ≃ C♭. Then Proposition 2.1.10 in Chapter III yields an
element ϖ ∈ F with νF (ϖ) = νC(p) > 0. Moreover, the continuous isomorphism F ≃ C♭

restricts to an isomorphism of valuation rings OF ≃ OC♭ . Let us now consider the map

OF OC OC/pOC
c 7!c♯

where the second arrow is the natural projection. This map is a ring homomorphism as
noted in Chapter III, Proposition 2.1.9, and is surjective by Lemma 2.1.8 in Chapter III.
In addition, the kernel consists precisely of the elements c ∈ OF with νC(c♯) ≥ νC(p), or
equivalently νF (c) ≥ νF (ϖ). Hence we have an induced isomorphism OF /ϖOF ≃ OC/pOC

as asserted.

It remains to prove the statement (2). Since F is isomorphic to its tilt as noted in
Example 1.1.9, we have an identification OF

∼= OF ♭ = lim −
x 7!xp

OF . Hence every isomorphism

OF /ϖOF ≃ OC/pOC for some ϖ ∈ mF uniquely gives rise to an isomorphism

OF
∼= lim −

x 7!xp
OF /ϖOF ≃ lim −

x 7!xp
OC/pOC

∼= OC♭

where the first and the third isomorphisms are given by Proposition 2.1.6 in Chapter III, and
in turn lifts to a continuous isomorphism F ≃ C♭. □

Definition 1.1.11. We say that an element ξ ∈ Ainf is primitive (of degree 1) if it has the
form ξ = [ϖ] − up for some ϖ ∈ mF and u ∈ A×

inf . We say that a primitive element of Ainf is
nondegenerate if it is not divisible by p.

Proposition 1.1.12. Let ξ be an element in Ainf with the Teichmüller expansion ξ =∑
[cn]pn.

(1) The element ξ is primitive if and only if we have νF (c0) > 0 and νF (c1) = 0.

(2) If ξ is primitive, every unit multiple of ξ in Ainf is primitive.

Proof. The first statement is straightforward to verify by writing ξ = [c0]+p
∑

[c
1/p
n+1]p

n.

The second statement then follows by the explicit multiplication rule for Ainf . □
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Proposition 1.1.13. Let ξ be a nondegenerate primitive element in Ainf . The ring Ainf/ξAinf

is p-torsion free and p-adically complete.

Proof. We first verify that Ainf/ξAinf is p-torsion free. Consider an element a ∈ Ainf

such that pa is divisible by ξ. We wish to show that a is divisible by ξ. Let us write pa = ξb
for some b ∈ Ainf . Then we have b ∈ pAinf since ξ has a nonzero image in Ainf/pAinf

∼= OF .
Therefore we may write b = pb′ for some b′ ∈ Ainf and obtain an identity pa = pξb′, which in
turn yields a = ξb′ as desired.

Let us now prove that Ainf/ξAinf is p-adically complete. Denote by ̂Ainf/ξAinf the p-adic
completion of Ainf/ξAinf . Since Ainf is p-adically complete, the projection Ainf ↠ Ainf/ξAinf

induces a surjective ring homomorphism

Ainf ↠ ̂Ainf/ξAinf (1.2)

by a general fact as stated in [Sta, Tag 0315]. It suffices to show that the kernel of this map
is ξAinf . Under the identification

̂Ainf/ξAinf = lim −
n

(Ainf/ξAinf)/((p
nAinf + ξAinf)/ξAinf) ∼= lim −

n

Ainf/(p
nAinf + ξAinf)

the map (1.2) coincides with the natural map

Ainf ↠ lim −
n

Ainf/(p
nAinf + ξAinf).

The kernel of this map is
∞⋂
n=1

(pnAinf+ξAinf), which clearly contains ξAinf . Hence we only need

to show

∞⋂
n=1

(pnAinf + ξAinf) ⊆ ξAinf . Consider an arbitrary element u ∈
∞⋂
n=1

(pnAinf + ξAinf).

Let us choose sequences (an) and (bn) in Ainf with u = pnan + ξbn for each n ≥ 1. Then
we have pn(an − pan+1) = ξ(bn+1 − bn) for every n ≥ 1. Since ξ has a nonzero image in
Ainf/pAinf

∼= OF , each bn+1 − bn must be divisible by pn. Hence the sequence (bn) converges
to an element b ∈ Ainf by the p-adic completeness of Ainf . As a result we find

u = lim
n!∞

(pnan + ξbn) = lim
n!∞

pnan + ξ lim
n!∞

bn = ξb,

thereby completing the proof. □

Definition 1.1.14. For every primitive element ξ ∈ Ainf , we refer to the natural projection
θξ : Ainf ↠ Ainf/ξAinf as the untilt map associated to ξ.

Lemma 1.1.15. Let ξ be a nondegenerate primitive element in Ainf .

(1) For every nonzero c ∈ OF , some power of p is divisible by θξ([c]) in Ainf/ξAinf .

(2) For every m ∈ mF , some power of θξ([m]) is divisible by p in Ainf/ξAinf .

Proof. Let us write ξ = [ϖ] − pu for some ϖ ∈ mF and u ∈ A×
inf . For every nonzero

c ∈ OF we may write ϖi = cc′ for some i > 0 and c′ ∈ OF , and consequently find

pi =
(
θξ(u

−1)θξ(up)
)i

= θξ(u)−iθξ([ϖ])i = θξ(u)−iθξ([c])θξ([c
′]).

Similarly, for every m ∈ mF we may write mj = ϖ · b for some j > 0 and b ∈ OF , and
consequently find

θξ([m])j = θξ([ϖ])θξ([b]) = θξ(pu)θξ([b]) = pθξ(u)θξ([b]).

We thus deduce the desired assertions. □

https://stacks.math.columbia.edu/tag/0315
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Proposition 1.1.16. Let ξ be a nondegenerate primitive element in Ainf . Take arbitrary
elements c, c′ ∈ OF . Then c divides c′ in OF if and only if θξ([c]) divides θξ([c

′]) in Ainf/ξAinf .

Proof. If c divides c′ in OF , then θξ([c]) divides θξ([c
′]) in Ainf/ξAinf by the multiplica-

tivity of the Teichmüller lift and the map θξ. Let us now assume that c does not divide
c′ in OF . We wish to show that θξ([c]) does not divide θξ([c

′]) in Ainf/ξAinf . Suppose for
contradiction that there exists an element a ∈ Ainf/ξAinf with θξ([c

′]) = θξ([c])a. Since we
have νF (c) > νF (c′) by assumption, there exists some m ∈ mF with c = mc′. We thus find

θξ([c
′]) = θξ([c])a = θξ([c

′])θξ([m])a. (1.3)

Moreover, c′ is not zero as it is not divisible by c. Hence by Lemma 1.1.15 we may write
pn = θξ([c

′])b for some n > 0 and b ∈ Ainf/ξAinf . Then by (1.3) we find pn = pnθξ([m])a,
which in turn yields θξ([m])a = 1 since p is not a zero divisor in Ainf/ξAinf by Proposition
1.1.13. However, this is impossible because the image of θξ([m]) under the natural map
Ainf/ξAinf ↠ Ainf/(ξAinf + pAinf) is nilpotent by Lemma 1.1.15. □

Proposition 1.1.17. Let ξ be a nondegenerate primitive element inAinf . Every a ∈ Ainf/ξAinf

is a unit multiple of θξ([c]) for some c ∈ OF , which is uniquely determined up to unit multiple.

Proof. Let us first assume that a is a unit multiple of θξ([c1]) and θξ([c2]) for some
c1, c2 ∈ OF . Then θξ([c1]) and θξ([c2]) divide each other. Hence Proposition 1.1.16 implies
that c1 and c2 divide each other, which means that c1 and c2 are unit multiples of each other.

It remains to show that a is a unit multiple of θξ([c]) for some c ∈ OF . We may assume
a ̸= 0 as the assertion is obvious for a = 0. By Proposition 1.1.13 we can write a = pna′ for
some n ≥ 0 and a′ ∈ Ainf/ξAinf such that a′ is not divisible by p. Let us write ξ = [ϖ] − up
for some ϖ ∈ mF and u ∈ A×

inf . Then we have

a = pna′ =
(
θξ(u

−1)θξ(up)
)n
a′ = θξ(u)−1θξ([ϖ])na′.

Hence we may replace a by a′ to assume that a is not divisible by p.

We have a natural isomorphism

Ainf/(ξAinf + pAinf) = Ainf/([ϖ]Ainf + pAinf) ∼= OF /ϖOF .

In addition, the map θξ gives rise to a commutative diagram

Ainf Ainf/ξAinf

OF
∼= Ainf/pAinf Ainf/(ξAinf + pAinf) OF /ϖOF

θξ

∼=

(1.4)

where the surjectivity of the bottom middle arrow follows from the surjectivity of the other
arrows. Choose an element c ∈ OF whose image under the bottom middle arrow coincides
with the image of a under the second vertical arrow. Then c is not divisible by ϖ since a is
not divisible by p. Therefore we may write ϖ = cm for some m ∈ mF and obtain

p = θξ(u
−1)θξ(up) = θξ(u)−1θξ([ϖ]) = θξ(u)−1θξ([c])θξ([m]).

Now the diagram (1.4) yields an element b ∈ Ainf/ξAinf with

a = θξ([c]) + pb = θξ([c]) + bθξ(u)−1θξ([c])θξ([m]) = θξ([c])
(
1 + bθξ(u)−1θξ([m])

)
.

We thus complete the proof by observing that 1 + bθξ(u)−1θξ([m]) is a unit in Ainf/ξAinf with(
1 + bθξ(u)−1θξ([m])

)−1
= 1 −

(
bθξ(u)−1θξ([m])

)
+
(
bθξ(u)−1θξ([m])

)2 − · · ·
where the infinite sum converges by Proposition 1.1.13 and Lemma 1.1.15. □
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Proposition 1.1.18. Let ξ be a primitive element in Ainf , and let Cξ denote the fraction
field of Ainf/ξAinf . Then Cξ is an untilt of F with the valuation ring OCξ

= Ainf/ξAinf and a

continuous isomorphism ι : F ≃ C♭ξ induced by the canonical isomorphism

OF /ϖOF
∼= Ainf/([ϖ]Ainf + pAinf) = Ainf/(ξAinf + pAinf) ∼= OCξ

/pCξ. (1.5)

where ϖ denotes the image of ξ under the natural map Ainf ↠ Ainf/pAinf
∼= OF . Moreover,

each element c ∈ OF maps to θξ([c]) under the sharp map associated to Cξ.

Proof. Let us write ξ = [ϖ] − up with ϖ ∈ mF and u ∈ A×
inf . We also let O denote the

ring Ainf/ξAinf . If ϖ is zero, then we have a natural isomorphism

O = Ainf/ξAinf
∼= Ainf/pAinf

∼= OF

which implies that Cξ represents the trivial untilt of F as noted in Example 1.1.9. We
henceforth assume ϖ ̸= 0.

We assert that O = Ainf/ξAinf is an integral domain. Suppose for contradiction that there
exist nonzero elements a, b ∈ O with ab = 0. By Proposition 1.1.17 we may write a = θξ([c])u
for some nonzero c ∈ OF and u ∈ O×. In addition, by Lemma 1.1.15 we have θξ([c])w = pn

for some n > 0 and w ∈ O. Therefore we obtain an identity

0 = abw = θξ([c])wub = pnub,

which yields a desired contradiction by Proposition 1.1.13.

By Proposition 1.1.17 we can define a nonnegative real-valued function ν on O× which
maps each y ∈ O× to νF (z) where z is an element in OF such that y is a unit multiple of
θξ([z]). Then by construction ν is a multiplicative homomorphism whose image contains the
image of νF . In addition, for any y1, y2 ∈ O× with ν(y1) ≥ ν(y2) we find by Proposition
1.1.16 that y1 is divisible y2 in O, and consequently obtain

ν(y1 + y2) = ν((y1/y2 + 1)y2) = ν(y1/y2 + 1) + ν(y2) ≥ ν(y2) = min(ν(y1), ν(y2)).

Therefore we deduce that ν is a nondiscrete valuation on O.

We can uniquely extend ν to a valuation on Cξ, which we also denote by ν. For every
x ∈ Cξ we write x = y1/y2 for some y1, y2 ∈ O and find by Proposition 1.1.16 that ν(x) =
ν(y1)− ν(y2) is nonnegative if and only if y1 is divisible by y2 in O. Hence we deduce that O
is indeed the valuation ring of Cξ.

Since the p-th power map is surjective on OF /ϖOF , it is also surjective on OCξ
/pOCξ

by
the isomorphism (1.5). In addition, from the identity

p = θξ(u
−1)θξ(up) = θξ(u)−1θξ([ϖ])

we find ν(p) = νF (ϖ) > 0. Hence Cξ has residue characteristic p. Furthermore, Proposition
1.1.13 implies that Cξ is complete with respect to the valuation ν. Therefore we deduce that
Cξ is a perfectoid field.

By Proposition 1.1.10 (and its proof) the isomorphism (1.5) uniquely lifts to an isomor-
phism

OF
∼= lim −

x 7!xp
OF /ϖOF

∼= lim −
x 7!xp

Ainf/(ξAinf + pAinf) ∼= lim −
x 7!xp

OCξ
/pOCξ

∼= lim −
x 7!xp

OCξ
= OC♭

ξ

where the first and the third isomorphisms are given by Proposition 2.1.6 in Chapter III, and
in turn lifts to a continuous isomorphism F ≃ C♭ξ. Moreover, it is straightforward to verify

that each element c ∈ OF maps to (θξ([c
1/pn ]) ∈ OC♭

ξ
under the above isomorphism, and

consequently maps to θξ([c]) under the sharp map associated to Cξ. Therefore we complete
the proof. □
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Proposition 1.1.19. Let C be an untilt of F .

(1) There exists a surjective ring homomorphism θC : Ainf ↠ OC with

θC

(∑
[cn]pn

)
=
∑

c♯np
n for every cn ∈ OF .

(2) Every primitive element in ker(θC) generates ker(θC).

Proof. Since C is algebraically closed as noted in Proposition 1.1.6, all results from
the first part of §2.2 in Chapter III remain valid with C in place of CK . In particular,
the statement (1) is merely a restatement of Proposition 2.2.3 in Chapter III. Furthermore,
Proposition 2.2.11 in Chapter III implies that ker(θC) is generated by a primitive element

ξC := [p♭] − p ∈ Ainf where p♭ denotes an element in OF with (p♭)
♯

= p.

Let us now consider an arbitrary primitive element ξ ∈ ker(θC). The map θC induces a

surjective map θ̃ξ : Ainf/ξAinf ↠ OC . Then ker(θ̃ξ) is a non-maximal prime ideal as OC is

an integral domain but not a field. Moreover, ker(θ̃ξ) is a principal ideal generated by the

image of ξC . Since Ainf/ξ is a valuation ring by Proposition 1.1.18, we find ker(θ̃ξ) = 0 and
consequently deduce that ξ generates ker(θC). □

Remark. In the last sentence, we used an elementary fact that every nonzero principal prime
ideal of a valuation ring is maximal.

Definition 1.1.20. Given an untilt C of F , we refer to the ring homomorphism θC constructed
in Proposition 1.1.19 as the untilt map of C.

Theorem 1.1.21 (Kedlaya-Liu [KL15], Fontaine [Fon13]). There is a bijection

{ equivalence classes of untilts of F } ∼
−! { ideals of Ainf generated by a primitive element }

which maps each untilt C of F to ker(θC).

Proof. We first verify that the association is surjective. Consider an arbitrary primitive
element ξ ∈ Ainf . By Proposition 1.1.18 it gives rise to an untilt Cξ of F such that each
c ∈ OF maps to θξ([c]) under the associated sharp map. Hence Lemma 2.3.1 from Chapter II
implies that the maps θξ and θCξ

coincide, thereby yielding ξAinf = ker(θξ) = ker(θCξ
).

It remains to show that the association is injective. Let C be an arbitrary untilt of F
with a continuous isomorphism ι : F ≃ C♭. Choose a primitive element ω ∈ ker(θC), which

gives rise to an untilt Cω of F with a continuous isomorphism ιω : F ≃ C♭ω by Proposition
1.1.18. It suffices to show that C and Cω are equivalent. The map θC induces an isomorphism
OCω = Ainf/ωAinf ≃ OC , which extends to an isomorphism Cω ≃ C. Let f denote the induced

map C♭ω ≃ C♭. Then by Proposition 1.1.10 and Proposition 1.1.18 the map f ◦ ιω yields an
isomorphism

OF /ϖOF
∼= Ainf/(pAinf + ωAinf) = OCω/pOCω ≃ OC/pOC (1.6)

where ϖ denotes the image of ω in Ainf/pAinf
∼= OF . For every c ∈ OF , this isomorphism

maps the image of c in OF /ϖOF to the image of θC([c]) = c♯ in OC/pOC . This implies that
an element c ∈ OF is divisible by ϖ if and only if c♯ is divisible by p, and consequently yields
νF (ϖ) = νC(p). Then the proof of Proposition 1.1.10 shows that the isomorphism (1.6) is
also induced by ι. Therefore the second part of Proposition 1.1.10 yields f ◦ ιω = ι, which
means that C and Cω are equivalent as desired. □

Remark. The first paragraph of our proof shows that there is no conflict between Definition
1.1.14 and Definition 1.1.20.
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1.2. The schematic Fargues-Fontaine curve

The main goal of this subsection is to describe the construction of the Fargues-Fontaine
curve as a scheme. For the rest of this chapter, we fix a nonzero element ϖ ∈ mF . We also
denote by YF = Y the set of equivalence classes of characteristic 0 untilts of F .

Definition 1.2.1. Let C be an untilt of F . We define the associated absolute value on C by

|x|C := p−νC(x) for every x ∈ C,

and write |C| := { |x|C : x ∈ C } for the associated absolute value group. If C = F is the
trivial untilt of F , we often drop the subscript to ease the notation.

Remark. Thus far we have been using valuations to describe the topology on valued fields,
because valuations are convenient for topological arguments involving algebraic objects such
as p-adic representations and period rings. From now on, we will use absolute values to
describe the topology on perfectoid fields, because the objects of our interest will be very
much analytic in nature.

Example 1.2.2. Let C be an untilt of F . Theorem 1.1.21 yields a primitive element ξ ∈ Ainf

which generates ker(θC). If we write ξ = [m] − up for some m ∈ mF and u ∈ A×
inf , we have

|p|C =
∣∣θC(u)−1θC([m])

∣∣
C

= |θC([m])|C =
∣∣∣m♯
∣∣∣
C

= |m| .

Proposition 1.2.3. We have an identification

Ainf [1/p, 1/[ϖ]] =
{∑

[cn]pn ∈W (F )[1/p] : |cn| bounded
}
.

In particular, the ring Ainf [1/p, 1/[ϖ]] does not depend on our choice of ϖ.

Proof. Consider an arbitrary element f =
∑

[cn]pn ∈ W (F )[1/p]. Then we have f ∈
Ainf [1/p, 1/[ϖ]] if and only if there exists some i > 0 with [ϖi]f =

∑
[cnϖ

i]pn ∈ Ainf [1/p], or
equivalently |cn| ≤

∣∣ϖ−i∣∣ for all n. □

Definition 1.2.4. Let y be an element of Y , represented by an untilt C of F .

(1) We define the absolute value of y by |y| := |p|C .

(2) For every f =
∑

[cn]pn ∈ Ainf [1/p, 1/[ϖ]], we define its value at y by

f(y) := θ̃C(f) =
∑

c♯np
n

where θ̃C : Ainf [1/p, 1/[ϖ]] −! C is the ring homomorphism which extends the untilt
map θC : Ainf ↠ OC .

Remark. A useful heuristic idea for understanding the construction and the structure of the
Fargues-Fontaine curve is that the set Y behaves in many aspects as the punctured unit disk
D∗ := { z ∈ C : 0 < |z| < 1 } in the complex plane. Here we present a couple of analogies
between Y and D∗.

(1) For each y ∈ Y represented by an untilt C of F , its absolute value |y| = |p|C is a real
number between 0 and 1. This is an analogue of the fact that every element z ∈ D∗

has an absolute value between 0 and 1.

(2) Every element in Ainf [1/p, 1/[ϖ]] is a “Laurent series in the variable p” with bounded
coefficients, and gives rise to a function on Y as described in Definition 1.2.4. This
is an analogue of the fact that every Laurent series

∑
anz

n over C with bounded
coefficients defines a holomorphic function on D∗.
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Lemma 1.2.5. Let f =
∑

[cn]pn be a nonzero element in Ainf [1/p, 1/[ϖ]], and let ρ be a real
number with 0 < ρ < 1. Then sup

n∈Z
(|cn| ρn) exists and is attained by finitely many values of n.

Proof. Let us take an integer n0 with cn0 ̸= 0. Proposition 1.2.3 implies that there
exists an integer l > 0 with |cn| ρn < |cn0 | ρn0 for all n > l. In addition, there exists an integer
k < 0 with cn = 0 for all n < k. Therefore sup

n∈Z
(|cn| ρn) = sup

k<n<l
(|cn| ρn) exists and can only

be attained by an integer n with k < n < l. □

Definition 1.2.6. Let ρ be a real number with 0 < ρ < 1.

(1) We define the Gauss ρ-norm on Ainf [1/p, 1/[ϖ]] by∣∣∣∑[cn]pn
∣∣∣
ρ

:= sup
n∈Z

(|cn| ρn).

(2) Given an element f =
∑

[cn]pn ∈ Ainf [1/p, 1/[ϖ]], we say that ρ is generic for f if
there exists a unique n ∈ Z with |f |ρ = |cn| ρn.

Lemma 1.2.7. Let f be an element in Ainf [1/p, 1/[ϖ]]. The set

Sf := { ρ ∈ (0, 1) : ρ is generic for f }
is dense in the interval (0, 1).

Proof. If ρ ∈ (0, 1) is not generic for f , then by Lemma 1.2.5 there exist some distinct

integers m and n with |f |ρ = |cm| ρm = |cn| ρn, which yields ρ = (|cm| / |cn|)1/(n−m). We thus

deduce that the complement of Sf in (0, 1) is countable, thereby obtaining the assertion. □

Lemma 1.2.8. Let y be an element in Y represented by an untilt C of F . For every f ∈
Ainf [1/p, 1/[ϖ]] we have |f(y)|C ≤ |f ||y| with equality if |y| is generic for f .

Proof. Let us write f =
∑

[cn]pn with cn ∈ F . Then we have

|f(y)|C =
∣∣∣∑ c♯np

n
∣∣∣
C
≤ sup

n∈Z

(∣∣∣c♯n∣∣∣
C
· |p|nC

)
= sup

n∈Z
(|cn| · |y|n) = |f ||y| .

It is evident that the inequality above becomes an equality if |y| is generic for f . □

Proposition 1.2.9. For every positive real number ρ < 1, the Gauss ρ-norm onAinf [1/p, 1/[ϖ]]
is a multiplicative norm.

