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CHAPTER 1

Introduction

1. A first glimpse of p-adic Hodge theory

Our goal in this section is to give a brief overview of p-adic Hodge theory. By nature,
p-adic Hodge theory admits two different perspectives, namely the arithmetic one and the
geometric one. We illustrate some key ideas of p-adic Hodge theory from each perspective,
and discuss how the two perspectives are related.

1.1. The arithmetic perspective

A central object in algebraic number theory is the absolute Galois group I'g = Gal(Q/Q).
Indeed, I'g contains virtually all arithmetic information about the field Q (and its finite
extensions, called number fields). However, since I'g is an extremely sophisticated object, we
usually study it via the natural injective group homomorphism I'g, < I'g induced by the
canonical embedding Q — Q, for each prime p. It is a general principle that we can deduce
much information about I'gp from knowledge about I'g,, for each prime p.

The group I'g, is still quite complicated, but turns out to be much more manageable than
the group I'g is. The main objective of p-adic Hodge theory, from the arithmetic perspective,
is to understand I'g, via continuous representations I'g, — GL,(Q,), called p-adic Galois
representations, where I'g, and GL,(Q,) are respectively endowed with the profinite topology
and the p-adic topology. Such representations are particularly interesting as they encode two
different kinds of structures on @Q,, namely the algebraic ones from the group I'gp, and the
analytic ones from the p-adic topology.

In this subsection, we present a primary example that shows why p-adic Galois represen-
tations are important for carrying out the strategy outlined in the first paragraph and how
we study such representations. Let E be an elliptic curve over Q, which refers to a projective
curve defined by a polynomial equation

y? =23 +ar+b with a,b € Q and 4a® + 27b* # 0. (1.1)

Elliptic curves play a fundamental role in modern number theory, as highlighted by the proof of
Fermat’s last theorem. Elliptic curves have a remarkable property that their points (including
the point at infinity) naturally form an abelian group. Hence for each positive integer n and
a (Q-algebra R, we can define

En|(R):={P € E(R):nP =0}

where O denotes the point at infinity identified as the zero element in E. We fix a prime /¢
and define the ¢-adic Tate module of E by

Ty(E) := lim E[¢°)(Q)
where the transition maps send each P € E[(**1](Q) to £P € E[¢*](Q). It is a standard fact
that Ty(FE) is a free Zy-module of rank 2, thereby admitting an isomorphism

T,(E) ~ 72.
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Moreover, the tautological action of I'g on @ naturally induces a continuous action on Ty(E),
and in turn gives rise to a continuous representation of I'g on

Vi(E) == Ty(E) ®z, Q¢ ~ @}
called the (-adic rational Tate module of E. The action of I'g on Ty(F) and V;(E) contains
much information about the elliptic curve FE, as suggested by the following fact:

THEOREM 1.1.1 (Faltings [Fal83]). Given two elliptic curves E; and E3 over Q, there exist
natural isomorphisms

HOH](El, EQ) Rz Zz = Homp@ (Tg(E1), Tg(EQ)),
Hom(E, E2) ®z Q¢ = Homr, (Ve(E1), Ve(E?2)).

In particular, a homomorphism between F; and F» is uniquely determined by the induced
map on the Tate modules as I'g-representations.

(1.2)

Remark. By a result of Tate [Tat66], an analogous statement holds for elliptic curves over
F, with p # ¢. Both Theorem and the result of Tate [Tat66] are special cases of
the Tate conjecture which relates subvarieties of a given algebraic variety X over a field k
to representations of I'y = Gal(k/k) on vector spaces over Q that naturally arise from X
(similar to the ¢-adic rational Tate module an elliptic curve). For elliptic curves over Q,, we
get injective maps instead of isomorphisms in .

However, the action of I'g on Ty(E) and V,(E) is difficult to understand due to the com-
plexity of the group I'p. Following the strategy outlined at the beginning of this subsection,
we study the action of I'g, on Ty(FE) and V;(E) for each prime p via the natural injection
I'g, — T'g. In fact, we have an identification

Ty(E) = lim B[*)(Q,) ~ Z7,

endowed with a continuous action of I'g, naturally induced by the tautological action on @p.
We assume that E has good reduction at p. For p > 3, our assumption concretely means
that in the polynomial equation we have a, b € Z, with 4a +27b% not divisible by p. The
assumption is not very restrictive; indeed, it is a standard fact that E has good reduction at
almost all primes (i.e., all but finitely many primes). A main consequence of our assumption
is that £ admits mod p reduction, denoted by E, which is an elliptic curve over F » With points
given by the mod p solutions of . We have the /¢-adic Tate module of E defined by

Ty(E) := lim E[°)(F,),
which turns out to be a free module over Z, (but not necessarily of rank 2) with a contin-

uous action of I'r, = Gal(F,/F,) naturally induced by the tautological action on F,, and
consequently obtain a continuous representation of I'r, on the ¢-adic rational Tate module

Vi(E) = Ty(E) ®z, Q.

For p # /, we can explicitly describe the action of I'g, on Ty(E) and V;(E) through the ac-
tion of I'g, on Ty(E) and V;(E). In fact, if we regard Ty(E) and V;(E) as I'g,-representations
via the natural surjection I'g, — Gal(Q,"/Qp) = I'p,, where Q" denotes the maximal un-
ramified extension of @, we have isomorphisms

Tg(E) ~ TZ(E) and W(E) ~ W(E)

as I'g,-representations. Hence we only need to understand T;(E) and V;(E) as (continuous)
['p,-representations. The group I'p, is topologically generated by the Frobenius automor-

phism which maps each element in F, to its p-th power. It turns out that the Frobenius
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automorphism acts on Ty(E) and V,(E) with characteristic polynomial x2 — a,z + p, where
we set a, := p+ 1 — #E(F,). In summary, we can specify the action of g, on Ty(E) and
Ve(E) by the following properties:

(i) The action is continuous and factors through the natural surjection I'g, — I's,.

(ii) The Frobenius automorphism of F,, which topologically generates I'r,, acts with
trace a, = p+ 1 — #E(F,) and determinant p.

We refer to a I'g,-representation with property as an unramified representation, moti-
vated by the natural identification I'y, = Gal(Q,"/Qp). Since the (-adic Tate module T;(E)
is unramified, it loses much information about the topology on I'g,; indeed, the topology on
['r, is very simple (being generated by one element, namely the Frobenius automorphism)
compared to the topology on I'g,. Intuitively, for p # ¢ the topologies on I'g, and Q, do not
get along with each other very well, and in turn force the continuous action of I'g, on T}(E)
to be simple. It is worthwhile to mention that our discussion here explains one direction of
the following important criterion:

THEOREM 1.1.2 (Néron [Nér64], Ogg [Ogg67|, Shafarevich). An elliptic curve E over Q has
good reduction at p # ¢ if and only if Tp(F) is unramified.

Let us now set p = ¢. We have entered the realm of p-adic Hodge theory, as V,(E) is
a p-adic Galois representation by construction. In stark contrast to our discussion in the
previous two paragraphs, we have the following facts:

(1) The (rational) Tate modules for E and E are never isomorphic; indeed, T,(F) is
isomorphic to either Z, or 0 whereas T),(E) is always isomorphic to ZIQ,.

(2) T,(E) and V,(E) turn out to be never unramified; in other words, the action of
I'g, on T,(E) and V,(£) always has a nontrivial contribution from the kernel of the
surjection I'g, — ', called the inertia group of Q, and denoted by Ig,.

The second fact indicates that the topologies on I'g, and Q, do not clash and thus allow
T,(E) to carry a large amount of topological information. A side effect is that, as the first

fact shows, it is impossible to describe T},(E) solely based on T}, (E).

We still wish to understand 7},(E) as a I'g,-representation using the mod p reduction E.
Following Tate [Tat66] and Grothendieck [Gro71l, (Gro74], we regard E as a curve over Z,
and consider the functors defined by

Ep®) =lmEp] and E[p™] = lim B},

called the p-divisible groups of E and E, where the transition maps are the natural inclusions.
For the elliptic curve E, the p-divisible group E[p*°] and the Tate module T),(E) are equivalent
objects in the sense that we can determine one from the other. On the other hand, for the
mod p reduction E, the p-divisible group E[p™] contains a lot of information that the Tate
module T),(E) does not; for example, E[p™] never vanishes while T),(E) often does (as noted
in the previous paragraph). Hence the p-divisible groups serve as refinements of the p-adic
Tate modules which do not lose too much information under mod p reduction.

A remarkable fact is that we can describe p-divisible groups in terms of linear algebraic
objects. A Dieudonné module over Zj, refers to a finite free Z,-module M equipped with an
endomorphism ¢/, called the Frobenius endomorphism, such that ¢y (M) contains pM. A
Honda system over Z, is a Dieudonné module M over Z,, together with a submodule Fil* (M)
such that ¢y induces a natural isomorphism Fil' (M) /p Fil' (M) 2 M/ (M).
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THEOREM 1.1.3 (Dieudonné [Die55|, Fontaine [Fon77]). Given an elliptic curve E over Q
with good reduction at p, we have the following statements:

(1) The mod p reduction E of E functorially gives rise to a Dieudonné module D(E)
over Zj of rank 2, which uniquely determines the isomorphism class of E[p™].

(2) For p > 2, the elliptic curve E functorially gives rise to a Honda system over Z, with

underlying Dieudonné module D(E), which uniquely determines the isomorphism
class of E[p™].

Remark. Let us make some remarks regarding Theorem [1.1.3

(1) The results of Dieudonné [Die55] and Fontaine [Fon77] indeed yield anti-equivalences
of categories

{ p-divisible groups over F, } <=~ { Dieudonné modules over Z, }
{ p-divisible groups over Z, } «— { Honda systems over Z, }

where the second anti-equivalence holds only for p > 2. For p = 2, the second
anti-equivalence holds after taking an appropriate subcategory on each side.

(2) The first statement, proved by Dieudonné [Die55], was the main motivation for Tate
[Tat66] and Grothendieck |[Gro71), [Gro74| to study p-divisible groups in relation
to the Tate modules, as it suggests that E[p>] behaves much as T,(E) for p # /.
The work of Tate [Tat66] and Grothendieck [Gro71), [Gro74] eventually inspired
the proof of the second statement by Fontaine [Fon77| in an attempt to describe

E[p™] via D(E) together with some “lifting data”.

(3) Our description of Dieudonné modules is potentially misleading. In general, for
a Dieudonné module M the endomorphism s should be Frobenius-semilinear in
an appropriate sense. For Dieudonné modules over Z,, however, the Frobenius-
semilinearity simply means linearity as the Frobenius automorphism is trivial on the

residue field [Fp,.

Hence for p > 2 we can determine the isomorphism class of T,(E) as a I'g,-representation
by the Honda system associated to E with underlying Dieudonné module D(E). Intuitively,
once we fix an element o € I'g, that lifts the Frobenius automorphism in I'r,, the Honda
system encodes the actions of Ig, and o on T),(E) respectively by Fil}(D(E)) and en ) For
p = 2, we can still associate a Honda system to E and show that it contains much information

about T, (F), although in general it does not determine the isomorphism class of T),(FE).