Proof. Let f and g be arbitrary elements in Ainf [1/p, 1/[ϖ]]. We wish to show

|f + g|ρ ≤ max(|f |ρ , |g|ρ) and |fg|ρ = |f |ρ |g|ρ .

Since |F | is dense in the set of nonnegative real numbers, Lemma 1.2.7 implies that the set

S := { τ ∈ (0, 1) ∩ |F | : τ is generic for f, g, f + g, and fg }
is dense in the interval (0, 1). Hence we write ρ = lim

n!∞
τn for some (τn) in S to assume ρ ∈ S.

Take an element c ∈ mF with |c| = ρ. Then ξ := [c]−p ∈ Ainf is a nondegenerate primitive
element, and thus gives rise to an element y ∈ Y with |y| = ρ by Proposition 1.1.13, Theorem
1.1.21, and Example 1.2.2. Then by Lemma 1.2.8 we find

|f + g|ρ = |f(y) + g(y)|C ≤ max(|f(y)|C , |g(y)|C) = max(|f |ρ , |g|ρ),
|fg|ρ = |f(y)g(y)|C = |f(y)|C |g(y)|C = |f |ρ |g|ρ .

Therefore we complete the proof. □
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Definition 1.2.10. Let [a, b] be a closed subinterval of (0, 1). We write

Y[a,b] := { y ∈ Y : a ≤ |y| ≤ b } ,
and define the ring of holomorphic functions on Y[a,b], denoted by B[a,b], to be the completion
of Ainf [1/p, 1/[ϖ]] with respect to the Gauss a-norm and the Gauss b-norm.

Lemma 1.2.11. Let [a, b] be a closed subinterval of (0, 1), and let f be an element inAinf [1/p, 1/[ϖ]].
We have |f |ρ ≤ sup(|f |a , |f |b) for all ρ ∈ [a, b].

Proof. Let us write f =
∑

[cn]pn for some cn ∈ F . Then we have

|cn| ρn ≤ |cn| bn ≤ |f |b for all n ≥ 0,

|cn| ρn ≤ |cn| an ≤ |f |a for all n < 0.

Hence we deduce the desired assertion. □

Remark. Since |F | is dense in (0,∞), we find sup
|y|=ρ

(|f(y)|C) = |f |ρ for all ρ ∈ |F | ∩ (0, 1) by

Lemma 1.2.7 and Lemma 1.2.8. Hence we may regard Lemma 1.2.11 as an analogue of the
maximum modulus principle for holomorphic functions on D∗.

Proposition 1.2.12. Let [a, b] be a closed subinterval of (0, 1). The ring B[a,b] is the comple-
tion of Ainf [1/p, 1/[ϖ]] with respect to all Gauss ρ-norms with ρ ∈ [a, b].

Proof. Lemma 1.2.11 implies that a sequence (fn) in Ainf [1/p, 1/[ϖ]] is Cauchy with
respect to the Gauss a-norm and the Gauss b-norm if and only if it is Cauchy with respect to
the Gauss ρ-norm for all ρ ∈ [a, b]. □

Corollary 1.2.13. For any a, b, a′, b′ ∈ R with [a, b] ⊆ [a′, b′] ⊆ (0, 1), we have B[a′,b′] ⊆ B[a,b].

Definition 1.2.14. We define the ring of holomorphic functions on Y by

BF := lim −B[a,b]

where the transition maps are the natural inclusions given by Corollary 1.2.13. We often write
B instead of BF to ease the notation.

Remark. It is not hard to see that a formal sum
∑

[cn]pn with cn ∈ F converges in B if and
only if it satisfies

lim sup
n>0

|cn|1/n ≤ 1 and lim
n!∞

|c−n|1/n = 0.

This is an analogue of the fact that a Laurent series
∑
anz

n over C converges on D∗ if and
only if it satisfies

lim sup
n>0

|an|1/n ≤ 1 and lim
n!∞

|a−n|1/n = 0.

However, an arbitrary element in B may not admit a unique “Laurent series expansion” in p,
whereas every holomorphic function on D∗ admits a unique Laurent series expansion.

Lemma 1.2.15. Let η : R1 −! R2 be a continuous homomorphism of normed rings.

(1) The map η uniquely extends to a continuous ring homomorphism η̂ : R̂1 −! R̂2

where R̂1 and R̂2 respectively denote the completions of R1 and R2.

(2) The homomorphism η̂ is a homeomorphism if η is a homeomorphism.

Proof. This is an immediate consequence of an elementary fact from analysis. □
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Proposition 1.2.16. Let C be a characteristic 0 untilt of F . The untilt map θC uniquely

extends to a surjective continuous open ring homomorphism θ̂C : B ↠ C.

Proof. The map θC uniquely extends to a surjective ring homomorphism

θ̃C : Ainf [1/p, 1/[ϖ]] ↠ OC [1/p] = C.

Let us set ρ := |p|C . Then θ̃C uniquely extends to a surjective continuous ring homomorphism̂̂
θC : B[ρ,ρ] ↠ C by Lemma 1.2.8 and Lemma 1.2.15. Moreover,

̂̂
θC is open by the open

mapping theorem. Take θ̂C to be the restriction of
̂̂
θC on B. By construction θ̂C is a surjective

continuous open map which extends θ̃C . Since the uniqueness is evident by the continuity, we
deduce the desired assertion. □

Definition 1.2.17. Let y be an element in Y , represented by an untilt C of F .

(1) We refer to the map θ̂C given by Proposition 1.2.16 as the evaluation map at y.

(2) For every f ∈ B, we define its value at y by f(y) := θ̂C(f).

Proposition 1.2.18. The Frobenius automorphism of F uniquely lifts to a continuous auto-
morphism φ on B.

Proof. Let φ̃F denote the Frobenius automorphism of W (F ). By construction we have

φ̃F

(∑
[cn]pn

)
=
∑

[cpn]pn for all cn ∈ F. (1.7)

Then Proposition 1.2.3 implies that φ̃F restricts to an automorphism on Ainf [1/p, 1/[ϖ]].
Moreover, by (1.7) we find

|φ̃F (f)|ρp = |f |pρ for all f ∈ Ainf [1/p, 1/[ϖ]] and ρ ∈ (0, 1). (1.8)

Consider an arbitrary closed interval [a, b] ⊆ (0, 1), and choose a real number r ∈ [a, b]. By
Lemma 1.2.15 and (1.8) the map φ̃F on Ainf [1/p, 1/[ϖ]] uniquely extends to a continuous ring
isomorphism φ[r,r] : B[r,r] ≃ B[rp,rp]. In addition, the identity (1.8) implies that a sequence
(fn) in Ainf [1/p, 1/[ϖ]] is Cauchy with respect to the Gauss a-norm and the Gauss b-norm if
and only if the sequence (φ̃F (fn)) is Cauchy with respect to the Gauss ap-norm and the Gauss
bp-norm. Since φ̃F is bijective, we deduce that φ[r,r] restricts to a continuous ring isomorphism

φ[a,b] : B[a,b] ≃ B[ap,bp] with an inverse given by the restriction of φ−1
[r,r] on B[ap,bp]. It is evident

by construction that φ[a,b] is an extension of φ̃F .

By our discussion in the preceding paragraph, the map φ̃F on Ainf [1/p, 1/[ϖ]] extends to
a continuous isomorphism

φ : B = lim −B[a,b] ≃ lim −B[ap,bp] = B.

Moreover, the uniqueness of φ is evident by the continuity. Therefore we obtain the desired
assertion. □

Definition 1.2.19. We refer to the map φ constructed in Proposition 1.2.18 as the Frobenius
automorphism of B, and define the schematic Fargues-Fontaine curve as the scheme

XF := Proj

⊕
n≥0

Bφ=pn

 .

We often simply write X instead of XF to ease the notation.
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1.3. The adic Fargues-Fontaine curve

In this subsection, we describe another incarnation of the Fargues-Fontaine curve using
the language of adic spaces developed by Huber in [Hub93] and [Hub94]. Our goal for
this subsection is twofold: introducing a new perspective for the construction of the Fargues-
Fontaine curve, and providing an exposition on some related theories. Our discussion will be
cursory, as we won’t use any results from this section in the subsequent sections.

Definition 1.3.1. Let R be a topological ring.

(1) We say that a subset S of R is bounded if for every open neighborhood U of 0 there
exists an open neighborhood V of 0 with V S ⊆ U .

(2) We say that an element f ∈ R is power-bounded if the set { fn : n ≥ 0 } is bounded,
and denote by R◦ the subring of power-bounded elements in R.

(3) We say that R is a Huber ring if there exists an open subring R0, called a ring of
definition, on which the induced topology is generated by a finitely generated ideal.

(4) If R is a Huber ring, we say that R is uniform if R◦ is a ring of definition.

Example 1.3.2. We present some important examples of uniform Huber rings.

(1) Every ring R with the discrete topology is a uniform Huber ring with R◦ = R, as its
topology is generated by the zero ideal.

(2) Every nonarchimedean field L is a uniform Huber ring with L◦ = OL, as the topology
on OL is generated by the ideal mOL for any m in the maximal ideal.

(3) The ring Ainf is a uniform Huber ring with A◦
inf = Ainf and the topology generated

by the ideal pAinf + [ϖ]Ainf .

Definition 1.3.3. A Huber pair is a pair (R,R+) which consists of a Huber ring R and its
open and integrally closed subring R+ ⊆ R◦.

Proposition 1.3.4. For every Huber ring R, the subring R◦ is open and integrally closed.

Definition 1.3.5. Let R be a topological ring.

(1) A map v : R −! T ∪ { 0 } for some totally ordered abelian group T is called a
continuous multiplicative valuation if it satisfies the following properties:

(i) v(0) = 0 and v(1) = 1.

(ii) For all r, s ∈ R we have v(rs) = v(r)v(s) and v(r + s) ≤ max(v(r), v(s)).

(iii) For every τ ∈ T the set { r ∈ R : v(r) < τ } is open in R.

(2) We say that two continuous multiplicative valuations v and w on R are equivalent if
there exists an isomorphism of totally ordered monoids δ : v(R)∪{ 0 } ≃ w(R)∪{ 0 }
with δ(v(r)) = w(r) for all r ∈ R.

(3) We define the valuation spectrum of R, denoted by Spv(R), to be the set of equiva-
lence classes of continuous multiplicative valuations on R.

(4) Given r ∈ R and x ∈ Spv(R), we define the value of r at x by |r(x)| := v(r) where v
is any representative of x.

Remark. Our terminology in (1) slightly modifies Huber’s original terminology continuous
valuation in order to avoid any potential confusion after extensively using the term valuation
in the additive notation.

Proposition 1.3.6. Let v and w be continuous multiplicative valuations on a topological
ring R. Then v and w are equivalent if and only if for all r, s ∈ R the inequality v(r) ≤ v(s)
amounts to the inequality w(r) ≤ w(s).
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Definition 1.3.7. For a Huber pair (R,R+), we define its adic spectrum by

Spa(R,R+) :=
{
x ∈ Spv(R) : |f(x)| ≤ 1 for all f ∈ R+

}
endowed with the topology generated by subsets of the form

U(f/g) :=
{
x ∈ Spa(R,R+) : |f(x)| ≤ |g(x)| ≠ 0

}
for some f, g ∈ R.

Example 1.3.8. We are particularly interested in the set

Y := Spa(Ainf , Ainf)\ { x ∈ Spa(Ainf , Ainf) : |p[ϖ](x)| = 0 } ,
which we call the perfectoid punctured unit disk. Let us describe two types of points on Y.

Let y be an element in Y , represented by an untilt C of F . Consider a nonnegative real
valued function vy on Ainf defined by vy(f) := |f(y)|C = |θC(f)|C for every f ∈ Ainf . It is
evident by construction that vy is a continuous multiplicative valuation on Ainf with vy(f) ≤ 1
for all f ∈ Ainf . In addition, we have vy(p) = |p|C ̸= 0 and vy([ϖ]) = |ϖ| ≠ 0. Hence vy gives
rise to a point in Y, which we denote by ỹ.

Let ρ be a real number with 0 < ρ < 1. By Proposition 1.2.9 the Gauss ρ-norm on
Ainf [1/p, 1/[ϖ]] restricts to a continuous multiplicative valuation on Ainf with |f |ρ ≤ 1 for all

f ∈ Ainf . In addition, we have |p|ρ = ρ ̸= 0 and |[ϖ]|ρ = |ϖ| ≠ 0. Hence the Gauss ρ-norm

on Ainf [1/p, 1/[ϖ]] gives rise to a point in Y, which we denote by γρ.

Remark. Interested readers may find some informative illustrations of Spa(Ainf , Ainf) and Y
in Scholze’s Berkeley lectures [SW20, §12].

Definition 1.3.9. Let (R,R+) be a Huber pair. A rational subset of Spa(R,R+) is a subset
of the form

U(T/g) :=
{
x ∈ Spa(R,R+) : |f(x)| ≤ |g(x)| ≠ 0 for all f ∈ T

}
for some g ∈ R and some nonempty finite set T ⊆ R such that TR is open in R.

Example 1.3.10. We say that a subset of Y is distinguished if it has the form

Y[|ϖ|i,|ϖ|j ] :=
{
x ∈ Y :

∣∣[ϖi](x)
∣∣ ≤ |p(x)| ≤

∣∣[ϖj ](x)
∣∣ }

for some i, j ∈ Z[1/p] with 0 < j ≤ i. Every distinguished subset of Y is a rational subset of
Spa(Ainf , Ainf); indeed, we have an identification

Y[|ϖ|i,|ϖ|j ] =
{
x ∈ Spa(Ainf , Ainf) :

∣∣[ϖi+j ](x)
∣∣ , ∣∣p2(x)

∣∣ ≤ ∣∣[ϖj ]p(x)
∣∣ ̸= 0

}
= U(T[i,j]/[ϖ

j ]p)

where Ti,j :=
{

[ϖi+j ], p2
}

generates an open ideal in Ainf . In particular, every distinguished
subset of Y is open in Spa(Ainf , Ainf).

Let us describe some points on each Y[|ϖ|i,|ϖ|j ] in line with our discussion in Example

1.3.8. For an element y ∈ Y , we have ỹ ∈ Y[|ϖ|i,|ϖ|j ] if and only if y is an element of Y[|ϖ|i,|ϖ|j ].

For a real number ρ with 0 < ρ < 1, we have γρ ∈ Y[|ϖ|i,|ϖ|j ] if and only if ρ belongs to the

interval [|ϖ|i , |ϖ|j ].
Remark. We can extend our discussion above by defining the absolute value for an arbitrary
point x ∈ Y. We say that a valuation is of rank 1 if it takes values in the set of positive real
numbers. It is a fact that x admits a unique maximal generization xmax of rank 1. We define
the absolute value of x by

|x| := |ϖ|
log(|p(xmax)|)

log(|[ϖ](xmax)|) .

Let us now consider Y[|ϖ|i,|ϖ|j ] of Y for some i, j ∈ Z[1/p]. Since Y[|ϖ|i,|ϖ|j ] is open in

Spa(Ainf , Ainf) as noted above, the point x lies in Y[|ϖ|i,|ϖ|j ] if and only if xmax does, which

amounts to having |x| ∈ [|ϖ|i , |ϖ|j ].
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Proposition 1.3.11. Let (R,R+) be a Huber pair, and write S := Spa(R,R+). Consider a
rational subset U := U(T/g) for some g ∈ R and some nonempty finite set T ⊆ R such that
TR is open in R.

(1) There exists a map of Huber pairs (R,R+) −! (OS(U),O+
S (U)) for some complete

Huber ring OS(U) with the following properties:

(i) The induced map Spa(OS(U),O+
S (U)) −! S yields a homeomorphism onto U .

(ii) It is universal for maps of Huber pairs (R,R+) −! (Q,Q+) such that the
induced map Spa(Q,Q+) −! S factors over U .

(2) If R is uniform such that the topology on R◦ is given by a finitely generated ideal I,
then OS(U) is given by the completion of R[1/g] with respect to the ideal generated
by I and the set T ′ := { f/g : f ∈ T }.

Definition 1.3.12. Let (R,R+) be a Huber pair, and write S := Spa(R,R+). We define the
presheaves OS and O+

S on S by

OS(W) := lim −
U⊆W

U rational

OS(U) and O+
S (W) := lim −

U⊆W
U rational

O+
S (U) for all open W ⊆ S

where OS(U) and O+
S (U) for each rational subset U of S are given by Proposition 1.3.11. We

refer to OS as the structure presheaf of S.

Remark. The ring O+
S (W) is in general not open in OS(W).

Example 1.3.13. Let us write S := Spa(Ainf , Ainf). We assert that Y is an open subset
of S with OS(Y) ∼= B. The set Y is covered by the distinguished subsets; indeed, as both
[ϖ] and p are topologically nilpotent in Ainf , for every x ∈ Y there exist some positive

real numbers i, j ∈ Z[1/p] with
∣∣[ϖi](x)

∣∣ ≤ |p(x)| and
∣∣p1/j(x)

∣∣ ≤ |[ϖ](x)|, or equivalently∣∣[ϖi](x)
∣∣ ≤ |p(x)| ≤

∣∣[ϖj ](x)
∣∣. Since distinguished subsets of Y are (open) rational subsets of

S as noted in Example 1.3.10, we deduce that Y is an open subset of S with

OS(Y) = lim −OS(Y[|ϖ|i,|ϖ|j ]) (1.9)

where the limit is taken over all distinguished subsets of Y.

Consider arbitrary numbers i, j ∈ Z[1/p] with 0 < j ≤ i. In light of (1.9) it suffices to
establish an identification

OS(Y[|ϖ|i,|ϖ|j ])
∼= B[|ϖ|i,|ϖ|j ]. (1.10)

Proposition 1.3.11 and Example 1.3.2 together imply that OS(Y[|ϖ|i,|ϖ|j ]) is the completion of

Ainf [1/p, 1/[ϖ]] with respect to the ideal I generated by the set T :=
{
p, [ϖ], [ϖi]/p, p/[ϖj ]

}
.

Moreover, the ideal I is generated by [ϖi]/p and p/[ϖj ] as we have p = (p/[ϖj ]) · [ϖj ] and
[ϖ] = ([ϖi]/p)r · pr · (1/[ϖ])s for some positive integers r and s. It is then straightforward to
verify that the I-adic topology on Ainf [1/p, 1/[ϖ]] coincides with the topology induced by the

Gauss |ϖ|i-norm and the Gauss |ϖ|j-norm. Therefore we obtain the identification (1.10) as
desired.

Definition 1.3.14. We say that a Huber pair (R,R+) is sheafy if the structure presheaf on
Spa(R,R+) is a sheaf.

Proposition 1.3.15. Let (R,R+) be a Huber pair, and write S := Spa(R,R+).

(1) For every open W ⊆ S we have

O+
S (W) = { f ∈ OS(W) : |f(x)| ≤ 1 for all x ∈ W } .

(2) The presheaf O+
S is a sheaf if (R,R+) is sheafy.
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Definition 1.3.16. Let R be a Huber ring.

(1) We say that R is Tate if it contains a topologically nilpotent unit.

(2) We say that R is strongly noetherian if for every n ≥ 0 the Tate algebra

R⟨u1, · · · , un⟩ :=
{∑

ai1,··· ,inu
i1
1 · · ·uinn ∈ R[[u1, · · · , un]] : lim ai1,··· ,in = 0

}
is noetherian.

Theorem 1.3.17 (Huber [Hub94]). A Huber pair (R,R+) is sheafy if R is Tate and strongly
noetherian.

Theorem 1.3.18 (Kedlaya [Ked16]). For every closed interval [a, b] ⊆ (0, 1) the topological
ring B[a,b] is a Tate and strongly noetherian Huber ring.

Definition 1.3.19. An adic space is a topological space S together with a sheaf OS of
topological rings and a continuous multiplicative valuation vx on OS,x for each x ∈ S such
that S is locally of the form Spa(R,R+) for some sheafy Huber pair (R,R+).

Example 1.3.20. By Example 1.3.13, Theorem 1.3.17 and Theorem 1.3.18 we deduce that
distinguished subsets of Y are noetherian adic spaces, and in turn find that Y is a locally
noetherian adic space. In addition, for every closed interval [a, b] ⊆ (0, 1) we see that

Y[a,b] :=
⋃

[|ϖ|i,|ϖ|j ]⊆[a,b]

Y[|ϖ|i,|ϖ|j ]

is a locally noetherian adic space with OY[a,b]
(Y[a,b]) = B[a,b].

Proposition 1.3.21. Every morphism of Huber pairs g : (R,R+) −! (Q,Q+) induces a map
of presheaves OS −! g∗OT where we write S := Spa(R,R+) and T := Spa(Q,Q+).

Example 1.3.22. Let ϕ denote the automorphism of Spa(Ainf , Ainf) induced by the Frobenius
automorphism of Ainf . It is evident by construction that Y is stable under ϕ. In addition,
by Example 1.3.13 and Proposition 1.3.21 we get an induced automorphism on OY(Y) ∼= B
which is easily seen to coincide with φ.

Let us choose c ∈ (1/p, p) ∩Q. For every n ∈ Z, we set

Vn := Y
[|ϖ|1/pn ,|ϖ|c/pn ] and Wn := Y

[|ϖ|c/pn ,|ϖ|c/pn+1
]
.

Arguing as in Example 1.3.13, we find that Y is covered by such sets. In addition, we have
ϕ(Vn) = Vn−1 and ϕ(Wn) = Wn−1 for all n ∈ Z. Therefore the action of ϕ on Y is properly
discontinuous, and consequently yields the quotient space

X := Y/ϕZ.
Moreover, X is covered by (the isomorphic images of) V0 and W0, which are noetherian adic
spaces as noted in Example 1.3.20. Hence X is a noetherian adic space with OX (X ) ∼= Bφ=1.

Definition 1.3.23. We refer to the noetherian adic space X constructed in Example 1.3.22
as the adic Fargues-Fontaine curve.

Theorem 1.3.24 (Kedlaya-Liu [KL15]). There exists a natural morphism of locally ringed
spaces h : X −! X such that the pullback along h induces an equivalence

h∗ : BunX
∼
−! BunX

where BunX and BunX respectively denote the categories of vector bundles on X and X .

Remark. Theorem 1.3.24 is often referred to as “GAGA for the Fargues-Fontaine curve”.
By Theorem 1.3.24, studying the schematic Fargues-Fontaine curve is essentially equivalent
to studying the adic Fargues-Fontaine curve.
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2. Geometric structure

In this section we establish some fundamental geometric properties of the Fargues-Fontaine
curve. Our discussion will show that the Fargues-Fontaine curve is geometrically very akin to
proper curves over Qp. In addition, our discussion will provide a number of new perspectives
towards several constructions from Chapter III. The primary references for this section are
Fargues and Fontaine’s survey paper [FF12] and Lurie’s notes [Lur]

2.1. Legendre-Newton polygons

We begin by introducing a crucial tool for studying the structure of the ring B.