If we instead want to study the p-adic Galois representation on V,(E), we replace the
Dieudonné module D(E) by D(E) ®z, Q,, called an isocrystal over Qp, which is a finite
dimensional vector space over Q, equipped with a (Frobenius-semilinear) automorphism. The
Honda system associated to E yields the isocrystal D(E) ®z, Qp with the filtration given by
the subspace Fil'(D(E)) ®z, Qp, called a filtered isocrystal over Q,. Now Theorem m
implies for p > 2 that the filtered isocrystal associated to E determines the isomorphism class
of V,(E) as a p-adic Galois representation, which turns out to apply also for p = 2.

We have thus transferred the study of T),(£) and V,(E) as I'g,-representations to the
study of certain linear algebraic objects, such as Dieudonné modules and isocrystals. In fact,
a main theme of p-adic Hodge theory is to construct a dictionary that relates p-adic Galois
representations to various linear algebraic objects. Our discussion here illustrates a prototype
for such a dictionary.
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1.2. The geometric perspective

Our discussion in shows how we can study elliptic curves over Q via their Tate
modules as I'g-representations. It is natural to ask whether we can similarly study other
algebraic varieties. Let X be a smooth proper variety over Q. For each Q-algebra R, we
write Xg for the base change of X to R. Given an integer n > 0 and a prime ¢, we have the
étale cohomology group HQ(X@, Q¢) which is a finite dimensional vector space over Qy with
a continuous action of I'g. As a special case, for an elliptic curve E over Q we have a natural
identification

Vi(E)Y = Hy (Eg, Qo)
as I'g-representations, where Vy(E)Y denotes the dual representation of Vy(E). Following
the strategy outlined in for each prime p we study the action of I'g, on HQ(X@, Q)
via the natural injection I'g, < I'g; in other words, we study the étale cohomology group
H&(X@p,(@g) as a representation of I'g,. For p # /¢, the I'g,-representation HQ(X@Z),Q[)
tends to be simple; indeed, it is unramified for all but finitely many p # ¢, as we have already
seen for the rational Tate modules of an elliptic curve in For p = £, on the other hand,
H&(X@p,(@p) as a p-adic Galois representation turns out to carry interesting information

about the geometry of X. The main objective of p-adic Hodge theory, from the geometric
perspective, is to extract information about the geometric structure of an algebraic variety
from the p-adic étale cohomology groups.

In this subsection, we illustrate how the classical Hodge theory inspires fundamental
results in p-adic Hodge theory which relates the p-adic étale cohomology groups of an algebraic
variety over Q,, (or its finite extension) to other cohomology groups. Let us consider an elliptic
curve E over Q. We may identify E(C) as a complex torus via an isomorphism

E(C)~C/(Z®Zt) for some nonreal 7 € C.
Let o and S respectively denote the loops on E(C) induced by the line segments on C con-

necting 0 to 1 and 7, as illustrated in the following figure:

Im

T 1+7

— =

We have an isomorphism
H\(E(C),Z)~ZdZ
with a basis given by the homotopy classes of o and 3, and consequently find
H'(E(C),C) = Hom(H;(E(C),C))~Ca®C (1.3)
by Poincaré duality. Moreover, since E(C) has genus 1 there exists an isomorphism
HY(E¢,Qp.) ~C
with a basis given by dz. Hence we obtain an isomorphism

H°(Ec, Q) & HY(Ece, Q) — H'(E(C),C) (1.4)
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which maps dz and dz respectively to [dz = (1,7) and [ dz = (1,7) under the isomorphism
(1.3). It is not hard to see that this isomorphism is canonical. In fact, it is a special case of
the Hodge decomposition given by the following theorem:

THEOREM 1.2.1. For a smooth proper variety X over C, there exists a canonical isomorphism

H™(X(C),Q) ®q C = Hir(X/C) = P H'(X, %)
i+j=n

with Hi(X, ) = HI (X, Q).

Theorem admits analogues for the p-adic étale cohomology of an algebraic variety
over Q. Let C;, denote the p-adic completion of Q,, called the field of p-adic complex numbers.
The field C,, is complete and algebraically closed, just as the field C is. Since the tautological
action of I'g, on Q, is continuous, it uniquely extends to an action on C,. For a p-adic
analogue of the complex conjugate, we consider the p-adic cyclotomic character

x:Tq, — Aut(Zy) = Z;
given by the I'g,-action on the group
Tp(ppoe) := lim prpe (@) ~ Wm Z/p"Z = Ly

where v (@p) denotes the group of p-th roots of unity in @p, and write C,(n) for C, with
['g,-action twisted by x" in the sense that each v € I'g, acts on C,(n) as x(v)"y. For an
elliptic curve E over @, with good reduction, the work of Tate [Tat67] yields a canonical
isomorphism

which is compatlble with FQp—actlons. In fact, this 1somorphlsm is a special case of the
Hodge-Tate decomposition given by the following theorem:

THEOREM 1.2.2 (Faltings [Fal88]). For a smooth proper variety X over Q,, there exists a
canonical isomorphism

HE(Xg,, Q) ®g, Cp = P H(X, % q,) ®q, Cp(—) (1.5)
i+j=n
which is compatible with I'g,-actions.

Let us take the Hodge-Tate period ring Byt := @ Cp(n) and write the isomorphism ([1.5])

neZ
as a I'g,-equivariant isomorphism of graded algebras

Hgt(X@pan) ®q, Bur = ( GB HZ X/Q )) ®q, Bur- (1.6)
i+j=n

A result of Tate [Tat67] and Sen [Sen80] establishes an identification BII;(%” = Qp and in turn
yields an isomorphism of graded Q,-algebras

r ~
(Hi(Xg, Q) ®g, Bur) @ = P H(X, % g )-
i+j=n
In particular, we can compute the Hodge numbers of X from H, Q(X@ ,Qp).
P

Theorem is, however, not a complete analogue of Theorem [1.2.1| as it does not give
a comparison isomorphism which directly relate the étale cohomology and the de Rham co-
homology. Fontaine [Fon82|] formulated a conjecture that such a comparison isomorphism
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exists as a refinement of the isomorphism (1.6]), inspired by the fact that the de Rham co-
homology group HZ,(X/Qp) has a natural filtration { Fil™ (HJ(X/Qp)) }m€Z7 called the
Hodge filtration, with its graded vector space gr (H} (X/Qy)) yielding a natural isomorphism

g (M3 (X/Q,) = @) HI(X, %),
i+j=n
A key ingredient of the conjecture is the de Rham period ring Bgqr which Fontaine [Fon82]
constructed as a Q,-algebra with the following properties:

r
(i) Bgr carries a natural action of I'g, with B dgp =Qp.
(ii) Bqr admits a natural filtration { Fil"(Bgr) },,cz with Bur as its graded algebra.

Fontaine’s conjecture is now a theorem, commonly referred to as the p-adic de Rham com-
parison theorem, which we state as follows:

THEOREM 1.2.3 (Faltings [Fal89]). For a smooth proper variety X over Q,, there exists a
canonical isomorphism

Hg(Xg,» Qp) @, Bar = Hir(X/Qp) ©q, Bar (1.7)
which is compatible with I'g,-actions and filtrations.
Remark. The filtration on the right side is the convolution filtration given by
Fil™ (Hir (X/Qp) ®q, Bar) == @ Fil' (Hir(X/Qp)) ®q, Fi¥/(Bar)  for every m € Z.
i+j=m
Theorem [1.2.3] yields Theorem as a formal consequence; indeed, we obtain the iso-

morphism (1.6]) from the isomorphism ((1.7)) by passing to the associated graded vector spaces.
In addition, Theorem [1.2.3| induces a natural isomorphism

(HE(Xg, Qp) ©g, Bar)' * = Hi(X/Qp),
thereby allowing us to recover Hl; (X/Q)) from Hgt(X@p, Qp). Therefore Theoremm (with
Theorem as its consequence) indicates that the p-adic étale cohomology of an algebraic
variety over @, behaves much as the singular cohomology of an algebraic variety over C does.
Let us now assume that X has good reduction over Q,. Intuitively, our assumption
means that we may regard X as a smooth scheme over Z,, and thus allows us to take its

mod p reduction X. Motivated by our discussion in we wish to understand the p-adic
Galois representation HQ(X@ ,Qp) using X. We consider the crystalline cohomology group
D

H!. (X/Z,) which is a Dieudonné module over Z, with a natural isomorphism

ngis(X/Zp) ®Zp Qp = HcTILR(X/Qp)
and a canonical filtration { Fil"™ (H2, (X /Z,)) Jmeg induced by the Hodge filtration on
HR (X /Qg). For an elliptic curve E with good reduction over Q,, we may naturally iden-
tify HY i (E/Zy) ®7, Q, with the filtered isocrystal associated to E, which in turn determines
H} (Eg »Qp) = V,(E)" by our discussion in For the general case, Grothendieck [Gro71]
P

(X /Zyp)®7z,Q, as afiltered isocrystal determines H, &(Xg » Qp)
'y

as a p-adic Galois representation in a functorial way; indeed, his conjecture predicts that there

exists a fully faithful functor D on a certain category of p-adic Galois representations with

D(H3(Xg,, Q) = Hi(X/2,) €2, Q.

We refer to the functor D as the Grothendieck mysterious functor.

proposed a conjecture that H [,
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Fontaine [Fon82, [Fon83| reformulated the conjecture of Grothendieck [Gro71] in terms
of a comparison isomorphism between the étale cohomology and the crystalline cohomol-
ogy. His idea was to refine the de Rham comparison isomorphism by constructing the
crystalline period ring Beris, which is a Qp-subalgebra of Bgr with the following properties:

(i) Beis carries a natural action of I'x with B = Qp, induced by the action on Bgg.

CrlS
(ii) Beris admits a (Frobenius-semilinear) endomorphism ¢, called the Frobenius endo-

morphism, and a natural filtration { Fil"(Beris) },cz given by the filtration on Bgg.
Fontaine’s conjecture is now a theorem, commonly referred to as the crystalline comparison
theorem, which we state as follows:

THEOREM 1.2.4 (Faltings [Fal89]). For a smooth proper variety X over Q, with mod p
reduction X, there exists a canonical isomorphism

Hgé (X@p, QP) ®Qp Beris = CrlS(X/Z ) BCI‘iS (18)
which is compatible with I'g,-actions, filtrations, and Frobenius actions.