Definition 2.1.1. Let logp denote the real logarithm base p.

(1) Given an element f ∈ B, we define the Legendre-Newton polygon of f as the function
Lf : (0,∞) −! R ∪ {∞ } given by

Lf (s) := − logp

(
|f |p−s

)
for all s ∈ (0,∞).

(2) Given a closed interval [a, b] ⊆ (0, 1) and an element f ∈ B[a,b], we define the
Legendre-Newton [a, b]-polygon of f as the function Lf,[a,b] : [− logp(b),− logp(a)] −!
R ∪ {∞ } given by

Lf,[a,b](s) := − logp

(
|f |p−s

)
for all s ∈ [− logp(b),− logp(a)].

Remark. With notations as in Example 1.3.8, we may write Lf (s) = − logp
(∣∣f(γp−s)

∣∣) for
all f ∈ B and s ∈ (0,∞).

Lemma 2.1.2. Given any elements f, g ∈ Ainf [1/p, 1/[ϖ]], we have

Lfg(s) = Lf (s) + Lg(s) and Lf+g(s) ≥ min(Lf (s),Lg(s)) for all s ∈ (0,∞).

Proof. This is an immediate consequence of Proposition 1.2.9. □

Our main goal in this subsection is to prove that Legendre-Newton polygons are indeed
polygons with decreasing integer slopes.

Definition 2.1.3. Let g be a piecewise linear function defined on an interval I ⊆ R.

(1) We say that g is concave if the slopes are decreasing, and convex if the slopes are
increasing.

(2) We write ∂−g and ∂+g respectively for the left and right derivatives of g.

Example 2.1.4. Let f =
∑

[cn]pn be a nonzero element in Ainf [1/p, 1/[ϖ]]. Its Newton
polygon is defined as the lower convex hull the points (n, νF (cn)) ∈ R2, which we may regard
as a convex piecewise linear function on (0,∞).

Lemma 2.1.5. Given a nonzero element f =
∑

[cn]pn ∈ Ainf [1/p, 1/[ϖ]], we have

Lf (s) = inf
n∈Z

(νF (cn) + ns) for every s ∈ (0,∞).

Proof. This is obvious by definition. □

Remark. By Lemma 2.1.5 it is not hard to verify that Lf coincides with the Legendre
transform of the Newton polygon of f .

Example 2.1.6. Let ξ be a primitive element in Ainf with the Teichmüller expansion ξ =∑
[cn]pn. By Proposition 1.1.12 we have

Lξ(s) = min(νF (c0), νF (c1) + s) = min(νF (c0), s) for all s ∈ (0,∞).
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Proposition 2.1.7. Let f =
∑

[cn] be a nonzero element in Ainf [1/p, 1/[ϖ]].

(1) Lf is a concave piecewise linear function with integer slopes.

(2) For each s ∈ (0,∞), the one-sided derivatives ∂−Lf (s) and ∂+Lf (s) are respectively
given by the minimum and maximum elements of the set

Ts := { n ∈ Z : Lf (s) = νF (cn) + ns } .

Proof. Fix a real number s > 0. Lemma 2.1.5 and Lemma 1.2.5 together imply that
Ts is finite. Let l and r respectively denote the minimum and maximum elements of Ts. By
construction we have

νF (cl) + ls = νF (cr) + rs ≤ νF (cn) + ns for all n ∈ Z (2.1)

where equality holds if and only if n belongs to Ts. It suffices to show that for all sufficiently
small ϵ > 0 we have

Lf (s+ ϵ) = Lf (s) + lϵ and Lf (s− ϵ) = Lf (s) − rϵ. (2.2)

Let us consider the first identity in (2.2). Take k < 0 with cn = 0 for all n ≤ k, and set

δ1 := inf
n<l

(
(νF (cn) + ns) − (νF (cl) + ls)

l − n

)
= inf

k<n<l

(
(νF (cn) + ns) − (νF (cl) + ls)

l − n

)
.

Then we have δ1 > 0 as the inequality in (2.1) is strict for all n < l. Let ϵ be a real number
with 0 < ϵ < δ1. For every n < l we find ϵ(l − n) < δ1(l − n) ≤ (νF (cn) + ns) − (νF (cl) + ls)
and consequently obtain

νF (cl) + l(s+ ϵ) < νF (cn) + n(s+ ϵ).

In addition, for every n > l we have

νF (cl) + l(s+ ϵ) ≤ νF (cn) + ns+ lϵ < νF (cn) + n(s+ ϵ)

where the first inequality follows from (2.1). Therefore we obtain

Lf (s+ ϵ) = inf
n∈Z

(νF (cn) + n(s+ ϵ)) = νF (cl) + l(s+ ϵ) = Lf (s) + lϵ.

We now consider the second identity in (2.2). Proposition 1.2.3 implies that there exists
λ ∈ R with νF (cn) > λ for all n ∈ Z. Let us set

u :=
νF (cr) − λ

s/2
+ r and δ2 := inf

r<n<u

(
(νF (cn) + ns) − (νF (cr) + rs)

n− r

)
.

Then we have δ2 > 0 as the inequality in (2.1) is strict for all n > r. Let ϵ be a real number
with 0 < ϵ < min(s/2, δ2). For every n > u we find

νF (cr) − νF (cn) < νF (cr) − λ = (u− r)s/2 < (n− r)(s− ϵ)

and consequently obtain

νF (cr) + r(s− ϵ) < νF (cn) + n(s− ϵ).

In addition, we get the same inequality for every n < r by arguing as in the preceding
paragraph. Therefore we deduce

Lf (s− ϵ) = inf
n∈Z

(νF (cn) + n(s− ϵ)) = νF (cr) + r(s− ϵ) = Lf (s) − rϵ,

thereby completing the proof. □

Remark. In light of the remark after Lemma 2.1.5, we can alternatively deduce Proposition
2.1.7 from a general fact that the Legendre transform of a convex piecewise linear function
with integer breakpoints is a concave piecewise linear function with integer slopes.
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Lemma 2.1.8. Let (fn) be a Cauchy sequence in Ainf [1/p, 1/[ϖ]] with respect to the Gauss
p−s-norm for some s > 0. Assume that (fn) does not converge to 0. Then the sequences
(Lfn(s)), (∂−Lfn(s)), and (∂+Lfn(s)) are all eventually constant.

Proof. The sequence
(
|fn|p−s

)
converges in R. Let us set

a := lim
n!∞

Lfn(s) = − lim
n!∞

logp

(
|fn|p−s

)
,

and take an integer u > 0 with

Lfn−fu(s) = − logp

(
|fn − fu|p−s

)
> 2a and Lfn(s) < 2a for all n ≥ u.

For every n ≥ u, since both Lfu and Lfn−fu are continuous, we may find some δn > 0 with

Lfn−fu(s+ ϵ) > 2a > Lfu(s+ ϵ) for all ϵ ∈ (−δn, δn),

and consequently obtain Lfu(s + ϵ) = Lfn(s + ϵ) for all ϵ ∈ (−δn, δn) by Lemma 2.1.2. This
implies that for every n ≥ u we have

Lfn(s) = Lfu(s), ∂−Lfn(s) = ∂−Lfu(s), ∂+Lfn(s) = ∂+Lfu(s).

Hence we deduce the desired assertion. □

Proposition 2.1.9. Let [a, b] be a closed subinterval of (0, 1), and let (fn) be a Cauchy
sequence in Ainf [1/p, 1/[ϖ]] with respect to the Gauss a-norm and the Gauss b-norm. Assume
that (fn) does not converge to 0 with respect to either the Gauss a-norm or the Gauss b-norm.
Then the sequence of functions (Lfn) is eventually constant on [− logp(b),− logp(a)].

Proof. Let us write l := − logp(b) and r := − logp(a). Without loss of generality we may
assume that each fn is not zero. In addition, by symmetry we may assume that fn does not
converge to 0 with respect to the Gauss b-norm. Then Lemma 2.1.8 yields α, β ∈ R and u ∈ Z
such that we have Lfn(l) = α and ∂+Lfn(l) = β for all n > u. Since each Lfn is concave and
piecewise linear by Proposition 2.1.7, we set ω := max(α, α+ β(r − l)) and find

Lfn(s) ≤ α+ β(s− l) ≤ ω for all n > u and s ∈ [l, r]. (2.3)

Moreover, Lemma 1.2.11 (or Proposition 1.2.12) implies that the sequence (fn) converges
with respect to all Gauss ρ-norms with ρ ∈ [a, b], thereby yielding an integer u′ > u with
|fn − fu′ |ρ < p−ω for all n > u′ and ρ ∈ [a, b], or equivalently

Lfn−fu′ (s) > ω for all n > u′ and s ∈ [l, r].

Hence by Lemma 2.1.2 and (2.3) we find

Lfn(s) = Lfu′ (s) for all n > u′ and s ∈ [l, r].

thereby deducing the desired assertion. □

Proposition 2.1.10. Let [a, b] be a closed subinterval of (0, 1). For every nonzero f ∈ B[a,b],
the function Lf,[a,b] is concave and piecewise linear with integer slopes.

Proof. Take a sequence (fn) in Ainf [1/p, 1/[ϖ]] which converges to f with respect to the
Gauss a-norm and the Gauss b-norm. By Proposition 1.2.12 we have

Lf,[a,b](s) = lim
n!∞

Lfn(s) for all s ∈ [− logp(b),− logp(a)].

Since f is not zero, the assertion follows by Proposition 2.1.7 an Proposition 2.1.9. □
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Remark. For a holomorphic function g on the annulus D∗
[a,b] := { z ∈ C : a ≤ |z| ≤ b }, the

Hadamard three-circle theorem asserts that the function Mg : [ln(a), ln(b)] −! R defined by

Mg(r) := ln
(

sup
|z|=er

(|g(z)|)
)

for all r ∈ [ln(a), ln(b)] is convex. In light of the remark after

Lemma 1.2.11 we may consider Proposition 2.1.10 as an analogue of the Hadamard three-circle
theorem.

Corollary 2.1.11. For every nonzero f ∈ B, the Legendre-Newton polygon Lf is a concave
piecewise linear function with integer slopes.

Remark. Corollary 2.1.11 suggests that we can define the Newton polygon of f as the Le-
gendre transform of Lf .

Example 2.1.12. Let f be an invertible element in B. By Lemma 2.1.2 we find

Lf (s) = L1(s) − Lf−1(s) = −Lf−1(s) for all s ∈ (0,∞).

Since both Lf and Lf−1 are concave piecewise linear functions as noted in Corollary 2.1.11,
we deduce that Lf is linear.

Remark. In fact, it is not hard to prove that a nonzero element f ∈ B is invertible if and
only if Lf is linear.

Let us present some important applications of the Legendre-Newton polygons.

Definition 2.1.13. For every n ∈ Z, we refer to the ring Bφ=pn as the Frobenius eigenspace
of B with eigenvalue pn.

Lemma 2.1.14. Given an element f ∈ B, we have

|φ(f)|ρp = |f |pρ and |pf |ρ = ρ |f |ρ for all ρ ∈ (0, 1).

Proof. If f is an element in Ainf [1/p, 1/[ϖ]], the assertion is evident by construction.
The assertion for the general case then follows by continuity. □

Proposition 2.1.15. The Frobenius eigenspace Bφ=pn is trivial for every n < 0.

Proof. Suppose for contradiction that Bφ=pn contains a nonzero element f . By Lemma
2.1.14 we have

pLf (s) = Lφ(f)(ps) = Lpnf (ps) = nps+ Lf (ps) for all s > 0.

Since Lf is a concave piecewise linear function by Corollary 2.1.11, we find

p∂+Lf (s) = np+ p∂+Lf (ps) ≤ np+ p∂+Lf (s) for all s > 0, (2.4)

thereby obtaining a contradiction as desired. □

Remark. A similar argument shows that Lf is linear for every nonzero f ∈ Bφ=1. In
Proposition 3.1.6 we will build on this fact to prove that Bφ=1 is naturally isomorphic to Qp.

Proposition 2.1.16. Let [a, b] be a closed subinterval of (0, 1), and let f be a nonzero element
in B[a,b]. Then we have |f |ρ ̸= 0 for every ρ ∈ [a, b].

Proof. Proposition 2.1.10 implies that Lf,[a,b](− logp(ρ)) = − logp

(
|f |ρ

)
is finite for

every ρ ∈ [a, b], thereby yielding the desired assertion. □

Corollary 2.1.17. For every closed interval [a, b] ⊆ (0, 1) the ring B[a,b] is an integral domain.

Proof. This is an immediate consequence of Proposition 1.2.9 and Proposition 2.1.16. □
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2.2. Divisors and zeros of functions

In this subsection we define the notion of divisors on Y for elements in B.

Definition 2.2.1. A divisor on Y is a formal sum
∑
y∈Y

ny · y with ny ∈ Z such that for every

closed interval [a, b] ⊆ (0, 1) the set Z[a,b] :=
{
y ∈ Y[a,b] : ny ̸= 0

}
is finite.

Remark. Definition 2.2.1 is comparable with the definition of Weil divisors on locally noe-
therian integral schemes as given in [Sta, Tag 0BE2].

Lemma 2.2.2. Let f and g be elements in B. Assume that f is divisible by g in B[a,b] for
every closed interval [a, b] ⊆ (0, 1). Then f is divisible by g in B.

Proof. For every n ≥ 2 we may write f = ghn for some hn ∈ B[1/n,1−1/n]. Then by
Corollary 1.2.13 and Corollary 2.1.17 we find that hn takes a constant value for all n ≥ 2.
Hence we get an element h ∈ B with h = hn for all n ≥ 2, thereby obtaining the desired
assertion. □

Proposition 2.2.3. Let y be an element in Y , represented by an untilt C of F . Every f ∈ B
with f(y) = 0 is divisible by every primitive element ξ ∈ ker(θC).

Proof. Consider an arbitrary closed interval [a, b] ⊆ (0, 1) with y ∈ Y[a,b]. By Lemma
2.2.2 it suffices to prove that f is divisible by ξ inB[a,b]. Take a sequence (fn) in Ainf [1/p, 1/[ϖ]]
which converges to f with respect to the Gauss a-norm and the Gauss b-norm. By Corollary

1.1.7 we may write fn(y) = c♯n for some cn ∈ F . Then we have

lim
n!∞

|cn| = lim
n!∞

∣∣∣c♯n∣∣∣
C

= lim
n!∞

|fn(y)|C = |f(y)|C = 0,

and consequently find that the sequence ([cn]) converges to 0 with respect to the Gauss a-
norm and the Gauss b-norm. Hence we may replace (fn) by (fn − [cn]) to assume fn(y) = 0
for all n > 0.

Let θ̃C : Ainf [1/p, 1/[ϖ]] −! C be the ring homomorphism which extends the untilt map

θC . Proposition 1.1.19 implies that ξ generates ker(θ̃C). We may thus write fn = ξgn for
some gn ∈ Ainf [1/p, 1/[ϖ]]. Then for every ρ ∈ [a, b] we use Proposition 1.2.9 to find

lim
n!∞

|gn+1 − gn|ρ =
1

|ξ|ρ
· lim
n!∞

|ξ(gn+1 − gn)|ρ =
1

|ξ|ρ
· lim
n!∞

|fn+1 − fn|ρ = 0,

which means that the sequence (gn) is Cauchy with respect to the Gauss ρ-norm. Therefore
the sequence (gn) defines an element g ∈ B[a,b] with f = ξg. □

Remark. By Corollary 1.1.7 we may write p = (p♭)
♯

for some p♭ ∈ mF , which is uniquely

determined up to unit multiple. Then we obtain a primitive element [p♭] − p ∈ ker(θC), and

consequently find an expression f = ([p♭] − p)g for some g ∈ B by Proposition 2.2.3. This is
an analogue of the fact that a holomorphic function f on D∗ with a zero at z0 ∈ D∗ can be
written in the form f = (z − z0)g for some holomorphic function g on D∗.

Corollary 2.2.4. Let C be a characteristic 0 untilt of F . Every primitive element ξ ∈ ker(θC)

generates ker(θ̂C).

Remark. Let [a, b] be a closed subinterval of (0, 1) with |p|C ∈ [a, b]. By the proof of
Proposition 1.2.16 the untilt map θC extends to a surjective continuous ring homomorphism̂̂
θC : B[a,b] ↠ C. Then we can similarly show that every primitive element ξ ∈ ker(θC)

generates ker(
̂̂
θC).

https://stacks.math.columbia.edu/tag/0BE2
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Proposition 2.2.5. Let C be a characteristic 0 untilt of F , and let θC [1/p] : Ainf [1/p] −! C
be the ring homomorphism which extends the untilt map θC . Then we have

Ainf [1/p] ∩ ker(θ̂C)j = ker(θC [1/p])j for all j ≥ 1.

Proof. The assertion for j = 1 follows by observing that θ̂C restricts to θC [1/p]. Let us

now proceed by induction on j. We only need to show Ainf [1/p] ∩ ker(θ̂C)j ⊆ ker(θC [1/p])j ,

since the reverse containment is obvious by the fact that θ̂C restricts to θC [1/p]. Let a be an

arbitrary element in Ainf [1/p] ∩ ker(θ̂C)j , and choose a primitive element ξ ∈ ker(θC). Then

ξ generates both ker(θ̂C) and ker(θC [1/p]) by Corollary 2.2.4 and Proposition 1.1.19. Hence
we may write a = ξjb for some b ∈ B. In addition, since we have

Ainf [1/p] ∩ ker(θ̂C)j ⊆ Ainf [1/p] ∩ ker(θ̂C)j−1 = ker(θC [1/p])j−1

by the induction hypothesis, there exists some c ∈ Ainf [1/p] with a = ξj−1c. We then find

0 = a− a = ξjb− ξj−1c = ξj−1(ξb− c),

and consequently obtain c = ξb by Corollary 2.1.17. This implies c ∈ Ainf [1/p]∩ ker(θ̂C), and
in turn yields c ∈ ker(θC [1/p]) by the assertion for j = 1 that we have already established.
Therefore we deduce a = ξj−1c ∈ ker(θC [1/p])j as desired. □

Definition 2.2.6. Let y be an element in Y , represented by an untilt C of F . We define the
de Rham local ring at y by

B+
dR(y) := lim −

j

Ainf [1/p]/ ker(θC [1/p])j

where θC [1/p] : Ainf [1/p] −! C is the ring homomorphism which extends the untilt map θC .

Proposition 2.2.7. Let y be an element in Y , represented by an untilt C of F .

(1) The ring B+
dR(y) is a complete discrete valuation ring with C as the residue field.

(2) Every primitive element in ker(θC) is a uniformizer of B+
dR(y).

(3) There exists a natural isomorphism

B+
dR(y) ∼= lim −

j

B/ ker(θ̂C)j .

Proof. Since C is algebraically closed as noted in Proposition 1.1.6, all results from the
first part of §2.2 in Chapter III remain valid with C in place of CK . Hence the statements
(1) and (2) follow from Proposition 2.2.16 in Chapter III and Proposition 1.1.19.

It remains to verify the statement (3). Let θC [1/p] : Ainf [1/p] ↠ C be the surjective ring
homomorphism which extends the untilt map θC , and choose a primitive element ξ ∈ ker(θC).

Then ξ generates both ker(θ̂C) and ker(θC [1/p]) by Corollary 2.2.4 and Proposition 1.1.19.
Hence we get a natural map

B+
dR(y) = lim −

j

Ainf [1/p]/ξ
jAinf [1/p] −! lim −

j

B/ξjB = lim −
j

B/ ker(θ̂C)j (2.5)

which is easily seen to be injective by Proposition 2.2.5. Moreover, since we have

Ainf [1/p]/ξAinf [1/p] ∼= C ∼= B/ξB,

the map (2.5) is surjective by a general fact as stated in [Sta, Tag 0315]. We thus deduce
that the natural map (2.5) is an isomorphism, thereby completing the proof. □

https://stacks.math.columbia.edu/tag/0315
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Definition 2.2.8. Let f be a nonzero element in B. We define its order of vanishing at
y ∈ Y to be its valuation in B+

dR(y), denoted by ordy(f).

Remark. The element y gives rise to a point ỹ ∈ Y as described in Example 1.3.8. With
Proposition 2.2.7 and our discussion in §1.3 we can show that B+

dR(y) is the completed local
ring at ỹ. In this sense, Definition 2.2.8 agrees with the usual definition for order of vanishing.

Example 2.2.9. Let ξ be a nondegenerate primitive element in Ainf . Theorem 1.1.21 implies
that ξ vanishes at a unique element yξ ∈ Y . Then we have

ordy(ξ) =

{
1 for y = yξ,

0 for y ̸= yξ.

Lemma 2.2.10. Let f and g be nonzero elements in B. Then we have

ordy(fg) = ordy(f) + ordy(g) for all y ∈ Y.

Proof. This is evident by definition. □

Proposition 2.2.11. Let f be a nonzero element in B. For every closed interval [a, b] ⊆ (0, 1),
the set Z[a,b] :=

{
y ∈ Y[a,b] : ordy(f) ̸= 0

}
is finite.

Proof. Let us write l := − logp(b) and r := − logp(a). We also set n := ∂−Lf (l) −
∂+Lf (r), which is a nonnegative integer by Corollary 2.1.11. Since we have ordy(f) ≥ 0 for
all y ∈ Y , it suffices to show ∑

y∈Z[a,b]

ordy(f) ≤ n. (2.6)

Suppose for contradiction that this inequality fails. By Proposition 2.2.3, Example 2.2.9 and
Lemma 2.2.10 we may write

f = ξ1ξ2 · · · ξn+1g (2.7)

for some g ∈ B and primitive elements ξ1, · · · , ξn+1 ∈ Ainf such that each ξi vanishes at a
unique element yi ∈ Y[a,b]. Then Example 1.2.2 and Example 2.1.6 together imply that for
each i = 1, · · · , n+ 1 we have

Lξi(s) =

{
s for s ≤ − logp(|yi|),
− logp(|yi|) for s > − logp(|yi|).

Hence we obtain

∂−Lξi(l) − ∂+Lξi(r) = 1 − 0 = 1 for each i = 1, · · · , n+ 1.

In addition, by Corollary 2.1.11 we have ∂−Lf (l) − ∂+Lf (r) ≥ 0. Therefore we use Lemma
2.1.2 and (2.7) to find

n = ∂−Lf (l) − ∂+Lf (r)

=

n+1∑
i=1

(∂−Lξi(l) − ∂+Lξi(r)) + (∂−Lg(l) − ∂+Lg(r))

≥ n+ 1,

thereby obtaining a contradiction as desired. □

Remark. It turns out that the inequality (2.6) is indeed an equality.

Definition 2.2.12. For every f ∈ B, we define its associated divisor on Y by

Div(f) :=
∑
y∈Y

ordy(f) · y.
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2.3. The logarithm and untilts

In this subsection, we define and study the logarithms of elements in the multiplicative
group 1 + mF . For the rest of this section we write m∗

F := mF \ { 0 }.