Remark. As in Theorem the right side carries the convolution filtration given by
Fil™ (H2o(X/Zy) @z, Beris) = @) Fil' (H2s(X/Zy)) ®2, Fil¥ (Bais)  for every m € Z.
i+j=m

The Frobenius actions refer to the Frobenius endomorphisms on H.;, (X/Z p) and Beris.
Under the assumption that X has good reduction, we can obtain the de Rham comparison
isomorphism (|1.7)) from the crystalline comparison isomorphism ((1.8)) by tensoring with Bggr

and forgetting the Frobenius actions. In addition, Theorem yields a natural isomorphism
Top ~
(HQ(X@Z), @p) ®Qp BcriS) o Hgms(X/Zp> ®Zp va
thereby suggesting that the mysterious functor D takes the form
D(V) = (V q, Bris)' %

for every p-adic Galois representation V. It turns out, by the work of Fontaine [Fon94], that
the functor D is fully faithful on a suitable category of p—adic Galois representations with
values taken in the category of filtered isocrystals. In fact, X /Zyp) ®z, Qp determines
HE (X@p, Qp) by an identification

CI'lS (

HQ(X@Z), @P) = ( cris X/Z ) BCl“iS)SO N Fllo (H(?rls(X/Zp) ®Zp BCFiS) (19)
where ( H". (X /Zy) ®z, ch)(p:1 denotes the space of invariants in H. (X /Zj) ®z, Beris
under the Frobenius action.

As our discussion demonstrates, a main theme in p-adic Hodge theory is to establish a
comparison isomorphism that relates p-adic étale cohomology groups to cohomology groups
of a different kind. In addition to the theorems presented in this subsection, there are many
results of a similar flavor, notably by the work of Tsuji [Tsu99], Scholze [Sch13|, and Bhatt-
Morrow-Scholze [BMS18, BMS19]. Let us also mention that there are other approaches for
the comparison theorems presented in this subsection, in particular by the work of Fontaine-
Messing [FM87], Niziol [Niz98, [Niz08], and Beilinson [Beil2, Beil3].
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1.3. The interplay via algebraic functors
In the previous subsections, we illustrated two main themes in p-adic Hodge theory. The
first one, from the arithmetic perspective, is to construct a dictionary that relates p-adic
Galois representations to various linear algebraic objects. The second one, from the geometric

perspective, is to establish a comparison isomorphism that relates p-adic étale cohomology
groups to other cohomology groups.

In this subsection, we describe a connection between the two main themes of p-adic Hodge
theory provided by some linear algebraic functors. These functors originate in the work of
Fontaine [Fon79), Fon82), [Fon83| which proposes a uniform approach for the p-adic com-
parison theorems in an attempt to resolve the conjecture of Grothendieck |[Gro71] on the
mysterious functor. We write Repg, (Pg,) for the category of p-adic Galois representations,
and Vectg, for the category of finite dimensional vector spaces over Q,. Let B be a p-adic
period ring, such as Byr, Bqr or Beis, which is a Q-algebra carrying a natural I'g,-action

with B'® = Q,. We define the functor Dp : Repg, (I'g,) — Vectq, by setting
Dp(V) :=(V &g, B)'®  for each V € Repg, (I'g,)
and say that V € Repg, (I'g,) is B-admissible if the natural I'g,-equivariant map
ay : Dp(V) ®q, B — (V ®q, B) ®q, B=V ®q, (B®q, B) — V ®q, B

is an isomorphism. We enhance the functor Dp by incorporating additional structures on B,
as demonstrated by the following examples:
(1) Dpy, (V) foreach V e Repg, (Pg,) carries a grading naturally induced by the grading
on BHT-

(2) Dpyp(V) for each V' € Repg,(I'g,) carries a filtration naturally induced by the
filtration on Byg.

(3) DB, (V) foreach V € Repg, (I'g,) carries a Frobenius endomorphism and a filtration
naturally induced by the ones on Bys.

Then for a smooth proper variety X over @, we may state the p-adic comparison theorems

from as follows:
(1) HZ (X@p, Qp) is Byr-admissible with a natural isomorphism
D (H(Xg, Q) = @) HI(X, % )
i+j=n
which is compatible with gradings on both sides.
(2) Hg(Xg »Qp) is Bar-admissible with a natural isomorphism
P
Do (HE(Xg Q) = Hig (X/Q)

which is compatible with filtrations on both sides.
(3) If X admits mod p reduction X, then HY (Xg » Q) is Beris-admissible with a natural
D

isomorphism
Dp...(Hg(Xg,, Q) = Heio(X/Zy) ®z, @

which is compatible with Frobenius endomorphisms and filtrations on both sides.
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Let us denote by Repgp (P'g,) the category of B-admissible representations. The work of
Fontaine [Fon82, [Fon83| yields a hierarchy of p-adic Galois representations given by

Bcris B B
R’ep(@p (PQp) —,Cl— RepQ;lR (FQp) g R’ep@fT (FQp)
with the associated functors satisfying the following relations:

e Dp,.(V) for each V € Repg;R(FQp) is naturally isomorphic to the graded vector
space of Dp . (V).

e Dp,, (V) for each V' € Repg;ris(f‘@p) is naturally isomorphic to Dp_, (V) (after
forgetting the Frobenius endomorphism).

This hierarchy realizes relations between various cohomology groups for a smooth proper
variety X over QQp, as presented in § and summarized in the following statements:

e The Hodge-Tate decomposition (|1.6]) follows from the de Rham comparison isomor-
phism (|1.7]) by passing to the associated graded space via the identification

ot (Hip(X/Qp) = @ HI(X, QY q,)-
1+j=n
where gr (Hj (X/Q,)) denote the graded vector space of H; (X/Qy).

e If X has good reduction, the de Rham comparision isomorphism (1.7)) follows from the
crystalline comparison isomorphism (1.8)) by tensoring with Bggr via the identification

Hgis(y/zp) ®Zp D = HQR(X/Qﬁ-
In fact, we can conceptualize our hierarchy by the following principles:
(1) Rep(g;IT (g, ) contains almost all p-adic Galois representations which arise in practice.
(2) Repg:R (Pg,) contains all p-adic Galois representations which come from geometry.

(3) Repgzris (Ig,) contains all p-adic Galois representations which come from geometry
with integral structures.

We wish to understand how the category Rep(gp (I'g,) behaves, especially in conjunc-
tion with the functor Dp. A general formalism developed by Fontaine [Fon94] shows that
Rep(gp (I'g,) and Dp have the following properties:

(i) Dp is exact and faithful on Repgp (Tg,)-
(ii) Repgp(f‘@p) is closed under taking subquotients.
(iii) Repgp(f‘@p) is closed under tensor products, with a natural identification
Dp(V ®qg, W) = Dp(V) ®q, Dp(W)  for any V,W € Repg, (g, ).
(iv) Repgp(f‘@p) is closed under taking duals, with a natural identification
Dp(VY) = Homg, (Dp(V),Q,) for every V € Repgp(I‘Qp)
where V'V denotes the dual representation of V.

Moreover, Dy .

cris

and Rep(g;“s (Pg,) have a remarkable property given by the following result:

THEOREM 1.3.1 (Fontaine [Fon94]). The functor Dp_ . is fully faithful on Repg:is (Tg,)-
Remark. Theorem and Theorem together resolve the conjecture of Grothendieck

[Gro71] on the mysterious functor.
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Theorem [1.3.1] implies that studying Bcrs-admissible representations is equivalent to
studying their associated filtered isocrystals. Therefore it is vital to understand the essential
image of Dp_,., called the category of admissible filtered isocrystals over Q,. To every filtered
isocrystal over QQ,, we attach two invariants called the Newton polygon and the Hodge poly-
gon , which are convex polygons with integer breakpoints. By definition, the Newton polygon
encodes the eigenspace decomposition for the Frobenius endomorphism while the Hodge poly-
gon encodes the isomorphism class of the associated graded vector space. A remarkable result
of Mazur [Maz72| and Berthelot-Ogus [BOT8| is that for a smooth proper variety X over
Q, with mod p reduction X the Newton polygon of H. (X /Z,) ® Q, lies on or above the
Hodge polygon of H™. (X /Z,) ® Q, with same endpoints. Inspired by this result, the work
of Colmez-Fontaine [CF00] provides an intrinsic description for the category of admissible
isocrystals by some explicit conditions on Newton polygons and Hodge polygons as follows:

THEOREM 1.3.2 (Colmez-Fontaine [CF00]). A filtered isocrystal N over Q, is admissible if
and only if it satisfies the following properties:

(i) For every filtered isocrystal M C N, its Newton polygon lies above its Hodge polygon.
(ii) The Newton polygon and the Hodge polygon of N have the same endpoints.

The functor Dpg_,. and the notion of Bs-admissibility are very useful for studying elliptic
curves. A key strategy is, as already demonstrated in to obtain information about the
p-adic Tate module of an elliptic curve over Q from the Frobenius action and the filtration on
the associated filtered isocrystal. As an application of this strategy, we can show that for an
elliptic curve E over Q with mod p reduction F the Newton polygon and the Hodge polygon
of Dg,,..(V,(E)) coincide if and only if V,(F) has dimension 1. For another application, we
have a p-adic analogue of Theorem [1.1.2] given by the following result:

THEOREM 1.3.3 (Coleman-Iovita [CI99]). An elliptic curve E over Q has good reduction at
p if and only if T),(E) is Beris-admissible.

Remark. Both Theorem and Theorem |1.3.3| readily extend to abelian varieties, which
are projective varieties with a (commutative) group structure on the set of points.

Byt

In order to study Repr (g,), the largest category in our hierarchy of p-adic Galois
representations, we often consider invariants called Hodge-Tate weights. By definition, an
integer d is a Hodge-Tate weight of V € Repng(F@p) with multiplicity m if and only if the
degree d part of the graded vector space Dp, (V') has dimension m. Hodge-Tate weights are
essentially algebraic generalizations of Hodge numbers; indeed, for a smooth proper variety X
over Q,, computing its Hodge numbers is equivalent to computing the Hodge-Tate weights of
its p-adic étale cohomology (with multiplicity). Moreover, Hodge-Tate weights are useful for
studying Byr-admissible representations which do not necessarily come from geometry; for
example, a continuous character 7 : I'g, — Qp is Byr-admissible with Hodge-Tate weight d

d

if and only if the image of I, under nx~“ is finite.

Our discussion in this subsection indicates that period rings and their associated functors
provide a general framework for the two main themes in p-adic Hodge theory. From the
arithmetic perspective, they provide dictionaries for classifying and studying p-adic Galois
representations in terms of linear algebraic objects. From the geometric perspective, they
allow us to uniformly formulate p-adic comparison theorems and to systemically detect geo-
metric properties of an algebraic variety over @, from its p-adic étale cohomology. Therefore
period rings and their associated functors are essential for studying p-adic Hodge theory via
the interplay between the arithmetic and geometric perspectives.
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2. A first glimpse of the Fargues-Fontaine curve

In this section, we provide a brief introduction to a remarkable geometric object called
the Fargues-Fontaine curve, which plays a fundamental role in modern p-adic Hodge theory.
The main points that we convey in this section are as follows:

(1) The Fargues-Fontaine curve is akin to the complex projective line IP}C in many aspects.
(2) The Fargues-Fontaine curve provides a geometric framework for studying many im-
portant objects in p-adic Hodge theory.

Along the way, we discuss some additional facts about p-adic period rings and related objects.

2.1. Construction and basic properties

In this subsection, we demonstrate the construction and some key features of the Fargues-
Fontaine curve via comparisons with the complex projective line ]P’}C. Let us recall that IP)}C
has the following properties:

(i) It is noetherian, connected, and regular of dimension 1.