Proposition 2.3.1. There exists a group homomorphism log : 1 + mF −! Bφ=p with

log(ε) :=
∞∑
n=1

(−1)n+1 ([ε] − 1)n

n
for every ε ∈ 1 + mF . (2.8)

Proof. Given arbitrary ε ∈ 1 + mF and ρ ∈ (0, 1), we write [ε] − 1 =
∑

[cn]pn with
cn ∈ OF to find

|[ε] − 1|ρ ≤ max(|c0| , ρ) = max(|ε− 1| , ρ) < 1.

Hence we obtain a map log : 1 +mF −! B satisfying (2.8). It then follows that log is a group
homomorphism by the identity of formal power series log(xy) = log(x)+log(y). Furthermore,
as φ is continuous by construction, for every ε ∈ 1 + mF we find

φ(log(ε)) =

∞∑
n=1

(−1)n+1 (φ([ε]) − 1)n

n
=

∞∑
n=1

(−1)n+1 ([εp] − 1)n

n
= log(εp) = p log(ε),

thereby completing the proof. □

Remark. We will see in Proposition 3.1.8 that log is a Qp-linear isomorphism.

Definition 2.3.2. We refer to the map log : 1 + mF −! Bφ=p constructed in Proposition
2.3.1 as the logarithm on 1 + mF .

Proposition 2.3.3. Let C be a characteristic 0 untilt of F , and let mC denote the maximal
ideal of OC . There exists a commutative diagram

1 + mF Bφ=p

1 + mC C

log

ε7!ε♯ θ̂C

logµp∞

(2.9)

where all maps are group homomorphisms.

Proof. Let c be an arbitrary element in OF . By Proposition 2.1.9 in Chapter III, there

exists some a ∈ OC with c♯ − 1 = (c− 1)♯ + pa. If c belongs to 1 + mF , then we have∣∣∣c♯ − 1
∣∣∣
C
≤ max

(∣∣∣(c− 1)♯
∣∣∣
C
, |pa|C

)
= max(|c− 1| , |pa|C) < 1

and in turn obtain c♯ ∈ 1 + mC . Conversely, if c♯ belongs to 1 + mC , then we have

|c− 1| =
∣∣∣(c− 1)♯

∣∣∣
C
≤ max

(∣∣∣c♯ − 1
∣∣∣
C
, pa
)
< 1

and consequently obtain c ∈ 1 + mF . Therefore in light of Corollary 1.1.7 we deduce that
1 + mF maps onto 1 + mC under the sharp map.

Since the map θ̂C is continuous by construction, for every ε ∈ 1 + mF we have

θ̂C(log(ε)) =

∞∑
n=1

(−1)n+1 (θ̂C([ε]) − 1)n

n
=

∞∑
n=1

(−1)n+1 (ε♯ − 1)n

n
= logµp∞ (ε♯)

where the last identity follows by Example 3.3.9 in Chapter II. Moreover, as C is algebraically
closed by Proposition 1.1.6, the map logµp∞ is a surjective homomorphism by Proposition

3.3.11 in Chapter II. Therefore we obtain the commutative diagram (2.9) as desired. □
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Proposition 2.3.4. For every ε ∈ 1 + m∗
F , the element

ξε :=
[ε] − 1

[ε1/p] − 1
= 1 + [ε1/p] + · · · + [ε(p−1)/p] ∈ Ainf

is a nondegenerate primitive element which divides [ε] − 1 but not [ε1/p] − 1.

Proof. Let us write k := OF /mF for the residue field of F , and W (k) for the ring of
Witt vectors over k. In addition, for every c ∈ OF we denote by c its image under the natural
map OF ↠ k, and by [c] the Teichmüller lift of c in W (k). Lemma 2.3.1 from Chapter II
yields a homomorphism π : Ainf −!W (k) with

π
(∑

[cn]pn
)

=
∑

[cn]pn for all cn ∈ OF .

We then find π(ξε) = p by observing ε1/p = ε1/p = 1, and consequently obtain a Teichmüller
expansion

ξε = [m0] + [m1 + 1]p+
∑
n≥2

[mn]pn with mn ∈ mF .

Since we have |m0| < 1 and |m1 + 1| = 1, we deduce by Proposition 1.1.12 that ξε is a
primitive element in Ainf . Moreover, ξε is nondegenerate as we have

m0 = 1 + ε1/p + · · · + ε(p−1)/p =
ε− 1

ε1/p − 1
̸= 0.

It is also evident that ξε divides [ε] − 1. On the other hand, ξε does not divide [ε1/p] − 1,

since otherwise ξε = 1 + [ε1/p] + · · · + [ε(p−1)/p] should divide p, yielding a contradiction by
Proposition 1.1.13. □

Proposition 2.3.5. For every ε ∈ 1 + m∗
F , there exists some yε ∈ Y with ordyε(log(ε)) = 1.

Proof. Proposition 2.3.4 allows us to write [ε]−1 = ξε([ε
1/p]−1) for some nondegenerate

primitive element ξε ∈ Ainf which does not divide [ε1/p] − 1. Then by Example 2.2.9 and
Lemma 2.2.10 we find an element yε ∈ Y with ordyε([ε] − 1) = 1. This means that the image
of [ε] − 1 in B+

dR(yε) is a uniformizer. The assertion then follows from the fact that log(ε) is
divisible by [ε] − 1 but not by ([ε] − 1)2. □

Proposition 2.3.6. There exists a bijection Y
∼
−! (1 +m∗

F )/Z×
p which maps the equivalence

class of an untilt C of F to the Z×
p -orbit of elements εC ∈ 1+m∗

F with ε♯C = 1 and (ε
1/p
C )

♯
̸= 1.

Proof. Let y be an arbitrary element in Y , represented by an untilt C of F . Choosing

an element εC ∈ 1 + m∗
F with ε♯C = 1 and (ε

1/p
C )

♯
̸= 1 amounts to choosing a system of

primitive p-power roots of unity in C♭ ≃ F . Such a system exists uniquely up to Z×
p -multiple

by Proposition 1.1.6.

Let us now consider an arbitrary element ε ∈ 1 + m∗
F . Proposition 2.3.4 yields a nonde-

generate primitive element ξε ∈ Ainf which divides [ε]−1 but not [ε1/p]−1. Then by Theorem

1.1.21 we get an untilt Cε of F with ε♯ = 1 and (ε1/p)
♯ ̸= 1. Moreover, for every untilt C of

F with ε♯ = 1 and (ε1/p)
♯ ̸= 1, we have

0 =
ε♯ − 1

(ε1/p)
♯ − 1

=
θC([ε] − 1)

θC([ε1/p] − 1)
= θC(ξε)

and consequently find by Proposition 1.1.19 and Theorem 1.1.21 that C and Cε are equivalent.
Therefore we deduce that ε is the image of a unique element in Y . □
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Definition 2.3.7. Let φF denote the Frobenius automorphism of F .

(1) Given an untilt C of F with a continuous isomorphism ι : C♭ ≃ F , we define its
Frobenius twist ϕ(C) as the perfectoid field C with the isomorphism φnF ◦ ι.

(2) We define the Frobenius action on Y as the map ϕ : Y ! Y induced by Frobenius
twists.

Lemma 2.3.8. For every characteristic 0 untilt C of F we have θ̂ϕ(C) = θ̂C ◦ φ

Proof. The identity is evident on Ainf [1/p, 1/[ϖ]] by construction. The assertion then
follows by continuity. □

Remark. In Example 1.3.22 we described the Frobenius action ϕ on Y. By Lemma 2.3.8 it
is straightforward to check that the map Y −! Y given by Example 1.3.8 is compatible with
the Frobenius actions on Y and Y.

Proposition 2.3.9. Let f be a nonzero element in Bφ=pn for some n ≥ 0. Then we have
ordy(f) = ordϕ(y)(f) for all y ∈ Y .

Proof. Let C be an untilt of F which represents y. By corollary 2.2.4 there exists a

primitive element ξ which generates ker(θ̂C). It is then straightforward to check by Proposition

1.1.12 that φ(ξ) is a primitive element in Ainf . Moreover, we have φ(ξ) ∈ ker(θ̂ϕ(C)) by Lemma
2.3.8. Let us write i := ordy(f) and j := ordϕ(y)(f). By Proposition 2.2.7 we may write

f = ξig = φ(ξ)jh with g, h ∈ B.

Then we have f = p−nφ(f) = φ(ξ)i · p−ng and consequently find i ≤ j. Similarly, we have
f = φ−1(φ(f)) = pnφ−1(f) = ξj ·pnh and consequently find i ≥ j. Therefore we deduce i = j
as desired. □

Proposition 2.3.10. For every ε ∈ 1 + m∗
F , there exists some yε ∈ Y with

Div(log(ε)) =
∑
n∈Z

ϕn(yε).

Proof. Proposition 2.3.6 yields an untilt Cε of F with ε♯Cε = 1 and (ε1/p)
♯Cε ̸= 1. Let

yε ∈ Y be the equivalence class of Cε. Consider an arbitrary element y ∈ Y , represented by
an untilt C of F . We know by Proposition 3.3.11 in Chapter II that ker(logµp∞ ) is the torsion

subgroup of 1 + mC where mC denotes the maximal ideal of OC . Since we have ε ̸= 1 by
assumption, Proposition 2.3.3 implies that log(ε) vanishes at y if and only if there exists some

n ∈ Z with (εp
n
)
♯C = 1 and (εp

n−1
)
♯C ̸= 1, or equivalently (φnF (ε))♯C = 1 and

(
φn−1
F (ε)

)♯C ̸= 1
where φF denotes the Frobenius automorphism of F . Hence by Proposition 2.3.6 we deduce
that log(ε) vanishes at y if and only if there exists some n ∈ Z with y = ϕn(yε). Since we
have log(ε) ∈ Bφ=p, the assertion follows by Proposition 2.3.5 and Proposition 2.3.9. □

Proposition 2.3.11. There exists a natural bijection (1 + m∗
F )/Q×

p
∼
−! Y/ϕZ which maps

the Q×
p -orbit of an element ε ∈ 1 + m∗

F to the set of elements in Y at which log(ε) vanishes.

Proof. Lemma 2.3.8 implies that the Frobenius action ϕ on Y corresponds to the multi-
plication by 1/p on (1+m∗

F )/Z×
p under the bijection Y

∼
−! (1+m∗

F )/Z×
p given by Proposition

2.3.6. Hence we obtain a natural bijection (1 + m∗
F )/Q×

p
∼
−! Y/ϕZ. Let us now consider

an arbitrary element ε ∈ 1 + m∗
F . Its Q×

p -orbit maps to the ϕ-orbit of an element y ∈ Y

with a representative C that satisfies ε♯ = 1. Then we find θ̂C(log(ε)) = logµp∞ (ε♯) = 0 by

Proposition 2.3.3, and consequently deduce the desired assertion by Proposition 2.3.10. □
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2.4. Points and regularity

In this subsection, we prove that the Fargues-Fontaine curve is a Dedekind scheme whose
closed points classify the Frobenius orbits in Y . For the rest of this chapter, let us write
P :=

⊕
Bφ=pn and denote by |X| the set of closed points in X. We also invoke the following

technical result without proof.

Proposition 2.4.1. Let f and g be elements in B. Then f is divisible by g in B if and only
if we have ordy(f) ≥ ordy(g) for all y ∈ Y .

Remark. This is one of the most difficult results from the original work of Fargues and
Fontaine [FF18]. Curious readers can find a complete proof in [Lur, Lecture 13-16]. Here we
provide a brief sketch of the proof.

We only need to prove the if part as the converse is obvious by Lemma 2.2.10. Moreover,
in light of Lemma 2.2.2 we may replace B by B[a,b] for an arbitrary interval [a, b] ⊆ (0, 1).
The key point is to show that every element in B[a,b] admits a (necessarily unique) factor-
ization into primitive elements. By a similar argument as in Proposition 2.2.11 the proof
boils down to showing that every h ∈ B[a,b] with ∂−Lh,[a,b](s) ̸= ∂+Lh,[a,b](s) for some
s ∈ [− logp(b),− logp(a)] has a zero y ∈ Y[p−s,p−s].

Let us set Ŷ := Y ∪ { o }, where o denotes the equivalence class of F as the trivial untilt

of itself. Then Ŷ turns out to be complete with respect to an ultrametric d given by

d(y1, y2) := |θC2(ξ1)|C2
for all y1, y2 ∈ Ŷ

where ξ1 and C2 respectively denote a primitive element that vanishes at y1 and an untilt
of F that represents y2. If h is an element in Ainf [1/p, 1/[ϖ]], an elegant approximation
argument using Legendre-Newton polygons allows us to construct a zero y ∈ Y[p−s,p−s] of h as

the limit of a Cauchy sequence (yn) in Ŷ with |yn| = p−s and lim
n!∞

|h(yn)|Cn
= 0 where each

Cn is a representative of yn. For the general case, we can construct Cauchy sequences (hn)
in Ainf [1/p, 1/[ϖ]] and (yn) in Y[p−s,p−s] with hn(yn) = 0 and lim

n!∞
hn = h with respect to the

Gauss p−s-norm, thereby obtaining a zero y ∈ Y[p−s,p−s] of h as the limit of (yn).

Corollary 2.4.2. The ring Bφ=1 is a field.

Proof. Consider an arbitrary nonzero element f ∈ Bφ=1. We have Div(f) = 0, since

otherwise f would be divisible by some g ∈ Bφ=1/p, thereby contradicting Proposition 2.1.15.
Hence by Proposition 2.4.1 we deduce that f admits an inverse in Bφ=1 as desired. □

Remark. As remarked after Proposition 2.1.15, we will see in Proposition 3.1.6 that Bφ=1

is canonically isomorphic to Qp.

Lemma 2.4.3. Let f be an element in Bφ=pn for some n ≥ 0, and let ε be an element in
1 + m∗

F . Assume that both f and log(ε) vanish at some y ∈ Y . Then there exists some

g ∈ Bφ=pn−1
with f = log(ε)g.

Proof. By Proposition 2.3.9 we have

ordϕi(y)(f) = ordy(f) ≥ 1 for all i ∈ Z.
In addition, by Proposition 2.3.10 we find

Div(log(ε)) =
∑
i∈Z

ϕi(y).

Since log(ε) belongs to Bφ=p by construction, the assertion follows by Proposition 2.4.1. □
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Proposition 2.4.4. For every ε ∈ 1 + mF , the element log(ε) ∈ Bφ=p is a prime in P .

Proof. The assertion is obvious for ε = 1 as P is an integral domain by Corollary 2.1.17.
We henceforth assume ε ̸= 1. Consider arbitrary elements f and g in P such that log(ε)
divides fg in P . We wish to show that log(ε) divides either f or g in P . Since log(ε) is
homogeneous, we may assume without loss of generality that both f and g are homogeneous.
Proposition 2.3.5 implies that log(ε) vanishes at some yε ∈ Y . Then we find by Lemma 2.2.10
that either f or g vanishes at yε, and in turn deduce the desired assertion by Lemma 2.4.3. □

Proposition 2.4.5. Let f be a nonzero element in Bφ=pn for some n ≥ 0.

(1) The map φ uniquely extends to an automorphism φ1/f on B[1/f ].

(2) We may write

f = λ log(ε1) · · · log(εn) with λ ∈ Bφ=1 and εi ∈ 1 + m∗
F (2.10)

where the factors are uniquely determined up to Q×
p -multiple.

Proof. The first statement is straightforward to verify. Let us prove the second statement
by induction on n. Since the assertion is obvious for n = 0, we henceforth assume n > 0.
Then f vanishes at some y ∈ Y ; otherwise, it would be invertible in B by Proposition 2.4.1

and thus would yield a nonzero element f−1 ∈ Bφ=p−n
, contradicting Proposition 2.1.15. Now

Lemma 2.4.3 and Proposition 2.3.11 together yield some εn ∈ 1 + mF and g ∈ Bφ=pn−1
with

f = log(εn)g. Hence by induction hypothesis we obtain an expression as in (2.10), where the
factors are uniquely determined up to Q×

p -multiple by Proposition 2.4.4. □

Definition 2.4.6. Given a nonzero homogeneous element f ∈ P , we refer to the map φ1/f

described in Proposition 2.4.5 as the Frobenius automorphism of B[1/f ]. We often abuse
notation and write φ instead of φ1/f .

Proposition 2.4.7. Every non-generic point x ∈ X is a closed point, induced by a prime
log(ε) in P for some ε ∈ 1 + m∗

F . Moreover, its residue field is naturally isomorphic to the
perfectoid field given by any y ∈ Y at which log(ε) vanishes.

Proof. By Proposition 2.4.5 there exists a nonzero element t ∈ Bφ=p such that x lies in
the open subscheme Spec (B[1/t]φ=1) of X = Proj (P ). Let us denote by p the prime ideal

of B[1/t]φ=1 which corresponds to x, and take an element f/tn ∈ p with f ∈ Bφ=pn . By
Proposition 2.4.5 we may write

f

tn
= λ · log(ε1)

t
· log(ε2)

t
· · · log(εn)

t
with λ ∈ Bφ=1 and εi ∈ 1 + m∗

F .

Since λ is a unit in Bφ=1 by Corollary 2.4.2, we have log(ε)/t ∈ p for some ε ∈ 1 + m∗
F .

Take an element y ∈ Y at which log(ε) vanishes, and choose a representative C of y. Then
t does not vanish at y, since otherwise Corollary 2.4.2 and Lemma 2.4.3 together would imply
that log(ε)/t is an invertible element in Bφ=1, which is impossible as p is a prime ideal. We

thus obtain a map θx : B[1/t]φ=1 ↪−! B[1/t] ↠ C where the second arrow is induced by θ̂C .

It suffices to show that θx is a surjective map whose kernel is generated by log(ε)/t.

Proposition 2.3.3 implies that θ̂C induces a surjection Bφ=p ↠ C, which in turn implies
that θx is already surjective when restricted to (1/t)Bφ=p. Let us now consider an arbitrary
element f ′/tn ∈ ker(θx) with f ′ ∈ Bφ=pn . Arguing as in the first paragraph, we find that

f ′/tn is divisible by log(ε′)/t ∈ ker(θx) for some ε′ ∈ 1 + m∗
F . Then we have θ̂C(log(ε′)) = 0,

which means that log(ε′) vanishes at y. Therefore we deduce by Lemma 2.4.3 that log(ε)/t
divides log(ε′)/t, and thus divides f ′/t as desired. □
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Theorem 2.4.8 (Fargues-Fontaine [FF18]). The scheme X has the following properties:

(i) There exists a natural bijection |X| ∼
−! Y/ϕZ which maps the point induced by

log(ε) for some ε ∈ 1 + m∗
F to the set of elements in Y at which log(ε) vanishes.

(ii) X is a Dedekind scheme such that the open subscheme X\ { x } for every x ∈ |X| is
the spectrum of a principal ideal domain.

(iii) For every x ∈ |X|, its completed local ring ÔX,x admits a natural identification

ÔX,x
∼= B+

dR(y)

where y is any element in the image of x under the bijection |X| ∼
−! Y/ϕZ.

Proof. Proposition 2.4.7 yields a surjective map 1 +m∗
F ↠ |X| which associates to each

ε ∈ 1+m∗
F the point x ∈ X induced by the prime log(ε) ∈ P . Moreover, Lemma 2.4.3 implies

that two elements ε1 and ε2 in 1 +m∗
F map to the same point in |X| if and only if log(ε1) and

log(ε2) have a common zero. Therefore we deduce the property (i) by Proposition 2.3.11.

Let us now fix a closed point x in X. As shown in the preceding paragraph, the point
x is induced by log(ε) for some ε ∈ 1 + m∗

F . It follows that X\ { x } is the spectrum of

the ring B[1/ log(ε)]φ=1. In addition, we find by Proposition 2.4.7 that every prime ideal of

B[1/ log(ε)]φ=1 is a principal ideal. Therefore we obtain the property (ii) by a general fact as
stated in [Sta, Tag 05KH].

It remains to establish the property (iii). Let us fix an element y ∈ Y at which log(ε)
vanishes, and take an untilt C of F which represents y. We also choose an element t ∈ Bφ=p

which is not divisible by log(ε). Then we have a surjective map θ̂C [1/t] : B[1/t] ↠ C induced

by θ̂C . Let us denote by θx the restriction of θ̂C [1/t] to B[1/t]φ=1. Proposition 2.4.7 implies

that we may identify x as a point in Spec (B[1/t]φ=1) given by ker(θx). Hence we obtain an
identification

ÔX,x
∼= lim −

j

B[1/t]φ=1/ ker(θx)j . (2.11)

Meanwhile, Proposition 2.2.7 allows us to identify B+
dR(y) as the completed local ring of a

closed point ŷ ∈ Spec (B) given by ker(θ̂C), thereby yielding an identification

B+
dR(y) ∼= lim −

j

B[1/t]/ ker(θ̂C [1/t])j . (2.12)

For an arbitrary element f/tn ∈ B[1/t]φ=1 ∩ ker(θ̂C)j with f ∈ Bφ=pn and j ≥ 1, we have
ordy(f) ≥ j and consequently find by Lemma 2.4.3 that f/tn is divisible by log(ε)j/tj . Since
log(ε)/t belongs to ker(θx), we obtain an identification

B[1/t]φ=1 ∩ ker(θ̂C)j = ker(θx)j for all j ≥ 1

and in turn get a natural injective map

lim −
j

B[1/t]φ=1/ ker(θx)j ↪−! lim −
j

B[1/t]/ ker(θ̂C [1/t])j . (2.13)

Moreover, since both B[1/t]φ=1/ ker(θx) and B[1/t]/ ker(θ̂C [1/t]) are isomorphic to C, the
map (2.13) is surjective by a general fact as stated in [Sta, Tag 0315]. Therefore we obtain
the property (iii) by (2.11) and (2.12). □

Remark. The scheme X is defined over Qp as we will see in Corollary 3.1.7. However, it
is not of finite type over Qp since the residue field of an arbitrary closed point is an infinite
extension of Qp by Proposition 2.4.7.

https://stacks.math.columbia.edu/tag/05KH
https://stacks.math.columbia.edu/tag/0315
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3. Vector bundles

Our main objective in this section is to discuss several key properties of vector bundles on
the Fargues-Fontaine curve. The primary references for this section are Fargues and Fontaine’s
survey paper [FF14] and Lurie’s notes [Lur].

3.1. Frobenius eigenspaces

In order to study the vector bundles on X, it is crucial to understand the structure of the
graded ring P =

⊕
Bφ=pn . In this subsection, we aim to establish an explicit description of

the Frobenius eigenspaces Bφ=pn for all n ≥ 0.

Proposition 3.1.1. The natural map F −! B given by Teichmüller lifts is continuous.

Proof. Take a characteristic 0 untilt C of F . The natural map F −! B composed

with θ̂C coincides with the sharp map associated to C, which is evidently continuous by
construction. Hence the assertion follows by Proposition 1.2.16. □

Lemma 3.1.2. For every f ∈ B with |f |ρ ≤ 1 for all ρ ∈ (0, 1), there exists a sequence (fn) in

Ainf [1/[ϖ]] which converges to f with respect to all Gauss norms.

Proof. We may assume f ̸= 0, since the assertion is obvious for f = 0. Take a sequence

(f̃n) in Ainf [1/p, 1/[ϖ]] which converges to f with respect to all Gauss norms. For each n ≥ 1,

we may write f̃n = fn +
∑
i<0

[cn,i]p
i with cn,i ∈ F and fn ∈ Ainf [1/[ϖ]]. Take arbitrary real

numbers ρ ∈ (0, 1) and ϵ > 0. Then for all sufficiently large n we have∣∣∣f̃n − fn

∣∣∣
ρ

= sup
i<0

(
|cn,i| ρi

)
≤ sup

i<0

(
ϵ−i
)
· sup
i<0

(
|cn,i| ϵiρi

)
≤ ϵ ·

∣∣∣f̃n∣∣∣
ϵρ

= ϵ |f |ϵρ ≤ ϵ

where the second identity follows from Lemma 2.1.8. Hence we obtain lim
n!∞

∣∣∣f̃n − fn

∣∣∣
ρ

= 0 for

all ρ ∈ (0, 1), thereby deducing that (fn) converges to f with respect to all Gauss norms. □

Proposition 3.1.3. Let f be an element in B. Assume that there exists an integer n ≥ 0
with |f |ρ ≤ ρn for all ρ ∈ (0, 1). Then we may write f = [c]pn + g for some c ∈ OF and g ∈ B

with |g|ρ ≤ ρn+1 for all ρ ∈ (0, 1).

Proof. We may replace f by f/pn to assume n = 0. Lemma 3.1.2 yields a sequence
(fi) in Ainf [1/[ϖ]] which converges to f with respect to all Gauss norms. For each i ≥ 1,
we denote by [ci] the first coefficient in the Teichmüller expansion of fi. Then we have
|ci+1 − ci| ≤ |fi+1 − fi|ρ for all i ≥ 1 and ρ ∈ (0, 1). This means that the sequence (ci) is
Cauchy in F and thus converges to an element c ∈ F . In addition, given a real number
ρ ∈ (0, 1), Lemma 2.1.8 yields |ci| ≤ |fi|ρ = |f |ρ ≤ 1 for all sufficiently large i, thereby
implying c ∈ OF .

Let us now set gi := fi − [ci] ∈ Ainf [1/[ϖ]] for each i ≥ 1 and take g := f − [c] ∈ B.
We may assume g ̸= 0, since the assertion is obvious if we have g = 0. Each gi admits a
Teichmüller expansion where only positive powers of p occur, so that all slopes of Lgi are
positive integers by Proposition 2.1.7. Moreover, Proposition 3.1.1 implies that the sequence
(gi) converges to g with respect to all Gauss norms. Therefore we deduce by Lemma 2.1.8
that all slopes of Lg are positive integers. We then use Lemma 2.1.2 to obtain

Lg(s) ≥ min
(
Lf (s),L[c](s)

)
= min

(
− logp

(
|f |p−s

)
,− logp (|c|)

)
≥ 0 for all s > 0,

thereby deducing Lg(s) ≥ s for all s > 0, or equivalently |g|ρ ≤ ρ for all ρ ∈ (0, 1). □
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Proposition 3.1.4. Let f be a nonzero element in B.

(1) The element f belongs to Ainf if and only if we have |f |ρ ≤ 1 for all ρ ∈ (0, 1).

(2) The element f belongs to Ainf [1/p] if and only if there exists an integer n with
|f |ρ ≤ ρn for all ρ ∈ (0, 1).

(3) The element f belongs to Ainf [1/[ϖ]] if and only if there exists a constant C > 0
with |f |ρ ≤ C for all ρ ∈ (0, 1).

(4) The element f belongs to Ainf [1/p, 1/[ϖ]] if and only if there exist a constant C > 0
and an integer n with |f |ρ ≤ Cρn for all ρ ∈ (0, 1).

Proof. If f belongs to Ainf , then we clearly have |f |ρ ≤ 1 for all ρ ∈ (0, 1). Conversely,

if we have |f |ρ ≤ 1 for all ρ ∈ (0, 1), then by Proposition 3.1.3 we can inductively construct a

sequence (ci) in OF with∣∣∣∣∣f −
n−1∑
i=0

[ci]p
i

∣∣∣∣∣
ρ

≤ ρn for all n ≥ 0 and ρ ∈ (0, 1),

thereby deducing f ∈ Ainf . Therefore we establish the statement (1).

Now we find that f belongs to Ainf [1/p] if and only if there exists an integer n with
pnf ∈ Ainf , or equivalently |f |ρ ≤ |p|−nρ = ρ−n for all ρ ∈ (0, 1), thereby obtaining the

statement (2). Similarly, we find that f belongs to Ainf [1/[ϖ]] if and only if there exists an
integer n with [ϖn]f ∈ Ainf , or equivalently |f |ρ ≤ |[ϖ]|−nρ = |ϖ|−n for all ρ ∈ (0, 1), thereby

obtaining the statement (3). Finally, we find that f belongs to Ainf [1/p, 1/[ϖ]] if and only if

there exist integers l and n with pn[ϖ]lf ∈ Ainf , or equivalently |f |ρ ≤
∣∣[ϖ]lpn

∣∣
ρ

= |ϖ|l ρn for

all ρ ∈ (0, 1), thereby obtaining the statement (4). □

Lemma 3.1.5. Given a nonzero element f ∈ Bφ=1, there exists an integer n with |f |ρ = ρn

for all ρ ∈ (0, 1).

Proof. By Lemma 2.1.14 we have

pLf (s) = Lφ(f)(ps) = Lf (ps) for all s > 0, (3.1)

and consequently find p∂+Lf (s) = p∂+Lf (ps) for all s > 0. Hence Corollary 2.1.11 implies
that Lf is linear with integer slope, which means that there exist an integer n and a real
number r with Lf (s) = ns+ r for all s > 0. We then find r = 0 by (3.1), and in turn obtain
Lf (s) = ns for all s > 0, or equivalently |f |ρ = ρn for all ρ ∈ (0, 1). □

Proposition 3.1.6. The ring Bφ=1 is canonically isomorphic to Qp.

Proof. Let W (Fp) denote the ring of Witt vectors over Fp. Under the identification

Qp
∼= W (Fp)[1/p] ∼=

{∑
[cn]pn ∈ Ainf [1/p] : cn ∈ Fp

}
, (3.2)

we may regard Qp as a subring of Bφ=1. Let us now consider an arbitrary nonzero element
f ∈ Bφ=1. Proposition 3.1.4 and Lemma 3.1.5 together imply that f is an element in Ainf [1/p].
Hence we may write f =

∑
[cn]pn with cn ∈ OF . Since f is invariant under φ, for each n ∈ Z

we find cpn = cn, or equivalently cn ∈ Fp. We thus deduce f ∈ Qp under the identification
(3.2), thereby completing the proof. □

Remark. Our proof does not depend on Proposition 2.4.1 that we assume without proof.

Corollary 3.1.7. The scheme X is defined over Qp.
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Proposition 3.1.8. The map log : 1 + mF −! Bφ=p is a continuous Qp-linear isomorphism.

Proof. Choose a characteristic 0 untilt C of F . The sharp map associated to C is
continuous by construction. In addition, the map logµp∞ is continuous by Proposition 3.3.11

in Chapter II. Therefore it follows by Proposition 2.3.3 and Proposition 1.2.16 that the map
log is continuous. Moreover, since every element in Qp is the limit of a sequence in Z, we obtain
the Qp-linearity of log by Proposition 2.3.1, and consequently deduce the surjectivity of log
by Proposition 2.4.5 and Proposition 3.1.6. We also find that log is injective, as Proposition
2.3.10 yields log(ε) ̸= 0 for every ε ∈ 1+m∗

F . Therefore we establish the desired assertion. □

Corollary 3.1.9. There exists a natural bijection |X| ∼
−! (Bφ=p\ { 0 })/Q×

p which maps

the point induced by log(ε) for some ε ∈ 1 + m∗
F to the Q×

p -orbit of log(ε) in Bφ=p.

Proof. This is merely a restatement of the property (i) in Theorem 2.4.8 using Proposi-
tion 3.1.8. □

Corollary 3.1.10. Let f be a nonzero element in Bφ=pn for some n ≥ 1. We may write

f = log(ε1) log(ε2) · · · log(εn) with εi ∈ 1 + m∗
F

where the factors are uniquely determined up to Q×
p -multiple.

Proof. This is an immediate consequence of Proposition 3.1.6, Proposition 3.1.8, and
Proposition 2.4.5. □

Remark. Corollary 3.1.9 and Corollary 3.1.10 are respectively analogues of the following
facts about the complex projective line P1

C = Proj (C[z1, z2]):

(1) Closed points in P1
C are in bijection with the Qp-orbits of linear homogeneous poly-

nomials in C[z1, z2].

(2) Every homogeneous polynomial in C[z1, z2] of positive degree admits a unique fac-
torization into linear homogeneous polynomials up to C×-multiple

It is therefore reasonable to expect that the Fargues-Fontaine curve X is geometrically similar
to P1

C, even though X is not of finite type over Qp. We will solidify this idea in the next
subsection by studying line bundles on the Fargues-Fontaine curve.

Proposition 3.1.11. Let B+ be the closure of Ainf [1/p] in B. For every n ∈ Z we have
Bφ=pn ⊆ B+.

Proof. For n ≤ 0, the assertion is obvious by Proposition 2.1.15 and Proposition 3.1.6.
Moreover, we find

log(ε) =
∞∑
n=1

(−1)n+1 ([ε] − 1)n

n
∈ B+ for every ε ∈ 1 + mF

as each summand belongs to Ainf [1/p], thereby deducing the assertion for n ≥ 1 by Corollary
3.1.10. □

Remark. For every nonzero element f ∈ Bφ=n, we find lim
s!0

Lf (s) = 0 by the functional

equation pLf (s) = ns+ Lf (ps) as obtained in the proof of Proposition 2.1.15. Hence we can
alternatively deduce Proposition 3.1.11 from an identification

B+ =
{
f ∈ B : lim

s!0
Lf (s) ≥ 0

}
which is not hard to verify using Proposition 2.1.9 and Proposition 3.1.4. We note that this
proof does not rely on Proposition 2.4.1 which we assume without proof.
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3.2. Line bundles and their cohomology

In this subsection, we classify and study line bundles on the Fargues-Fontaine curve.
Throughout this subsection, we denote by Div(X) the group of Weil divisors on X, and by
Pic(X) the Picard group of X. In addition, for every rational section f on X we write Div(f)
for its associated Weil divisor on X.

Definition 3.2.1. We define the divisor degree map of X to be the group homomorphism
deg : Div(X) −! Z with deg(x) = 1 for all x ∈ |X|.

Proposition 3.2.2. For every D ∈ Div(X), we have deg(D) = 0 if and only if D is principal.

Proof. Let K(X) denote the function field of X. We also let Q denote the fraction field
of P . Note that there exists a natural identification

K(X) ∼=
{
f/g ∈ Q : f, g ∈ Bφ=pn for some n ≥ 0

}
. (3.3)

Consider an arbitrary element f ∈ K(X)×. By (3.3) and Corollary 3.1.10 there exist some
nonzero elements t1, t2, · · · , t2n ∈ Bφ=p with

f =
t1t2 · · · tn

tn+1tn+2 · · · t2n
.

We then find deg(Div(f)) = 0 as Corollary 3.1.9 yields x1, x2, · · · , x2n ∈ |X| with Div(ti) = xi.

Let us now consider an arbitrary Weil divisor D on X with deg(D) = 0. We may write

D = (x1 + x2 + · · · + xn) − (xn+1 + xn+2 + · · · + x2n) with xi ∈ |X| .
Moreover, Corollary 3.1.9 yields t1, t2, · · · , t2n ∈ Bφ=p with Div(ti) = xi. Hence we have

D = Div

(
t1t2 · · · tn

tn+1tn+2 · · · t2n

)
,

which is easily seen to be a principal divisor by (3.3). □

Definition 3.2.3. For every d ∈ Z, we write P (d) :=
⊕
n∈Z

Bφ=pd+n
and define the d-th twist

of OX to be the quasicoherent sheaf O(d) on X associated to P (d).

Lemma 3.2.4. For every d ∈ Z, the sheaf O(d) is a line bundle on X with a canonical
isomorphism O(d) ∼= O(1)⊗d.

Proof. The assertion follows from Corollary 3.1.10 by a general fact as stated in [Sta,
Tag 01MT]. □

Proposition 3.2.5. The divisor degree map of X induces a natural isomorphism Pic(X) ∼= Z
whose inverse maps each d ∈ Z to the isomorphism class of O(d).

Proof. Since X is a Dedekind scheme as noted in Theorem 2.4.8, we can identify Pic(X)
with the class group of X. Hence by Proposition 3.2.2 the divisor degree map of X induces
a natural isomorphism Pic(X) ∼= Z. Let us now choose a nonzero element t ∈ Bφ=p, which
induces a closed point x on X by Corollary 3.1.9. It is straightforward to check that t is a
global section of O(1), which in turn implies by Lemma 3.2.4 that O(1) is isomorphic to the
line bundle that arises from the Weil divisor Div(t) = x on X. Hence the isomorphism class
of O(1) maps to deg(x) = 1 under the isomorphism Pic(X) ∼= Z. The assertion now follows
by Lemma 3.2.4. □

Remark. Proposition 3.2.5 is an analogue of the fact that there exists a natural isomorphism
Pic(P1

C) ∼= Z whose inverse maps each d ∈ Z to the isomorphism class of OP1
C
(d).

https://stacks.math.columbia.edu/tag/01MT
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Proposition 3.2.6. LetM =
⊕
n∈Z

Mn be a graded P -module, and let M̃ be the associated qua-

sicoherent OX -module. There exists a canonical functorial Qp-linear map M0 −! H0(X, M̃).

Proof. Since we have Bφ=1 ∼= Qp as noted in Proposition 3.1.6, the assertion follows by
a general fact as stated in [Sta, Tag 01M7]. □

Definition 3.2.7. Given a graded P -module M , we refer to the map M0 −! H0(X, M̃) in
Proposition 3.2.6 as the saturation map for M .

Proposition 3.2.8. Let d be a nonnegative integer, and let t be a nonzero element in Bφ=p.
The multiplication by t on P induces a commutative diagram of exact sequences

0 Bφ=pd Bφ=pd+1
Bφ=pd+1

/tBφ=pd 0

0 H0(X,O(d)) H0(X,O(d+ 1)) H0(X,O(d+ 1)/tO(d)) 0

∼

where the vertical arrows respectively represent the saturation maps for P (d), P (d + 1) and
P (d+ 1)/tP (d). Moreover, O(d+ 1)/tO(d) is supported at the point x ∈ |X| induced by t.

Proof. Since P is an integral domain by Corollary 2.1.17, the multiplication by t on P
yields an exact sequence of graded P -modules

0 P (d) P (d+ 1) P (d+ 1)/tP (d) 0
f 7!ft

(3.4)

which gives rise to an exact sequence of coherent OX -modules

0 O(d) O(d+ 1) O(d+ 1)/tO(d) 0. (3.5)

The top row of the diagram is induced by the sequence (3.4), and is exact. The bottom row
of the diagram is induced by the sequence (3.5), and is left exact. The commutativity of the
diagram is evident by the functoriality of saturation maps as noted in Proposition 3.2.6.

By Corollary 3.1.8 we may write t = log(ε) for some ε ∈ 1 +m∗
F . In addition, Proposition

2.3.10 yields an element y ∈ Y at which t vanishes. Let us choose a representative C of y.

Proposition 2.3.3 implies that θ̂C restricts to a surjective map Bφ=p ↠ C. Hence for every

a ∈ C we can take s0, s ∈ Bφ=p with θ̂C(s0) = 1 and θ̂C(s) = a, and consequently obtain

θ̂C(sd0s) = a. In particular, the map θ̂C restricts to a surjective map Bφ=pd+1
↠ C. We also

find by Lemma 2.4.3 that the kernel of this map is given by tBφ=pd . Therefore the map θ̂C
induces an isomorphism

Bφ=pd+1
/tBφ=pd ≃ C. (3.6)

Let us now take x ∈ |X| induced by t. Then Proposition 2.4.7 allows us to identify C
with the residue field of x. In addition, Proposition 3.2.5 implies that O(d) and O(d+ 1) are
respectively isomorphic to the line bundles that arise from the Weil divisors dx and (d+ 1)x.
It is then straightforward to verify that O(d+ 1)/tO(d) is supported at x with the stalk given
by t−d−1OX,x/t

−dOX,x ≃ C. This means that O(d+1)/tO(d) is isomorphic to the skyscraper
sheaf at x with value C. Furthermore, by (3.6) we obtain an isomorphism

Bφ=pd+1
/tBφ=pd ≃ C ∼= H0(X,O(d+ 1)/tO(d)),

which is easily seen to coincide with the saturation map for P (d+ 1)/tP (d). We then deduce
by the commutativity of the second square that the bottom row is exact, thereby completing
the proof. □

https://stacks.math.columbia.edu/tag/01M7
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Theorem 3.2.9 (Fargues-Fontaine [FF18]). We have the following facts about the cohomol-
ogy of line bundles on X:

(1) There exists a canonical isomorphism H0(X,O(d)) ∼= Bφ=pd for every d ∈ Z.

(2) The cohomology group H1(X,O(d)) vanishes for every d ≥ 0.

Proof. Take a nonzero element t ∈ Bφ=p. By Corollary 3.1.9 there exists a closed
point x on X induced by t. Let us write U := X\ { x }. Then we have an identification

U ∼= Spec (B[1/t]φ=1).

For every d ∈ Z, the multiplication by t on P yields an injective map of P -graded modules
P (d) ↪−! P (d+ 1) by Corollary 2.1.17, and in turn gives rise to an injective sheaf morphism
O(d) ↪−! O(d + 1). In addition, Proposition 3.2.5 implies that each O(d) is isomorphic to
the line bundle that arises from the Weil divisor dx. We then find that lim−!O(d) is natu-
rally isomorphic to the pushforward of OU by the embedding U ↪−! X, and in turn obtain
identifications

H0
(
X, lim−!O(d)

) ∼= H0(U,OU ) ∼= B[1/t]φ=1, (3.7)

H1
(
X, lim−!O(d)

) ∼= H1(U,OU ) = 0. (3.8)

Let us now prove the statement (1). For every d ∈ Z, we denote by αd the saturation map
of P (d). We wish to show that each αd is an isomorphism. Proposition 3.2.8 implies that the
sequence (αd) gives rise to a map

B[1/t]φ=1 ∼= lim−!Bφ=pd −! lim−!H0(X,O(d)) ∼= H0
(
X, lim−!O(d)

)
,

which is easily seen to coincide with the isomorphism (3.7). Moreover, Proposition 3.2.8 and
the snake lemma together yield isomorphisms

ker(αd) ≃ ker(αd+1) and coker(αd) ≃ coker(αd+1) for all d ≥ 0.

Therefore we deduce that αd is an isomorphism for every d ≥ 0. In particular, we have
H0(X,OX) ∼= Bφ=1 ∼= Qp where the second isomorphism is given by Proposition 3.1.6. Then
for every d < 0, we find that there exists no nonzero element element of H0(X,OX) which
vanishes to order −d at x, and consequently obtain H0(X,O(d)) = 0. We thus deduce by
Proposition 2.1.15 that αd is an isomorphism for every d < 0 as well.

It remains to establish the statement (2). For every n ≥ 0, the last statement of Propo-
sition 3.2.8 implies that the cohomology of O(d + 1)/tO(d) vanishes in degree 1. Hence for
every d ≥ 0 we have a long exact sequence

H0(X,O(d+ 1)) H0(X,O(d+ 1)/tO(d)) H1(X,O(d)) H1(X,O(d+ 1)) 0,

which in turn yields an isomorphism H1(X,O(d)) ≃ H1(X,O(d + 1)) as the first arrow is
surjective by Proposition 3.2.8. The desired assertion now follows by (3.8). □

Remark. Theorem 3.2.9 provides analogues of the following facts about the complex projec-
tive line P1

C = Proj (C[z1, z2]):

(1) For every d ∈ Z, the cohomology group H0(P1
C,OP1

C
(d)) is naturally isomorphic to

the group of degree d homogeneous polynomials in C[z1, z2].

(2) For every d ≥ 0, the cohomology group H1(P1
C,OP1

C
(d)) vanishes.

However, it is known that H1(X,O(−1)) does not vanish while H1(P1
C,OP1

C
(−1)) vanishes.
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3.3. Harder-Narasimhan filtration

In this subsection, we review the Harder-Narasimhan formalism for vector bundles on a
complete algebraic curve.

Definition 3.3.1. A complete algebraic curve is a scheme Z with the following properties:

(i) Z is connected, separated, noetherian and regular of dimension 1.

(ii) The Picard group Pic(Z) admits a homomorphism degZ : Pic(Z) −! Z, called a
degree map, which takes a positive value on every line bundle that arises from a
nonzero effective Weil divisor on Z.

Example 3.3.2. Below are two important examples of complete algebraic curves.

(1) Every regular proper curve over a field is a complete algebraic curve by a general
fact as stated in [Sta, Tag 0AYY].

(2) The Fargues-Fontaine curve is a complete algebraic curve by Theorem 2.4.8 and
Proposition 3.2.5.

For the rest of this subsection, we fix a complete algebraic curve Z with a degree map
degZ on the Picard group Pic(Z). Our first goal in this subsection is to study the notion of
degree and slope for vector bundles on Z.

Definition 3.3.3. Let V be a vector bundle on Z.

(1) We write rk(V) for the rank of V, and define the degree of V by

deg(V) := degZ

(
∧rk(V)(V)

)
.

(2) If V is not zero, we define its slope by

µ(V) :=
deg(V)

rk(V)
.

(3) We denote by V∨ the dual bundle of V.

Proposition 3.3.4. Let U , V, and W be vector bundles on Z. Assume that there exits a
short exact sequence

0 U V W 0.

(1) We have identities

rk(V) = rk(U) + rk(W) and deg(V) = deg(U) + deg(W).

(2) If U , V, and W are all nonzero, then we have

min (µ(U) , µ(W)) ≤ µ(V) ≤ max (µ(U), µ(W))

with equality if and only if µ(U) and µ(W) are equal.

Proof. The first identity in the statement (1) is evident, whereas the second identity
in the statement (1) follows from a general fact as stated in [Sta, Tag 0B38]. It remains to
prove the the statement (2). Let us now assume that U , V, and W are all nonzero. By the
statement (1) we have

µ(V) =
deg(V)

rk(V)
=

deg(U) + deg(W)

rk(U) + rk(W)
.