)
(ii) Its Picard group Pic(P{) is canonically isomorphic to Z.
(iii) It has arithmetic genus 0 in the sense that H' (P, (’)Pé ) vanishes.
)

(iv) It admits a closed point oo, namely the point at infinity, with natural isomorphisms
PL — oo = Spec (Clz]) and  Opy = C[[=7"]]
where (’)/Pgo denotes the completed local ring at co.

Property is closely related to the natural exact sequence
0 — C — C[z] — C((z71)/C[[z71]] — 0. (2.1)

Intuitively, this exact sequence indicates that we can construct IF’}C by gluing the complex
affine line Al = Spec (C[z]) to the infinitesimal disk at co, given by Spec (C[[z7!]]), along the
punctured infinitesimal disk at co, given by Spec (C((z71))).

The construction of the Fargues-Fontaine curve stems from a remarkable discovery of
Fontaine [Fon94] that the exact sequence admits an analogue for p-adic period rings.
By construction, the de Rham period ring Bggr is a discretely valued complete field with
residue field C,. We write B;R for the valuation ring of Bgr and B, := Bfiizsl for the ring of
p-invariants in Byis.

THEOREM 2.1.1 (Fontaine [Fon94]). The natural sequence
0 — Q) — B, — Baqr/Bjz — 0 (2.2)
is exact.

Remark. Theorem [2.1.1]is one of the most fundamental results in p-adic Hodge theory, with
many important applications including Theorem and Theorem [1.3.2

The exact sequences and have the following similarities:
(1) C[[z7"]] and Bj are both complete discrete valuation rings, with fraction fields
respectively given by C((z7!)) and Bgg.
(2) C[z] and B, are both principal ideal domains.
The second similarity is another surprising discovery of Fontaine, primarily based on the work

of Berger [Ber08]. The similarities of the exact sequences (12.1)) and (2.2]) inspire the construc-
tion of the Fargues-Fontaine curve X by gluing Spec (B.) and Spec (B$R) along Spec (Bgr)-
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THEOREM 2.1.2 (Fargues-Fontaine [FF18]). The Fargues-Fontaine curve X is a Q,-scheme
with the following properties:

(i) It is noetherian, connected and regular of dimension 1.

(ii) Its Picard group Pic(X) is canonically isomorphic to Z.

(iii) It has arithmetic genus 0 in the sense that H'(X,Ox) vanishes.
)

(iv) It admits a closed point oo with natural isomorphisms
X — o0 & Spec(B,) and (’)/X?O ~ Bi:
where O/X; denotes the completed local ring at oco.

Remark. However, unlike IP’}C, the Fargues-Fontaine curve is not an algebraic variety. The
main issue is that it is not of finite type over the base field Q,; indeed, property implies
that the residue field at oo is C,, and thus is not finitely generated over Q.

For an explicit description of the Fargues-Fontaine curve, we have a natural isomorphism
X 2 Proj (P) for a graded ring
P.=BM

n>0

where we set Bén) :={f € B¢ :vo(f) > —n } with vs denoting the valuation on Bgr. For
comparison, we have the identification Pt = Proj (C|z, 21]) and an isomorphism

Clz0, 21] = @ C[z]™

n>0

where we set C[2](™ := { f € C[2] : voo(f) > —n } = { f € C[2] : deg(f) < n } with vu denot-
ing the valuation on C((27!)). The graded rings P and C|z, 1] have an important common
feature of being generated in degree 1 (i.e., being generated by elements in Bél) and C[z](D).
In fact, this feature is responsible for numerous similarities between X and IP’(%:.

The Fargues-Fontaine curve has a surprising connection to perfectoid fields, which are
nonarchemedan fields of a special kind introduced by Scholze [Sch12|. Perfectoid fields are
very useful for studying problems in characteristic 0 by converting them to problems in pos-
itive characteristic. The key underlying fact is that every perfectoid field C with residue
characteristic p gives rise to a perfectoid field in characteristic p given by

C”:= lim C,
—

TP

called the tilt of C. For example, C, is a perfectoid field with its tilt F' := (Clb7 naturally
isomorphic to the completion of F,,((t)). Let us consider the set Y of untilts of F, which
refer to equivalence classes of pairs consisting of a perfectoid field C' and an isomorphism
L: C° ~ F. We write o for the trivial untilt given by F and its identity map, which represents
the unique untilt of F' in characteristic p. The set Y := Y — o admits a natural action of
the Frobenius automorphism ¢p on F' given by mapping each (C,t) € Y to (C,ppot). By a
result of Kedlaya-Liu [KL15], the set |X| of closed points on X admits a natural bjection

X| = Y/of = (Y = 0) /o (2.3)

where go% denotes the cyclic group generated by ¢r. We note that this bijection is reminiscent
of the isomorphism P{(C) = (C? — (0,0)) /C* with C* acting by scalar multiplication.
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2.2. Vector bundles and p-adic Galois representations

The construction of the Fargues-Fontaine curve manifests direct links to p-adic Hodge
theory. In particular, it provides a geometric description for several rings in p-adic Hodge
theory and encodes a remarkable relation between these rings given by Theorem The
work of Fargues-Fontaine [FE18]| greatly extend these links to incorporate many other objects
in p-adic Hodge theory using vector bundles on X (i.e., locally free sheaves of finite rank).