If µ(U) and µ(W) are not equal, then µ(V) must lie between µ(U) and µ(W). Otherwise, we
find µ(U) = µ(V) = µ(W). □

https://stacks.math.columbia.edu/tag/0AYY
https://stacks.math.columbia.edu/tag/0B38
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Lemma 3.3.5. Let M and N be free modules over a ring R of rank r and r′. There exists a
canonical isomorphism

∧rr′(M ⊗R N) ∼= ∧r(M)⊗r
′ ⊗R ∧r′(N)⊗r.

Proof. Let us choose bases (mi) and (nj) for M and N , respectively. We have an
isomorphism of rank 1 free R-modules

∧rr′(M ⊗R N) ≃ ∧r(M)⊗r
′ ⊗R ∧r′(N)⊗r (3.9)

which maps
∧

(mi ⊗ nj) to (
∧
mi)

⊗r′ ⊗ (
∧
nj)

⊗r. It suffices to show that this map does not
depend on the choices of (mi) and (nj). Take an invertible r × r matrix α = (αh,i) over R.
Then we have ∧(∑

αh,imi ⊗ nj

)
= det(α)r

′∧
(mi ⊗ nj),(∧(∑

αh,imi

))⊗r′
⊗
(∧

nj

)⊗r
= det(α)r

′
(∧

mi

)⊗r′
⊗
(∧

nj

)⊗r
.

Hence
∧

(
∑
αh,imi ⊗ nj) maps to (

∧
(
∑
αh,imi))

⊗r′ ⊗ (
∧
nj)

⊗r under (3.9). It follows that
the map (3.9) does not depend on the choice of (mi). By symmetry, the map (3.9) does not
depend on the choice of (nj) either. Therefore we deduce the desired assertion. □

Proposition 3.3.6. Let V and W be nonzero vector bundles on Z. Then we have

deg(V ⊗OZ
W) = deg(V)rk(W) + deg(W)rk(V) and µ(V ⊗OZ

W) = µ(V) + µ(W).

Proof. Since we have rk(V ⊗OX
W) = rk(V)rk(W), the first identity is straightforward

to verify by Lemma 3.3.5. The second identity then immediately follows. □

Lemma 3.3.7. The cohomology group H0(Z,OZ) is a field.

Proof. Let K(Z) denote the function field of Z, and take an arbitrary element f ∈
K(Z)×. Then f yields a global section of OZ if and only if the associated Weil divisor Div(f)
on Z is effective. Since every principal divisor on Z induces a line bundle of degree 0, the
Weil divisor Div(f) is effective if and only if it is the zero divisor. We thus find

H0(Z,OZ)\ { 0 } =
{
f ∈ K(Z)× : Div(f) = 0

}
,

and consequently deduce that H0(Z,OZ) is a subfield of K(Z). □

Lemma 3.3.8. Let L and M be line bundles on Z.

(1) If we have deg(L) > deg(M), there is no nonzero OZ-module map from L to M.

(2) If we have deg(L) = deg(M), every nonzero OZ-module map from L to M is an
isomorphism.

Proof. Assume that there exists a nonzero OZ-module map s : L −! M. Then s
induces a nonzero global section on L∨ ⊗OZ

M via the identification

HomOZ
(L,M) ∼= H0(Z,L∨ ⊗OZ

M). (3.10)

Hence L∨ ⊗OZ
M arises from an effective Weil divisor D on Z by a general fact as stated in

[Sta, Tag 01X0]. We then find

deg(M) − deg(L) = deg(L∨ ⊗OZ
M) ≥ 0, (3.11)

and consequently deduce the first statement.

Let us now assume deg(L) = deg(M). By (3.11) we have deg(L∨ ⊗OZ
M) = 0, which

means that the effective Weil D must be zero. It follows that L∨ ⊗OZ
M is trivial, which in

turn implies by (3.10) and Lemma 3.3.7 that s is an isomorphism. □

https://stacks.math.columbia.edu/tag/01X0
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Proposition 3.3.9. A coherent OZ-module is a vector bundle if and only if it is torsion free.

Proof. Since Z is integral and regular by construction, the assertion follows from a
general fact as stated in [Sta, Tag 0CC4]. □

Proposition 3.3.10. Let V be a vector bundle on Z, and let W be a coherent subsheaf of V.

(1) W is a vector bundle on Z.

(2) W is contained in a subbundle W̃ of V with rk(W) = rk(W̃) and deg(W) ≤ deg(W̃).

Proof. Since W is evidently torsion free, the first statement follows from Proposition
3.3.9. Hence it remains to verify the second statement. We may assume W ≠ 0, as otherwise
the assertion would be obvious. Let T denote the torsion subsheaf of the quotient V/W.

Take W̃ to be the preimage of T under the surjection V ↠ V/W. Then W̃ is a torsion
free subsheaf of V with a torsion free quotient, and thus is a subbundle of V by Proposition

3.3.9. In addition, we have W ⊆ W̃ and W̃/W ≃ T by construction, and consequently

find rk(W̃) = rk(W) as T has rank 0 for being a torsion sheaf. We also have a nonzero

OZ-module map ∧rk(W)W −! ∧rk(W̃)W̃ induced by the embedding W ↪−! W̃, and in turn

obtain deg(W) ≤ deg(W̃) by Lemma 3.3.8. □

Remark. The subbundle W̃ of V that we constructed above is often referred to as the
saturation of W in V.

Proposition 3.3.11. Let V and W be vector bundles on Z of equal rank and degree. Assume
that W is a coherent subsheaf of V. Then we have V = W.

Proof. The embedding W ↪−! V induces a nonzero map ∧rk(W)(W) −! ∧rk(V)(V),
which is forced to be an isomorphism by Lemma 3.3.8. Hence at each point in Z the embedding
W ↪−! V yields an isomorphism on the stalks for having an invertible determinant. It follows
that the embedding W ↪−! V is an isomorphism. □

Proposition 3.3.12. Given a vector bundle V on Z, there is an integer dV with deg(W) ≤ dV
for every subbundle W of V.

Proof. If V is the zero bundle, the assertion is trivial. Let us now proceed by induction on
rk(V). We may assume that there exists a nonzero proper subbundle U of V, as otherwise the
assertion would be obvious. Consider an arbitrary subbundle W of V. Let us set P := W ∩U
and denote by Q the image of W under the natural surjection V ↠ V/U . Proposition 3.3.10
and the induction hypothesis together imply that P and Q are vector bundles on Z with

deg(P) ≤ dU and deg(Q) ≤ dV/U

for some integers dU and dV/U that do not depend on W. In addition, we have a short exact
sequence

0 P W Q 0.

Therefore we obtain
deg(W) = deg(P) + deg(Q) ≤ dU + dV/U

where the first identity follows from Proposition 3.3.4. □

Remark. On the other hand, if V is not a line bundle on Z, we don’t necessarily have an
integer d′V with deg(W) ≥ d′V for every subbundle W of V. In fact, in the context of the
complex projective line or the Fargues-Fontaine curve, it is known that such an integer d′V
never exists if V is not a line bundle.

https://stacks.math.columbia.edu/tag/0CC4
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We now introduce and study two important classes of vector bundles on Z.

Definition 3.3.13. Let V be a nonzero vector bundle on Z.

(1) We say that V is semistable if we have µ(W) ≤ µ(V) for every nonzero subbundle W
of V.

(2) We say that V is stable if we have µ(W) < µ(V) for every nonzero proper subbundle
W of V.

Remark. Here we don’t speak of semistability for the zero bundle, although some authors
say that the zero bundle is semistable of every slope.

Example 3.3.14. Every line bundle on Z is stable; indeed, a line bundle on Z has no nonzero
proper subbundles as easily seen by Proposition 3.3.4.

Proposition 3.3.15. Let V be a semistable vector bundle on Z. Every nonzero coherent
subsheaf W of V is a vector bundle on Z with µ(W) ≤ µ(V).

Proof. Proposition 3.3.10 implies that W is a vector bundle on Z, contained in some

subbundle W̃ of V with µ(W) ≤ µ(W̃). We then find µ(W̃) ≤ µ(V) by the semistability of V,
and consequently obtain the desired assertion. □

Proposition 3.3.16. Let V and W be semistable vector bundles on Z with µ(V) > µ(W).
Then we have HomOZ

(V,W) = 0.

Proof. Suppose for contradiction that there is a nonzero OZ-module map f : V −!W.
Let Q denote the image of f . Proposition 3.3.15 implies that Q is a vector bundle on Z with

µ(Q) ≤ µ(W) < µ(V). (3.12)

Let us now consider the short exact sequence

0 ker(f) V Q 0.
f

We have ker(f) ̸= 0 as Q and V are not isomorphic by (3.12). We thus obtain µ(ker(f)) ≤ µ(V)
by the semistability of V and consequently find µ(Q) ≥ µ(V) by Proposition 3.3.4, thereby
deducing a desired contradiction by (3.12). □

Remark. The converse of Proposition 3.3.16 does not hold in general. For example, if the
Picard group of Z is not isomorphic to Z, we get a nontrivial degree 0 line bundle L on Z
and find HomOZ

(OZ ,L) = 0 by Lemma 3.3.8. On the other hand, if Z is taken to be the
complex projective line or the Fargues-Fontaine curve, then the converse of Proposition 3.3.16
is known to hold.

Proposition 3.3.17. Let V be a vector bundle on Z such that V⊗n is semistable for some
n > 0. Then V is semistable.

Proof. Consider an arbitrary nonzero subbundle W of V. We may regard W⊗n as a
subsheaf of V⊗n. Then we have µ(W⊗n) ≤ µ(V⊗n) by Proposition 3.3.15, and in turn find

µ(W) = µ(W⊗n)/n ≤ µ(V⊗n)/n = µ(V)

by Proposition 3.3.6. □

Remark. It is natural to ask if the tensor product of two arbitrary semistable vector bundles
on Z is necessarily semistable. If Z is a regular proper curve over a field of characteristic 0,
this is known to be true by the work of Narasimhan-Seshadri [NS65]. In addition, we will
see in Corollary 3.5.2 that this is true in the context of the Fargues-Fontaine curve. However,
this is false if Z is defined over a field of characteristic p, as shown by Gieseker [Gie73].
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Proposition 3.3.18. Let V and W be semistable vector bundles on Z of slope λ.

(1) Every extension of W by V is a semistable vector bundle on Z of slope λ.

(2) For every f ∈ HomOZ
(V,W), both ker(f) and coker(f) are either trivial or semistable

vector bundles on Z of slope λ.

Proof. Let E be a vector bundle on X which fits into a short exact sequence

0 V E W 0.

By Proposition 3.3.4 we find µ(E) = λ. Take an arbitrary subbundle F of E , and denote by
F ′ its image under the map E ↠ W. By construction we have a short exact sequence

0 V ∩ F F F ′ 0.

In addition, Proposition 3.3.15 implies that V ∩ F and F ′ are vector bundles on Z with

µ(V ∩ F) ≤ µ(V) = λ and µ(F ′) ≤ µ(W) = λ.

We then find µ(F) ≤ λ = µ(E) by Proposition 3.3.4, thereby deducing the statement (1).

It remains prove the statement (2). The assertion is trivial for f = 0. We henceforth
assume f ̸= 0, and denote by Q the image of f . Then we have a short exact sequence

0 ker(f) V Q 0,

Moreover, Proposition 3.3.15 implies that ker(f) and Q are vector bundles on Z with

deg(ker(f)) ≤ µ(V) · rk(ker(f)) = λ · rk(ker(f)) and µ(Q) ≤ µ(W) = λ.

Hence by Proposition 3.3.4 we find

deg(ker(f)) = λ · rk(ker(f)) and µ(Q) = λ.

Since every subbundle of ker(f) is a coherent subsheaf of V, the first identity and Proposition
3.3.15 together imply that ker(f) is either zero or semistable of slope λ.

Meanwhile, Proposition 3.3.10 implies that Q is contained in a subbundle Q̃ of W with

rk(Q) = rk(Q̃) and deg(Q) ≤ deg(Q̃). (3.13)

Then by the semistability of V we obtain

λ = µ(Q) ≤ µ(Q̃) ≤ µ(W) = λ,

and consequently find that the inequality in (3.13) is indeed an equality. Hence Proposition

3.3.11 yields Q = Q̃, which in particular means that Q is a subbundle of W.

Let us now assume that coker(f) is not zero. Since we have a short exact sequence

0 Q W coker(f) 0,

our discussion in the preceding paragraph and Proposition 3.3.4 together imply that coker(f)
is a vector bundle on Z with µ(coker(f)) = λ. We wish to show that coker(f) is semistable.
Take an arbitrary subbundle R of coker(f), and denote by R′ its preimage under the map
W ↠ coker(f). Then we have a short exact sequence

0 Q R′ R 0.

In addition, Proposition 3.3.15 implies that R′ is a vector bundle on Z with

µ(R′) ≤ µ(W) = λ = µ(Q).

Hence we find µ(R) ≤ µ(Q) = λ = µ(coker(f)) by Proposition 3.3.4, and consequently deduce
that coker(f) is semistable as desired. □
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Our final goal in this subsection is to show that every vector bundle on Z admits a unique
filtration whose successive quotients are semistable vector bundles with strictly increasing
slopes.

Definition 3.3.19. Let V be a vector bundle on Z. A Harder-Narasimhan filtration of V is
a filtration by subbundles

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V
such that the successive quotients V1/V0, · · · ,Vn/Vn−1 are semistable vector bundles on Z
with µ(V1/V0) > · · · > µ(Vn/Vn−1).

Lemma 3.3.20. Given a nonzero vector bundle V on Z, there exists a semistable subbundle
V1 of V with µ(V1) ≥ µ(V) and µ(V1) > µ(U) for every nonzero subbundle U of V/V1.

Proof. For an arbitrary nonzero subbundle W of V, we have 0 < rk(W) ≤ rk(V) and
deg(W) ≤ dV for some fixed integer dV given by Proposition 3.3.12. This implies that the set

S := { q ∈ Q : q = µ(W) for some nonzero subbundle W of V }
is discrete and bounded above. In particular, the set S contains the largest element λ.

Let us take V1 to be a maximal subbundle of V with µ(V1) = λ. By construction we have
µ(V1) ≥ µ(V). Moreover, since every subbundle of V1 is a coherent subsheaf of V, Proposition
3.3.10 and the maximality of λ together imply that V1 is semistable. Let us now consider

an arbitrary nonzero subbundle U of V/V1, and denote by Ũ its preimage under the natural
surjection V ↠ V/V1. Then we have a short exact sequence

0 V1 Ũ U 0.

In addition, the maximality of λ and V1 implies µ(Ũ) < λ = µ(V1). Therefore we find
µ(U) < µ(V1) by Proposition 3.3.4, thereby completing the proof. □

Remark. Our proof above relies on the fact that the group Z is discrete. However, as noted in
[Ked19, Lemma 3.4.10], it is not hard to prove Lemma 3.3.20 without using the discreteness
of Z. As a consequence, we can extend all of our discussion in this subsection to some other
contexts where the degree of a vector bundle takes a value in a nondiscrete group such as
Z[1/p]. We refer the curious readers to [Ked19, Example 3.5.7] for a discussion of such an
example.

Lemma 3.3.21. Let V be a nonzero vector bundle on Z. Assume that V admits a Harder-
Narasimhan filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V.
For every semistable vector bundle W on Z with HomOZ

(W,V) ̸= 0, we have µ(W) ≤ µ(V1).

Proof. Take a nonzero OZ-module map f : W −! V, and denote its image by Q.
Since Q is a nonzero coherent subsheaf of V, there exists the smallest integer i ≥ 1 with

Q ⊆ Vi. Then we find that f induces a nonzero OZ-module map W f
−! Vi ↠ Vi/Vi−1, and

consequently obtain

µ(W) ≤ µ(Vi/Vi−1) ≤ µ(V1)

where the first inequality follows by Proposition 3.3.16. □

Remark. Lemma 3.3.21 does not hold without the semistability assumption on W. For
example, if we take W := V ⊕ L where L is a line bundle on Z with µ(L) > µ(V), we find
HomOX

(W,V) ̸= 0 and µ(W) > µ(V).
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Theorem 3.3.22 (Harder-Narasimhan [HN75]). Every vector bundle V on Z admits a unique
Harder-Narasimhan filtration.

Proof. Let us proceed by induction on rk(V). If V is the zero bundle, the assertion is
trivial. We henceforth assume that V is not zero.

We first assert that V admits a Harder-Narasimhan filtration. Lemma 3.3.20 yields a
semistable subbundle V1 of V with µ(V1) > µ(U) for every nonzero subbundle U of V/V1. By
the induction hypothesis, the vector bundle V/V1 on Z admits a Harder-Narasimhan filtration

0 = U1 ⊂ · · · ⊂ Un = V/V1. (3.14)

For each i = 2, · · · , n, let us set Vi to be the preimage of Ui under the natural surjection
V ↠ V/V1. Then we find

Vi/Vi−1
∼= Ui/Ui−1 for each i = 2, · · · , n.

Moreover, by construction we have µ(V1) > µ(U2) whenever the filtration (3.14) is not trivial.
Therefore V admits a Harder-Narasimhan filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V. (3.15)

It remains to show that (3.15) is a unique Harder-Narasimhan filtration of V. Assume
that V admits another Harder-Narasimhan filtration

0 = W0 ⊂ W1 ⊂ · · · ⊂ Wl = V. (3.16)

Since W1 is a nonzero subbundle of V, Lemma 3.3.21 yields µ(W1) ≤ µ(V1). Then by sym-
metry we obtain µ(V1) ≤ µ(W1), and thus find µ(V1) = µ(W1). Now we have

µ(W1) = µ(V1) > µ(V2/V1) = µ(U2/U1)

unless the filtration (3.14) is trivial. It follows by Lemma 3.3.21 that HomOZ
(W1,V/V1)

vanishes. We then find W1 ⊆ V1 by observing that the natural map W1 ↪−! V ↠ V/V1 must
be zero. By symmetry we also obtain V1 ⊆ W1, and consequently deduce that V1 and W1 are
equal. The filtration (3.16) then induces a Harder-Narasimhan filtration

0 = W1/V1 ⊂ · · ·Wl/V1 = V/V1, (3.17)

which must coincide with the filtration (3.14) by the induction hypothesis. Since each Wi is
the preimage of Wi/V1 under the natural surjection V ↠ V/V1, we deduce that the filtrations
(3.15) and (3.16) coincide. □

Remark. A careful examination of our proof shows that Theorem 3.3.22 is a formal conse-
quence of Proposition 3.3.4 and Proposition 3.3.10. In other words, Theorem 3.3.22 read-
ily extends to any exact category C equipped with assignments rkC : C −! Z≥0 and
degC : C −! Z that satisfy the following properties:

(i) Both rkC and degC are additive on short exact sequences.

(ii) Every monomorphism f : A −! B in C factors through some admissible monomor-

phism f̃ : Ã −! B with rkC (A) = rkC (Ã) and degC (A) ≤ degC (Ã).

Such a category is called a slope category.

We will see that the category of vector bundles on the Fargues-Fontaine curve is closely
related to two other slope categories, namely the category of isocrystals and the category of
filtered isocrystals. This fact will be crucial for studying the essential image of the crystalline
functor in §4.2.
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3.4. Semistable bundles and unramified covers

In this subsection, we construct semistable vector bundles on the Fargues-Fontaine curve
by studying its unramified covers.

Definition 3.4.1. Let h be a positive integer.

(1) We denote by Eh the degree r unramified extension of Qp, and define the degree h
unramified cover of X to be the natural map

πh : X ×Spec (Qp) Spec (Eh) −! X.

(2) We write Xh := X ×Spec (Qp) Spec (Eh) and Ph :=
⊕
n≥0

Bφh=pn .

Lemma 3.4.2. Let r and n be integers with r > 0. Given a positive integer h and a nonzero
homogeneous element f ∈ P , we have a canonical isomorphism

B[1/f ]φ
r=pn ⊗Qp Eh

∼= B[1/f ]φ
rh=pnh

.

Proof. The group Gal(Eh/Qp) is cyclic of order h, and admits a canonical generator γ
which lifts the p-th power map on Fph . Moreover, for every n ∈ Z there exists an action of

Gal(Eh/Qp) on B[1/f ]φ
rh=pnh

such that γ acts via p−nφr. We thus find

B[1/f ]φ
r=pn =

(
B[1/f ]φ

rh=pnh
)Gal(Eh/Qp)

,

and consequently deduce the desired isomorphism by the Galois descent for vector spaces. □

Proposition 3.4.3. For every positive integer h, we have a canonical isomorphism

Xh
∼= Proj (Ph) .

Proof. By Lemma 3.4.2 we have Bφ=pn ⊗Qp Eh
∼= Bφh=pnh

for every n ∈ Z, and conse-
quently obtain a natural isomorphism

Xh
∼= Proj

(
P ⊗Qp Eh

) ∼= Proj

⊕
n≥0

Bφh=pnh

 ∼= Proj

⊕
n≥0

Bφh=pn


as desired. □

We invoke the following generalization of Corollary 3.1.10 without proof.

Proposition 3.4.4. Let h and n be positive integers. Every nonzero element f ∈ Bφh=pn

admits a factorization
f = f1 · · · fn with fi ∈ Bφh=p

where the factors are uniquely determined up to E×
h -multiple.

Remark. Let us briefly sketch the proof of Proposition 3.4.4. The theory of Lubin-Tate
formal groups yields a unique 1-dimensional p-divisible formal group law µLT over OEh

with

[p]µLT(t) = pt + tp
h
. Denote by GLT the associated p-divisible group over OEh

. By means of
the logarithm for GLT, we can construct a group homomorphism

logh : GLT(OF ) := lim −
i

GLT(OF /m
i
FOF ) −! Bφh=p.

It is then not hard to extend the results from §2.3, §2.4, and §3.1 with logh, GLT(OF ), φh,
ϕh, Ph, and Xh respectively taking the roles of log, 1 + m∗

F , φ, ϕ, P , and X. We refer the
readers to [Lur, Lecture 22-26] for details.
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Definition 3.4.5. Let d and h be integers with h > 0. We define the d-th twist of OXh
to be

the quasicoherent OXh
-module Oh(d) associated to Ph(d) :=

⊕
n∈Z

Bφh=pd+n
, where we identify

Xh
∼= Proj (Ph) as in Proposition 3.4.3.

Lemma 3.4.6. Let h be a positive integer. For every d ∈ Z, the OXh
-module Oh(d) is a line

bundle on Xh with a canonical isomorphism Oh(d) ∼= Oh(1)⊗d.

Proof. The assertion follows from Proposition 3.4.4 by a general fact as stated in [Sta,
Tag 01MT]. □

Definition 3.4.7. Let h be a positive integer.

(1) For every positive integer r, we define the degree r unramified cover of Xh to be the
natural map

πrh,h : Xrh
∼= Xh ×Spec (Eh) Spec (Erh) −! Xh.

(2) For every pair of integers (d, r) with r > 0, we write Oh(d, r) := (πrh,h)∗Orh(d).

(3) For every nonzero homogeneous f ∈ P , we denote by Dh(f) the preimage of the

open subscheme D(f) := Spec (B[1/f ]φ=1) ⊆ X under πh.

Lemma 3.4.8. Let h be a positive integer.

(1) The scheme Xh is covered by open subschemes of the form Dh(f) for some nonzero
homogeneous element f ∈ P .

(2) Given two nonzero homogeneous f and g in P , we have Dh(f) ∩Dh(g) = Dh(fg).

Proof. Both statements evidently hold for h = 1 as we have X1 = X = Proj (P ). The
assertion for the general case then follows by the surjectivity of πh. □

Proposition 3.4.9. Let d, h, and r be integers with h, r > 0.

(1) The OXh
-module Oh(d, r) is a vector bundle on Xh of rank r.

(2) Given a nonzero homogeneous f ∈ P , there exists a canonical identification

Oh(d, r) (Dh(f)) ∼= B[1/f ]φ
hr=pd .

Proof. The first statement follows from Lemma 3.4.6 since the morphism πrh,h is finite
of degree r. The second statement is obvious by construction. □

Proposition 3.4.10. Let d and r be integers with r > 0. Given arbitrary positive integers h
and n, there exists a natural identification

(πhn,h)∗Oh(d, r) ∼= Ohn(dn, r).

Proof. Let f ∈ P be an arbitrary nonzero homogeneous element. Since Dhn(f) is the
inverse image of Dh(f) under πhn,h, we use Lemma 3.4.2 and Proposition 3.4.9 to find

(πhn,h)∗Oh(d, r) (Dhn(f)) ∼= Oh(d, r) (Dh(f)) ⊗
B[1/f ]φ

h=1 B[1/f ]φ
hn=1

∼= B[1/f ]φ
hr=pd ⊗

B[1/f ]φ
h=1

(
B[1/f ]φ

h=1 ⊗Qp En

)
∼= B[1/f ]φ

hr=pd ⊗Qp En

∼= B[1/f ]φ
hnr=pdn

∼= Ohn(dn, r) (Dhn(f)) .

The desired assertion now follows by Lemma 3.4.8. □

https://stacks.math.columbia.edu/tag/01MT
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Proposition 3.4.11. Let d and r be integers with r > 0. Given arbitrary positive integers h
and n, we have a natural isomorphism

Oh(dn, rn) ∼= Oh(d, r)⊕n.

Proof. By Proposition 3.4.10 we obtain a natural isomorphism

Oh(dn, rn) = (πhr,h)∗(πhnr,hr)∗Ohnr(dn) ∼= (πhr,h)∗(πhnr,hr)∗(πhnr,hr)
∗Ohr(d).

Then we use the projection formula to find

(πhnr,hr)∗(πhnr,hr)
∗Ohr(d) ∼= (πhnr,hr)∗OXhnr

⊗OXhr
Ohr(d) ∼= O⊕n

Xhr
⊗OXhr

Ohr(d) ∼= Ohr(d)⊕n,

and consequently deduce the desired assertion. □

Proposition 3.4.12. Let h be a positive integer. We have a canonical isomorphism

Oh(d1, r1) ⊗OXh
Oh(d2, r2) ∼= Oh(d1r2 + d2r1, r1r2)

for all integers d1, d2, r1, r2 with r1, r2 > 0.

Proof. Let g and l respectively denote the greatest common divisor and the least common
multiple of r1 and r2. Since r1/g and r2/g are relatively prime integers, the fields Er1h and
Er2h are linearly disjoint finite extensions of Egh with Er1hEr2h = Elh. Hence we have an
identification Elh ∼= Er1h ⊗Egh

Er2h, which gives rise to a cartesian diagram

Xlh Xr2h

Xr1h Xgh

πlh,r2h

πlh,r1h πr2h,gh

πr1h,gh

where all arrows are finite étale. Let us now write r′1 := r1/g and r′2 := r2/g. Then we find

Ogh(d1, r
′
1) ⊗OXgh

Ogh(d2, r
′
2) = (πr1h,gh)∗(Or1h(d1)) ⊗OXgh

(πr2h,gh)∗(Or2h(d2))

∼= (πlh,gh)∗

(
(πlh,r1h)∗Or1h(d1) ⊗OXlh

(πlh,r2h)∗Or2h(d2)
)

∼= (πlh,gh)∗

(
Olh(d1r

′
1) ⊗OXlh

Olh(d2r
′
2)
)

∼= (πlh,gh)∗Olh(d1r
′
1 + d2r

′
2)

= Ogh(d1r
′
1 + d2r

′
2, r

′
1r

′
2)

where the isomorphisms respectively follow from the Künneth formula, Proposition 3.4.10,
and Lemma 3.4.6. We thus use the projection formula, Proposition 3.4.10, and Proposition
3.4.11 to obtain an identification

Oh(d1, r1) ⊗OXh
Oh(d2, r2) = (πgh,h)∗Ogh(d1, r

′
1) ⊗OXh

Oh(d2, r2)

∼= (πgh,h)∗

(
Ogh(d1, r

′
1) ⊗OXgh

(πgh,h)∗Oh(d2, r2)
)

∼= (πgh,h)∗

(
Ogh(d1, r

′
1) ⊗OXgh

Ogh(d2g, r2)
)

∼= (πgh,h)∗

(
Ogh(d1, r

′
1) ⊗OXgh

Ogh(d2, r
′
2)

⊕g
)

∼= (πgh,h)∗Ogh(d1r
′
1 + d2r

′
2, r

′
1r

′
2)

⊕g

= Oh(d1r
′
1 + d2r

′
2, gr1r2)

⊕g

∼= Oh(d1r1 + d2r2, r1r2),

thereby completing the proof. □
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Proposition 3.4.13. Let d and r be ingeters with r > 0. For every positive integer h, there
exists a canonical isomorphism

Oh(d, r)∨ ∼= Oh(−d, r).

Proof. Proposition 3.4.11 and Proposition 3.4.12 together yield a natural map

Oh(d, r) ⊗OXh
Oh(−d, r) ∼= O⊕r2

Xh

∼= O⊕r
Xh

⊗OXh

(
O⊕r
Xh

)∨
−! OXh

where the last arrow is given by the trace map. It is straightforward to verify that this map
is a perfect pairing, which in turn yields the desired isomorphism. □

Proposition 3.4.14. Let d and r be integers with r > 0.

(1) The vector bundle O(d, r) := O1(d, r) on X is semistable of rank r and degree d.

(2) If d and r are relatively prime, then the bundle O(d, r) is stable.

Proof. Proposition 3.4.11 and Proposition 3.4.12 together yield a natural isomorphism

O(d, r)⊗r ∼= O(drr, rr) ∼= O(d)⊕r
r
. (3.18)

Moreover, we find deg
(
O(d)⊕r

r)
= drr by Proposition 3.3.4. Therefore it follows by Proposi-

tion 3.3.6 and Proposition 3.4.9 that O(d, r) is of rank r and degree d. Furthermore, since O(d)
is stable as noted in Example 3.3.14, we find by Proposition 3.3.18 that O(d)⊕r

r
is semistable,

and consequently deduce by (3.18) and Proposition 3.3.17 that O(d, r) is semistable as well.

Let us now assume that d and r are relatively prime. Take an arbitrary nonzero proper
subbundle V of O(d, r). We have µ(V) ̸= d/r as rk(V) is less than rk(O(d, r)) = r. Hence we
find µ(V) < λ by the semistability of O(d, r), thereby deducing that O(d, r) is stable. □

Remark. Proposition 3.4.14 readily extends to Oh(d, r) and Xh for every positive integer h,
as it turns out that Xh is a complete algebraic curve. In fact, extending the remark after
Proposition 3.4.4, it is not hard to show that all results from §3.2 remain valid with φh, Ph,
Xh, and Oh(d) respectively in place of φ, P , X, and O(d); in particular, Xh is a Dedekind
scheme whose Picard group is isomorphic to Z.

Definition 3.4.15. Let λ = d/r be a rational number, written in a reduced form with r > 0.
We refer to O(λ) := O1(d, r) as the canonical stable bundle on X of slope λ.

Proposition 3.4.16. Let λ be a rational number.

(1) There exists a canonical isomorphism O(λ)∨ ∼= O(−λ).

(2) Given a rational number λ′, we have a natural isomorphism

O(λ) ⊗OX
O(λ′) ∼= O(λ+ λ′)⊕n

for some positive integer n.

Proof. The first statement is a special case of Proposition 3.4.13. The second statement
follows from Proposition 3.4.11 and Proposition 3.4.12. □

Remark. By the remark after Proposition 3.4.14, for every positive integer h we can define
the canonical stable bundle Oh(λ) of slope λ on Xh and extend Proposition 3.4.16 to Oh(λ).
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3.5. Classification of the vector bundles

In this subsection, we describe a complete classification of vector bundles on the Fargues-
Fontaine curve. We invoke the following technical result without proof.

Proposition 3.5.1. Let λ be a rational number.

(1) A vector bundle on X is semistable of slope λ if and only if is isomorphic to O(λ)⊕n

for some n ≥ 1.

(2) If we have λ ≥ 0, the cohomology group H1(X,O(λ)) vanishes.

Remark. The second statement is relatively easy to prove. Let us write λ = d/r where d and
r are relatively prime integers with r > 0. As remarked after Proposition 3.4.14, Theorem
3.2.9 is valid with Or(d) and Xr respectively in place of O(d) and X. Hence for λ ≥ 0 we find

H1(X,O(λ)) = H1(X, (πr)∗Or(d)) ∼= H1(Xr,Or(d)) = 0.

On the other hand, the first statement is one of the most technical results from the original
work of Fargues and Fontaine [FF18]. Here we can only sketch some key ideas for the proof.
We refer the curious readers to [FF14, §6] for a good exposition of the proof.

The if part of the first statement is immediate by Proposition 3.4.14. In order to prove the
converse, it is essential to simultaneously consider all unramified covers of X; more precisely,
we assert that every semistable vector bundle V on Xh of slope λ is isomorphic to Oh(λ)⊕n

for some n ≥ 1, where we set Oh(λ) := Oh(d, r). The proof of this statement is given by a
series of dévissage arguments as follows:

(a) We may replace V with (πrh,r)
∗V to assume that λ is an integer; this reduction is

based on the identification (πrh,r)∗(πrh,r)
∗Oh(λ) ∼= Oh(d)⊕r given by Proposition

3.4.10 and the fact that (πrh,r)
∗V is semistable of slope d as seen by an elementary

Galois descent argument based on Theorem 3.3.22.

(b) We may replace V by V(−λ) := V ⊗OXh
Oh(−λ) to further assume λ = 0; this

reduction is based on the identification Oh(λ) ∼= Oh ⊗OXh
Oh and the fact that

V(−λ) is semistable of slope 0 as easily seen by Proposition 3.3.6.

(c) With λ = 0, it suffices to prove that H0(Xh,V) does not vanish; indeed, any nonzero
global section of V gives rise to an exact sequence of vector bundles on Xh

0 OXh
V W 0

where W is semistable of slope 0 by Proposition 3.3.18, thereby allowing us to proceed
by induction on rk(V) with the identification Ext1OXh

(Oh,Oh) ∼= H1(Xh,OXh
) = 0.

(d) The proof further reduces to the case where V fits into a short exact sequence

0 Oh(−1/n) V Oh(1) 0

with n = rk(V) − 1; this reduction involves a generalization of Grothendieck’s argu-
ment for the classification of vector bundles on the projective line.

(e) The exact sequence above turns out to naturally arise from p-divisible groups, as we
will remark after Example 3.5.4; as a consequence the assertion eventually follows
from some results about period morphisms on the Lubin-Tate spaces due to Drinfeld
[Dri76], Gross-Hopkins [GH94], and Laffaille [Laf85].

Corollary 3.5.2. The tensor product of two semistable vector bundles on X is semistable.

Proof. This is an immediate consequence of Proposition 3.4.16 and Proposition 3.5.1. □
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Theorem 3.5.3 (Fargues-Fontaine [FF18]). Every vector bundle V on X admits a unique
Harder-Narasimhan filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V,

which (noncanonically) splits into a direct sum decomposition

V ≃
n⊕
i=1

O(λi)
⊕mi

where we set λi := µ(Vi/Vi−1) for each i = 1, · · · , n.

Proof. Existence and uniqueness of the Harder-Narasimhan filtration is an immediate
consequence of Theorem 3.3.22. Hence it remains to prove that the Harder-Narasimhan
filtration splits. Let us proceed by induction on n. If we have n = 0, then the assertion is
trivial. We henceforth assume n > 0. By construction each successive quotient Vi/Vi−1 is
semistable of slope λi. Hence Proposition 3.5.1 yields an isomorphism

Vi/Vi−1 ≃ O(λi)
⊕mi for each i = 1, · · · , n (3.19)

where mi is a positive integer. Moreover, by the induction hypothesis, the filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1

splits into a direct sum decomposition

Vl−1 ≃
n−1⊕
i=1

O(λi)
⊕mi . (3.20)

Hence it suffices to establish the identity

Ext1OX
(V/Vn−1,Vn−1) = 0. (3.21)

For each i = 1, · · · , n, Proposition 3.4.16 yields an identification

Ext1OX
(O(λn),O(λi)) ∼= H1(X,O(λi) ⊗OX

O(λn)∨) ∼= H1(X,O(λi − λn)⊕ni)

where ni is a positive integer. Since we have λi ≥ λn for each i = 1, · · · , n, we find

Ext1OX
(O(λn),O(λi)) = 0 for each i = 1, · · · , n

by Proposition 3.5.1. Therefore we deduce the identity (3.21) by the decompositions (3.19)
and (3.20), thereby completing the proof. □

Remark. Theorem 3.5.3 is an analogue of the fact that every vector bundle W on the complex
projective line P1

C admits a direct sum decomposition

W ≃
l⊕

j=1

OP1
C
(dj)

⊕kj with dj ∈ Z.

The only essential difference is that semistable vector bundles on X may have rational slopes,
whereas semistable vector bundles on P1

C have integer slopes. This difference comes from the
fact that we have H1(X,O(−1)) ̸= 0 and H1(P1

C,OP1
C
(−1)) = 0 as remarked after Theorem

3.2.9.

It is worthwhile to mention that an equivalent result of Theorem 3.5.3 was first obtained
by Kedlaya [Ked05]. In fact, Kedlaya’s result can be reformulated as a classification of vector
bundles on the adic Fargues-Fontaine curve, which recovers Theorem 3.5.3 by Theorem 1.3.24.
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Example 3.5.4. Let us write W (Fp) for the ring of Witt vectors over Fp, and K0 for the

fraction field of W (Fp). Let N be an isocrystal over K0 which admits a decomposition

N ≃
n⊕
i=1

N(λi)
⊕mi with λi ∈ Q. (3.22)

We assert that N naturally gives rise to a vector bundle E(N) on X with an isomorphism

E(N) ≃
n⊕
i=1

O(λi)
⊕mi . (3.23)

We may regard K0 as a subring of B under the identification

K0 = W (Fp)[1/p] ∼=
{∑

[cn]pn ∈ Ainf [1/p] : cn ∈ Fp
}
.

Then by construction φ restricts to the Frobenius automorphism of K0, and thus acts on N
and N∨ via the Frobenius automorphisms φN and φN∨ . Hence we get a graded P -module

P (N) :=
⊕
n≥0

(N∨ ⊗K0 B)φ=p
n
.

Let us set E(N) to be the associated quasicoherent sheaf on X, and take an arbitrary
nonzero homogeneous element f ∈ P . In addition, for each i = 1, · · · , n, we write λi := di/ri
where di and ri are relatively prime integers with ri > 0. By construction we have

E(N)(D(f)) ∼=
(
N∨ ⊗K0 B[1/f ]

)φ=1
= (HomK0(N,K0) ⊗K0 B[1/f ])φ=1

∼= HomK0(N,B[1/f ])φ=1.
(3.24)

Moreover, since each N(λi) admits a basis (φj(n)) for some n ∈ N(λi) with φri(n) = pdin,
there exists an identification

HomK0(N(λi), B[1/f ])φ=1 ∼= B[1/f ]φ
ri=pdi ∼= O(λi)(D(f)) (3.25)

where the last isomorphism follows from Proposition 3.4.9. As f ∈ P is arbitrarily chosen,
we obtain the isomorphism (3.23) by (3.22), (3.24) and (3.25).

Remark. As noted in Chapter II, Theorem 2.3.24, every isocrystal over K0 admits a direct
sum decomposition as in (3.22). Hence by Theorem 3.5.3 and Example 3.5.4 we obtain an
essentially surjective functor

E : φ−ModK0 −! BunX

where φ−ModK0 and BunX respectively denote the category of isocrystals over K0 and the
category of vector bundles on X. Furthremore, if we have 0 ≤ λi ≤ 1 for each i = 1, · · · , n, it
turns out that there exists a p-divisible group G over Fp with

E(D(G)[1/p]) ≃
n⊕
i=1

O(λi)
⊕mi .

However, the functor E is not an equivalence of categories; indeed, for arbitrary rational
numbers κ and λ with κ < λ, we have

Homφ−ModK0
(N(κ), N(λ)) = 0 and HomOX

(E(N(κ)), E(N(λ))) ̸= 0.
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4. Applications to p-adic representations

In this section, we prove some fundamental results about p-adic representations and period
rings by exploiting our accumulated knowledge of the Fargues-Fontaine curve. The primary
references for this section are Fargues and Fontaine’s survey paper [FF12] and Morrow’s notes
[Mor].

4.1. Geometrization of p-adic period rings

Throughout this section, we let K be a p-adic field with the absolute Galois group ΓK ,
the inertia group IK and the residue field k. We also write W (k) for the ring of Witt vectors
over k, and K0 for its fraction field.

Proposition 4.1.1. The tilt of CK is algebraically closed.

Proof. Let f(x) be an arbitrary monic polynomial of degree d > 0 over C♭K . We wish to

show that f(x) has a root in C♭K . Take an element m in the maximal ideal of OC♭
K

. We may

replace f(x) by mndf(x/mn) for some sufficiently large n to assume that f(x) is a polynomial
over OC♭

K
. Moreover, we may assume d > 1 since otherwise the assertion would be obvious.

Let us now write

f(x) = xd + c1x
d−1 + · · · + cd with ci ∈ OC♭

K
.

Proposition 2.1.6 and Proposition 2.1.7 from Chapter III together yield an identification

OC♭
K

∼= lim −
c 7!cp

OCK
/pOCK

. (4.1)

Write (ci,n) for the image of each ci under this isomorphism, and choose a lift c̃i,n ∈ OCK
of

each ci,n. In addition, for each n ≥ 0 we set

fn(x) := xd + c1,nx
d−1 + · · · + cd,n and f̃n(x) := xd + c̃1,nx

d−1 + · · · + c̃d,n.

Then for each n ≥ 1 we have

fn−1(x
p) = xdp + cp1,nx

(d−1)p + · · · + cpd,n =
(
xd + c1,nx

d−1 + · · · + cd,n

)p
= fn(x)p. (4.2)

Moreover, since CK is algebraically closed as noted in Chapter II, Proposition 3.1.13, each

f̃n(x) admits a factorization

f̃n(x) = (x− αn,1) · · · (x− αn,d) with αn,j ∈ OCK
.

Let us denote by αn,j the image of each αn,j under the natural surjection OCK
↠ OCK

/pOCK
.

For each αn,j with n ≥ 1 we obtain fn−1(αn,j
p) = fn(αn,j)

p = 0 by (4.2), and in turn find

f̃n−1(α
p
n,j) = (αpn,j − αn−1,1) · · · (αpn,j − αn−1,d) ∈ pOCK

.

Hence for each αn,j with n ≥ 1 we have αpn,j −αn−1,l ∈ p1/dOCK
for some l, and consequently

obtain αn,j
pd = αn−1,l

pd−1
by Proposition 2.1.6 in Chapter III. It follows that there exists

a sequence of integers (jn) with αn,jn
pd = αn−1,jn−1

pd−1
for all n ≥ 1. Let us now set

α :=
(
αn+d−1,jn+d−1

pd−1
)

. Then under the identification (4.1) we find

f(α) =
(
fn

(
αn+d−1,jn+d−1

pd−1
))

=
(
fn+d−1

(
αn+d−1,jn+d−1

))
= 0

where the second identity follows by (4.2). □

Remark. Our proof above readily extends to show that the tilt of an algebraically closed
perfectoid field is algebraically closed.
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For the rest of this section, we take F = C♭K and regard CK as an untilt of F . We also

fix an element p♭ ∈ OF with (p♭)
♯

= p and set ξ := [p♭] − p ∈ Ainf . In addition, we choose a

valuation νF on F with νF (p♭) = 1.

Proposition 4.1.2. Let ε be an element in OF with ε♯ = 1 and (ε1/p)
♯ ̸= 1.

(1) We have ε ∈ 1 + m∗
F .

(2) The element t := log(ε) ∈ Bφ=p is a prime in P , and gives rise to a closed point ∞
on X with the following properties:

(i) The residue field at ∞ is naturally isomorphic to CK .

(ii) The completed local ring at ∞ is naturally isomorphic to B+
dR.

Proof. The first statement is an immediate consequence of Lemma 2.2.21 from Chapter
III (or the proof of Proposition 2.3.3). We then observe by Proposition 2.3.3 that t = log(ε)
vanishes at an element y∞ ∈ Y represented by CK , and consequently deduce the second
statement from Proposition 2.4.7 and Theorem 2.4.8. □

Proposition 4.1.3. There exists a natural isomorphism

B+
dR

∼= lim −
j

B/ ker(θ̂CK
)j (4.3)

which induces a topology on B+
dR with the following properties:

(i) The subring Ainf of B+
dR is closed.

(ii) The map θCK
[1/p] : Ainf [1/p] ↠ CK induced by θCK

is continuous and open with
respect to the p-adic topology on CK .

(iii) The logarithm on 1 + mF induces a continuous map log : Zp(1) −! B+
dR under the

natural identification Zp(1) = lim −µp
v(K) =

{
ε ∈ OF : ε♯ = 1

}
.

(iv) The multiplication by any uniformizer yields a closed embedding on B+
dR.

(v) The ring B+
dR is complete.

Proof. The natural isomorphism (4.3) is given by Proposition 2.2.7. Let us equip B+
dR

with the inverse limit topology via (4.3). The property (ii) follows from Proposition 1.2.16

and the fact that θCK
[1/p] extends to θ̂CK

. The property (iii) is evident by Proposition 3.1.8.

Let us now establish the property (i). Recall that we may regard Ainf [1/p] as a subring
of B+

dR in light of Proposition 2.2.18 from Chapter III. Proposition 3.1.4 implies that Ainf

is complete with respect to all Gauss norms. Moreover, by Example 2.1.6 we have |ξ|ρ < 1

for all ρ ∈ (0, 1), and consequently find that every ξ-adically Cauchy sequence in Ainf is also
Cauchy with respect to all Gauss norms. We then deduce the assertion by the fact that ξ

generates ker(θ̂CK
) as noted in Corollary 2.2.4.

It remains to verify the properties (iv) and (iv). We find by Proposition 1.2.16 that

ker(θ̂CK
) = ξB is closed in B, and in turn deduce that ker(θ̂CK

)j = ξjB is closed in B for
each j ≥ 1. Hence the property (iv) follows by the fact that every uniformizer of B+

dR is a
unit multiple of ξ as noted in Proposition 2.2.7. In addition, we find by the completeness of B

that B/ ker(θ̂CK
)j is complete for each j ≥ 1, and consequently obtain the property (iv). □

Remark. Proposition 4.1.3 proves Proposition 2.2.19 from Chapter III. Our proof does not
rely on any unproved results such as Proposition 2.4.1, Proposition 3.4.4 or Proposition 3.5.1.
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We henceforth fix ε ∈ 1 + m∗
F , t ∈ Bφ=p and ∞ ∈ |X| as in Proposition 4.1.2. We also

write B+ for the closure of Ainf [1/p] in B. In addition, for every ρ ∈ (0, 1) we denote by B+
ρ

the closure of Ainf [1/p] in B[ρ,ρ].

Lemma 4.1.4. Let V be a normed space over Qp, and let V̂0 denote the p-adic completion
of the closed unit disk V0 in V . The completion of V with respect to its norm is naturally

isomorphic to V̂0[1/p].

Proof. Since p is topologically nilpotent in Qp, we have a neighborhood basis for 0 ∈ V
given by the sets pnV0 for n ≥ 0. This implies that a sequence in V0 is Cauchy with respect to

the norm on V if and only if it is p-adically Cauchy. Hence V̂0 coincides with the completion
of V0 with respect to the norm on V . The assertion now follows by the fact that every Cauchy
sequence in V becomes a Cauchy sequence in V0 after a multiplication by some power of p. □

Remark. The notion of p-adic completion is not meaningful for V , as we have pnV = V for
all n ≥ 0.

Proposition 4.1.5. Let c be an element in O×
F . There exists a canonical continuous isomor-

phism

B+
|c|

∼= ̂Ainf [[c]/p][1/p]

where ̂Ainf [[c]/p] denotes the p-adic completion of Ainf [[c]/p].

Proof. By construction, the topological ring B+
|c| is naturally isomorphic to the com-

pletion of Ainf [1/p] with respect to the Gauss |c|-norm. In light of Lemma 4.1.4, it is thus
sufficient to establish the identification

Ainf [[c]/p] =
{
f ∈ Ainf [1/p] : |f ||c| ≤ 1

}
.

Since we have |[c]/p||c| = 1, the ring Ainf [[c]/p] is contained in the set on the right hand side.

Let us now consider an arbitrary element f ∈ Ainf [1/p] with |f ||c| ≤ 1. We wish to show that

f belongs to Ainf [[c]/p]. Let us write the Teichmüller expansion of f as

f =
∑
n<0

[cn]pn +
∑
n≥0

[cn]pn with cn ∈ OF (4.4)

where the first summation on the right hand side contains only finitely many nonzero terms.
For every n ∈ Z we find |cn| |c|n ≤ |f ||c| = 1, or equivalently |cn| ≤ |c|−n. Hence for every

n < 0 we have cn = c−ndn for some dn ∈ OF , and consequently obtain

[cn]pn = [dn] · ([c]/p)−n ∈ Ainf [[c]/p].

The assertion is now evident by (4.4). □

Remark. Given two elements c, d ∈ O×
F with |c| ≤ |d|, we can argue as above to obtain an

identification

B[|c|,|d|] ∼= ̂Ainf [[c]/p, p/[d]][1/p]

where ̂Ainf [[c]/p, p/[d]] denotes the p-adic completion of Ainf [[c]/p, p/[d]]. This is in some sense
reminiscent of our discussion in Example 1.3.13, which shows that for arbitrary positive real
numbers i, j ∈ Z[1/p] the ring B[|ϖ|i,|ϖ|j ] coincides with the completion of Ainf [1/p, 1/[ϖ]] with

respect to the ideal I generated by [ϖi]/p and p/[ϖj ]. We can use the above identification
to show that the natural map B −! B+

dR extends to a map B[a,b] −! B+
dR for any closed

interval [a, b] ⊆ (0, 1).
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Proposition 4.1.6. We have natural continuous embeddings

B+
1/pp ↪−! B+

cris ↪−! B+
1/p.

Proof. Let A0
cris be the Ainf -subalgebra in Ainf [1/p] generated by the elements of the

form ξn/n! with n ≥ 0. By definition we have B+
cris = Acris[1/p], where Acris is naturally iso-

morphic to the p-adic completion of A0
cris as noted in Chapter III, Proposition 3.1.9. Moreover,

Proposition 4.1.5 yields natural identifications

B+
1/pp

∼= ̂Ainf [[(p♭)p]/p][1/p] and B+
1/p

∼= ̂Ainf [[p♭]/p][1/p],

where ̂Ainf [[(p♭)p]/p] and ̂Ainf [[p♭]/p] respectively denote the p-adic completions ofAinf [[(p
♭)p]/p]

and Ainf [[p
♭]/p]. Hence it suffices to show

Ainf [[(p
♭)p]/p] ⊆ A0

cris ⊆ Ainf [[p
♭]/p]. (4.5)

We obtain the first inclusion in (4.5) by observing

[p♭]p

p
=

(ξ + p)p

p
= (p− 1)! · ξ

p!
+

p∑
i=1

(
p

i

)
pi−1ξp−i ∈ A0

cris.

In addition, we find

ξn

n!
=

([p♭] − p)n

n!
=
pn

n!

(
[p♭]

p
− 1

)n
∈ Ainf [[p

♭]/p] for all n ≥ 0

as pn/n! is an element of Zp, and consequently deduce the second inclusion in (4.5). □

Lemma 4.1.7. Let [a, b] be a closed subinterval of (0, 1). There exists some e > 0 with

|f |b ≤ |f |ea for every f ∈ Ainf [1/p].

Proof. Let us set l := − logp(b) and r := − logp(a). Since Lf is a concave piecewise
linear function as noted in Corollary 2.1.11, its graph on (0, l] should be bounded above by
the line which passes through the points (l,Lf (l)) and (r,Lf (r)). Hence we have

Lf (s) ≤
Lf (r) − Lf (l)

r − l
(s− l) + Ll for all s ∈ (0, l],

and consequently find

lim
s!0

Lf (s) ≤
−l(Lf (r) − Lf (l))

r − l
+ Ll =

−lLf (r) + rLf (l)

r − l
.

Meanwhile, Proposition 3.1.4 yields an integer n with

Lf (s) = − logp

(
|f |p−s

)
≥ − logp(p

−ns) = ns for all s ∈ (0,∞),

and in turn implies lim
s!0

Lf (s) ≥ 0. We thus obtain rLf (l) ≥ lLf (r), and consequently find

|f |b = p−Lf (r) ≤ p−(r/l)Lf (l) = |f |r/la
as desired. □

Proposition 4.1.8. For every closed interval [a, b] ⊆ (0, 1), there exists a canonical continuous
embedding B+

a ↪−! B+
b .

Proof. Lemma 4.1.7 implies that every Cauchy sequence in Ainf [1/p] with respect to the
Gauss a-norm is Cauchy with respect to the Gauss b-norm. Hence the assertion is evident by
construction. □
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For the rest of this section, we write B̃+ := lim−!B+
ρ where the transition maps are the

natural injective maps given by Proposition 4.1.8, and regard each B+
ρ as a subring of B̃+.

We also regard B+
cris as a subring of B̃+ in light of Proposition 4.1.6.

Proposition 4.1.9. The Frobenius automorphism of Ainf [1/p] uniquely extends to an auto-

morphism φ+ of B̃+ with the following properties:

(i) φ and φ+ agree on B+.

(ii) The Frobenius endomorphism of Bcris and φ+ agree on B+
cris.

(iii) φ+ restricts to an isomorphism B+
ρ ≃ B+

ρp for every ρ ∈ (0, 1).

Proof. Let φinf denote the Frobenius automorphism of Ainf [1/p]. Then we have

φinf

(∑
[cn]pn

)
=
∑

[cpn]pn for all cn ∈ OF ,

and consequently find

|φinf(f)|ρp = |f |pρ for all f ∈ Ainf [1/p] and ρ ∈ (0, 1).

It follows by Lemma 1.2.15 that φinf uniquely extends to a continuous ring isomorphism
φ+
ρ : B+

ρ ≃ B+
ρp for each ρ ∈ (0, 1). For every closed subinterval [a, b] of (0, 1), the restriction

of φ+
b on B+

a is a continuous extension of φinf , and thus agrees with φ+
a . Hence we obtain an

isomorphism

φ+ : B̃+ = lim−!B+
ρ ≃ lim−!B+

ρp = B̃+.

It is evident by construction that φ+ is an extension of φinf and each B+
ρ with ρ ∈ (0, 1).

The uniqueness of each φ+
ρ implies that φ+ is a unique extension of φinf with the property

(iii). Moreover, the restriction of φ+ on B+
cris is a continuous extension of φinf , and thus agrees

with the Frobenius endomorphism on B+
cris by Lemma 3.1.10 from Chapter III.

It remains to verify the property (i) of φ+. By construction, both φ and φ+ extend φinf .
In addition, the property (iii) implies that φ+ restricts to an isomorphism

B+ = lim −B
+
ρ ≃ lim −B

+
ρp = B+

where the transition maps in each limit are the natural inclusions. Since B+ is the closure
of Ainf [1/p] in B, we deduce that this isomorphism agrees with the restriction of φ on B+,
thereby completing the proof. □

Remark. Let us give an alternative description of the ring B̃+ and its Frobenius automor-
phism. We define the Gauss 1-norm on Ainf [1/p] by∣∣∣∑[cn]pn

∣∣∣
1

:= sup
n∈Z

(|cn|) for all cn ∈ OF .

By construction we have |f |1 = lim
ρ!1

|f |ρ for every f ∈ Ainf [1/p], and consequently find that

the Gauss 1-norm is indeed a multiplicative norm. It is then straightforward to verify that

B̃+ is naturally isomorphic to the completion of Ainf [1/p] with respect to the Gauss 1-norm.
Hence we may obtain φ+ as a unique continuous extension of φinf by Lemma 1.2.15.

However, we avoid using this description because working with the Gauss 1-norm is often
subtle. The main issue is that the natural map OF −! Ainf [1/p] given by the Teichmüller
lifts is not continuous with respect to the Gauss 1-norm. In fact, it is not hard to show

lim
c!0

|[1 + c] − 1|1 = 1 ̸= 0.
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Definition 4.1.10. We refer to the map φ+ constructed in Proposition 4.1.9 as the Frobe-

nius automorphism of B̃+. We often abuse notation and write φ for φ+ and the Frobenius
endomorphism of Bcris.

Proposition 4.1.11. The Frobenius endomorphism of Bcris is injective.

Proof. Proposition 4.1.9 implies that φ is injective on B+
cris, and in turn yields the

desired assertion as we have Bcris = B+
cris[1/t] and φ(t) = pt by Proposition 3.1.11 from

Chapter III. □

Remark. Proposition 4.1.11 proves Theorem 3.1.13 from Chapter III.

Proposition 4.1.12. We have identities

B+ =
⋂
n≥0

φn(B+
cris) and B+[1/t] =

⋂
n≥0

φn(Bcris).

Proof. By Proposition 4.1.6 and Proposition 4.1.9 we have

B+

1/ppn+1 = φn(B+
1/pp) ⊆ φn(B+

cris) ⊆ φn(B+
1/p) = B+

1/ppn
for every n ≥ 0,

and consequently find

B+ =
⋂
ρ≥0

B+
ρ =

⋂
n≥0

B+
1/ppn

=
⋂
n≥0

φn(B+
cris).

The second identity then follows as we have Bcris = B+
cris[1/t] and φ(t) = pt by Proposition

3.1.11 from Chapter III. □

Proposition 4.1.13. For every n ∈ Z, we have

Bφ=pn = (B+)φ=p
n

= (B+
cris)

φ=pn .

Proof. The first identity is an immediate consequence of Proposition 3.1.11. The second
identity follows from Proposition 4.1.12. □

Corollary 4.1.14. We have X = Proj

⊕
n≥0

(B+
cris)

φ=pn

.

Proposition 4.1.15. There exists a canonical isomorphism Be ∼= B[1/t]φ=1.

Proof. Proposition 4.1.12 and Proposition 4.1.13 together yield a natural identification

B[1/t]φ=1 ∼= B+[1/t]φ=1 = Bφ=1
cris = Be

as desired. □

Corollary 4.1.16. The ring Be is a principal ideal domain.

Proof. By construction, the element t induces the closed point ∞ on X. Hence we
have an identification X\ {∞ } ∼= Spec (B[1/t]φ=1), and consequently deduce the assertion
by Theorem 2.4.8. □

Remark. Corollary 4.1.16 was first proved by Fontaine prior to the construction of the
Fargues-Fontaine curve. Fontaine’s proof was motivated by a result by Berger [Ber08] that
Be is a Bézout ring, and eventually inspired the first construction of the Fargues-Fontaine
curve as we will soon describe in the subsequent subsection.
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4.2. Essential image of the crystalline functor

In this subsection, we describe the essential image of the functor Dcris using vector bundles
on the Fargues-Fontaine curve. Our discussion will be cursory, and will focus on explaining
some key ideas for studying p-adic Galois representations via vector bundles on the Fargues-
Fontaine curve. Throughout this subsection, let us write U := X\ {∞ }.

Proposition 4.2.1. Let Me be a free Be-module of finite rank, and let M+
dR be a B+

dR-lattice
in MdR := Me ⊗Be BdR.

(1) There exists a unique vector bundle V on X with

H0(U,V) ∼= Me and V̂∞ ∼= M+
dR

where V̂∞ denotes the completed stalk of V at ∞.

(2) The vector bundle V gives rise to a natural exact sequence

0 H0(X,V) Me ⊕M+
dR MdR H1(X,V) 0

where the middle arrow maps each (x, y) to x− y.

Remark. The first statement is in fact a standard application of the Beauville-Laszlo theorem
as stated in [BL95] or [Sta, Tag 0BP2]. The second statement then follows as a variant of
the Mayer-Vietoris long exact sequence.

Example 4.2.2. By Proposition 4.1.2 and Proposition 4.1.15 we have natural identifications

H0(U,OX) ∼= Be and ÔX,∞ ∼= B+
dR

where ÔX,∞ denotes the completed local ring at ∞. Hence by Therem 3.2.9 and Proposition
4.2.1 we obtain a natural exact sequence

0 Qp Be ⊕B+
dR BdR 0,

which in turn yields the fundamental exact sequence

0 Qp Be BdR/B
+
dR 0

as described in Chapter III, Theorem 3.1.14.

Remark. In fact, the Fargues-Fontaine curve was originally constructed by gluing Spec (Be)
and Spec (B+

dR) using the fundamental exact sequence, partially motivated by Colmez’s theory
of Banach-Colmez spaces as developed in [Col02].

Definition 4.2.3. Let N be a filtered isocrystal over K. Let us write rk(N) and deg(N)
respectively for the rank and the degree of N as an isocrystal over K0.

(1) We define the degree of the filtered vector space NK , denoted by deg(NK), to be the

unique integer d with Fild(det(NK)) ̸= 0.

(2) We define the degree of N by

deg•(N) := deg(N) − deg(NK).

(3) If N is not zero, we define its slope by

µ•(N) :=
deg•(N)

rk(N)
.

Remark. It is straightforward to verify that MFφK is a slope category as remarked after
Theorem 3.3.22. Hence every N ∈ MFφK admits a unique Harder-Narasimhan filtration.

https://stacks.math.columbia.edu/tag/0BP2
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Example 4.2.4. Let V be a crystalline ΓK-representation. We wish to show that Dcris(V )
has degree 0. Proposition 3.2.14 from Chapter III implies that det(V ) is a crystalline ΓK-
representation with det(Dcris(V )) ∼= Dcris(det(V )), and consequently yield

deg•(Dcris(V )) = deg•(det(Dcris(V ))) = deg•(Dcris(det(V ))).

Hence we may replace V with det(V ) to assume dimQp V = 1.

Let us choose a continuous character η : ΓK −! Q×
p with V ≃ Qp(η). Proposition 2.4.4

and Proposition 3.2.8 from Chapter III together imply that V is Hodge-Tate with

Dcris(V )K ∼= DdR(V ) and gr(DdR(V )) ∼= DHT(V ).

Hence Proposition 1.1.13 from Chapter III yields an integer n such that ηχn(IK) is finite. It
follows by Theorem 1.1.8 from Chapter III that n is the Hodge-Tate weight of V , which in
turn implies deg(Dcris(V )K) = n.

It remains to show that Dcris(V ) has degree n as an isocrystal. Let us denote by Kun

the maximal unramified extension of K in K, and by K̂un the p-adic completion of Kun. We

also write W (k) for the ring of Witt vectors over k, and K̂un
0 for the fraction field of W (k).

Example 3.2.2 and Proposition 3.2.13 from Chapter III together imply that V (n) ≃ Qp(ηχ
n)

is crystalline with
Dcris(V (n)) ∼= Dcris(V ) ⊗K Dcris(Qp(n)). (4.6)

We then find by Example 3.2.9 from Chapter III that ηχn(IK) is trivial. Moreover, by

construction K̂un is a p-adic field with IK as the absolute Galois group. Therefore we have

Dcris(V (n)) = (V (n) ⊗Qp Bcris)
ΓK ⊆ (V (n) ⊗Qp Bcris)

IK ∼= BIK
cris

∼= K̂un
0

where the last identification follows from Theorem 3.1.8 from Chapter III. It follows by Propo-
sition 3.2.7 from Chapter III that the Frobenius automorphism of Dcris(V (n)) extends to the

Frobenius automorphism of K̂un
0 , which in turn implies that Dcris(V (n)) has degree 0 as an

isocrystal. In addition, as we have φ(t) = pt by construction, we deduce by Example 3.2.2
from Chapter III that Dcris(Qp(n)) has degree −n as an isocrystal. The assertion is now
straightforward to verify by the natural isomorphism (4.6) in MFφK .

Definition 4.2.5. Let N be a filtered isocrystal over K.

(1) We say that N is semistable if we have µ•(M) ≤ µ•(N) for every nonzero filtered
subisocrystal M of N .

(2) We say that N is weakly admissible if it is semistable of slope 0.

(3) We say that N is admissible if it is in the essential image of Dcris.

Proposition 4.2.6. Every admissible filtered isocrystal over K is weakly admissible.

Remark. The proof of Proposition 4.2.6 is mostly an elementary algebra, after replacing
K by the completion of the maximal unramified extension of K in light of the remark af-
ter Proposition 3.2.20 from Chapter III. Curious readers can find a detailed proof in [BC,
Theorem 9.3.4].

Proposition 4.2.7. Let N be a weakly admissible filtered isocrystal over K, and set

V := (N ⊗K0 Bcris)
φ=1 ∩ Fil0(NK ⊗K BdR).

(1) V is naturally a crystalline ΓK-representation with dimQp(V ) ≤ dimK0(N).

(2) N is admissible if and only if we have dimQp(V ) = dimK0(N).

Remark. We refer the readers to [BC, Proposition 9.3.9] for a complete proof. If N is
admissible, the assertions are evident by Proposition 3.2.18 from Chapter III.
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Proposition 4.2.8. Let N be a filtered isocrystal over K.

(1) There exists a unique vector bundle E ′(N) on X with

H0(U, E ′(N)) ∼= (N ⊗K0 Bcris)
φ=1 and ̂E ′(N)∞ ∼= Fil0(NK ⊗K BdR)

where ̂E ′(N)∞ denotes the completed stalk of E ′(N) at ∞.

(2) We have rk(N) = rk(E ′(N)), deg•(N) = deg(E ′(N)) and µ•(N) = µ(E ′(N)).

(3) N is weakly admissible if and only if E ′(N) is semistable of slope 0.

Remark. A complete proof of Proposition 4.2.8 may be added later. Here we explain some
key ideas as sketched in [FF18, Lemma 10.5.5 and Proposition 10.5.6].

The first statement follows from Proposition 4.2.1 once we verify verify using Theorem
2.3.24 from Chapter II that (N ⊗K0 Bcris)

φ=1 is a free Be-module with an identification

(N ⊗K0 Bcris)
φ=1 ⊗Be BdR

∼= NK ⊗K BdR.

The second statement can be obtained by realizing E ′(N) in a short exact sequence

0 E ′(N) E(N) T 0

where T is a torsion sheaf supposed at ∞. The third statement is obtained as a special case of
the fact that the functor E ′ preserves the Harder-Narasimhan filtration, which is not hard to
prove by observing that the Harder-Narasimhan filtrations of N and E ′(N) are stable under
the natural actions of ΓK .

Theorem 4.2.9 (Colmez-Fontaine [CF00]). A filtered isocrystal N over K is admissible if
and only if it is weakly admissible.

Proof. If N is admissible, then it is weakly admissible by Proposition 4.2.6. Let us now
assume that N is weakly admissible, and set

V := (N ⊗K0 Bcris)
φ=1 ∩ Fil0(NK ⊗K BdR).

In light of Proposition 4.2.7, it suffices to show dimQp(V ) = dimK0(N). Proposition 4.2.8
yields a semistable vector bundle E ′(N) on X of slope 0 with

H0(U, E ′(N)) ∼= (N ⊗K0 Bcris)
φ=1 and ̂E ′(N)∞ ∼= Fil0(NK ⊗K BdR)

where ̂E ′(N)∞ denotes the completed stalk of E ′(N) at ∞. Hence by Proposition 4.2.1 we
obtain a canonical isomorphism

H0(X, E ′(N)) ∼= (N ⊗K0 Bcris)
φ=1 ∩ Fil0(NK ⊗K BdR) = V.

Moreover, Theorem 3.5.3 and Proposition 4.2.8 together imply that E ′(N) is isomorphic to
O⊕r
X where we set r := dimK0(N), and consequently yields an isomorphism

V ∼= H0(X, E ′(N)) ≃ H0(X,OX)⊕r ∼= Q⊕r
p

by Proposition 3.1.6 and Theorem 3.2.9. We thus find dimQp(V ) = dimK0(N) as desired. □

Remark. While the proof above greatly simplifies the original proof by Colmez-Fontaine
[CF00] and another proof by Berger [Ber08], these prior proofs contained a number of
important ideas that contributed to the discovery of the Fargues-Fontaine curve.

Corollary 4.2.10. The functor Dcris is an equivalence between Repcris
Qp

(ΓK) and the category

of weakly admissible filtered isocrystals over K.

Proof. This is immediate by Theorem 3.2.19 from Chapter III and Theorem 4.2.9. □
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