In this subsection, we illustrate the significance of vector bundles on X in p-adic Hodge
theory, with particular focus on their relation to isocrystals and p-adic Galois representations.
As a key technical result, the work of Fargues-Fontaine [FF18| establishes a classification
theorem for vector bundles on X. Let us recall that, by a celebrated theorem of Grothendieck
[Gro57], every vector bundle V on IP)}C admits a direct sum decomposition

V = P Op (d;) with d; € Z
=1

where O]Ptil: (d;) denotes the line bundle on P{ corresponding to d; under the isomorphism

Pic(IP(lc) & Z. The classification theorem for vector bundles on X yields an analogous de-
composition, although the direct summands are not necessarily line bundles. For a precise
statement, we define the degree of a vector bundle V on X to be the image of det(V) := AP
under the isomorphism Pic(X) = Z, where rk()) denotes the rank of V.

THEOREM 2.2.1 (Fargues-Fontaine [FF18]). We can classify the vector bundles on X as
follows:

(1) For a rational number A = d/r written in a reduced form with positive denominator,
there exists a unique indecomposable vector bundle Ox () of rank r and degree d

(2) Every vector bundle V on X admits a direct sum decomposition
m
Y~ P ox(\) with \; € Q.
i=1

Remark. Kedlaya [Ked04, Ked05] obtained an equivalent statement of Theorem prior
to the work of Fargues-Fontaine [FE18]. His result concerns certain analogues of isocrystals
and leads to a number of important results for studying the Fargues-Fontaine curve.

Theorem finds its motivation in an analogous classification theorem for isocrystals.
Let us denote the completion of Q)" by Qp». The isocrystals over Q™ of rank 1 are canonically

in bijection with the integers, where each isocrystal N over @]101\11 of rank 1 maps to the p-adic
valuation of ¢y (1) upon choosing an isomorphism N =~ @g\n. We define the degree of an
isocrystal N over @Z‘}\n to be the integer corresponding to the isocrystal det(N) := ARV
over Qu" of rank 1, where rk(N) denotes the rank of V.

THEOREM 2.2.2 (Manin [Man63]). We can classify the isocrystals over @1 as follows:

(1) For a rational number A\ = d/r written in a reduced form with positive denominator,
there exists a unique simple isocrystal N(A) over Q" of rank r and degree d.

(2) Every isocrystal N over @]‘;\n admits a direct sum decomposition

N~ NN with \; € Q.
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In fact, the work of Fargues-Fontaine [FF18| reveals a tidy connection between the cate-
gory Bunx of vector bundles on X and the category ¢—Modg, of isocrystals over Q,, given
by an essentially surjective functor

& p—Modg, — Buny

which is compatible with ranks, degrees, direct sums, and tensor products. The key observa-
tion is that we can produce a vector bundle V on X by gluing a vector bundle V° on Spec (B.)

to a vector bundle Vo on Spec (Bjr) along Spec (Bgr); in other words, we obtain a vector
bundle on X from a pair (M°, My,) consisting of a free B.-module M° of finite rank and a
BJR—lattice My in M° ®p, Bqr. The functor £ sends each isocrystal N over Q) to the vector

bundle obtained from the pair (N*=! @q, Be, N ®q, Bj) where N¥=! denotes the space of
pn-invariants in V.

On the category MF?&I) of filtered isocrystals over @@, we have another functor
o MFEP — Buny

which sends each filtered isocrystal N over Q, with filtration { Fil"(N) }, ., to the vector
bundle obtained from the pair (N¥=! ®q, Be, Fil’(N ®q, Bar)) with

Fil’(N ®q, Bar) = @ Fil*(N) @g, Fil " (Bar).
nez

The vector bundle &'(N) for each N € MF&O carries a natural action of I'g, induced by the
['g,-action on Bgg, as the ring Be and the filtration on Bgqgr turn out to be stable under the
I'g,-action on Bgr. The functor £ allows us to study filtered isocrystals and p-adic Galois
representations via vector bundles on X, as indicated by the following facts:

(1) There exists a natural I'g,-equivariant isomorphism
V = HYX,E(Dg,,.(V))) forevery V ¢ Repg;‘is(l“@p).
(2) Every N € MF&? is admissible if and only if £&'(N) is trivial.

The first fact follows directly from the constructions of X and £’, whereas the second fact is
a consequence of Theorem It is worthwhile to mention that these facts yield geometric
proofs of Theorem [1.3.1] and Theorem [1.3.2

Let us finish this section by addressing another major application of the Fargues-Fontaine,
whose scope reaches far beyond p-adic Hodge theory. One of the most influential research
projects in modern mathematics is the Langlands program, which investigates intricate con-
nections between various areas of mathematics, such as number theory, geometry, and complex
analysis. The Fargues-Fontaine curve has a remarkable application to a central conjecture in
the Langlands program, namely the local Langlands correspondence, which aims to relate rep-
resentations of algebraic groups over @@, to representations of I'g,. In fact, the seminal work of
Fargues-Scholze [F'S21] proposes a geometric construction of the local Langlands correspon-
dence in terms of vector bundles on the Fargues-Fontaine curve. The construction involves
vast generalizations of several facts presented in this section, including the bijection and
Theorem [2.2.1] in addition to a number of advanced tools from p-adic geometry. While we
are unable to discuss any details about the construction in this book, we hope that our brief
exhibition inspires curious readers to study related topics. The book of Scholze-Weinstein
[SW20] is a wonderful introductory reference for the theoretical foundations.
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Exercises

1. Let E be an elliptic curve over , defined by an equation
V¥ =x4+ar+b witha, beQ and 4a® + 270 # 0.
(1) Show that every nonvertical line intersects with E at three points (over Q), counted
with multiplicity.
(2) The group law on F, written additively, satisfies the following properties:
(i) The identity element O is the point at infinity.
(ii) Given a point P on E, the vertical line passing through it and E have the second
intersection point at —P.
(iii) Given two points P, @ on E with distinct z-coordinates, the line passing through
them and E have the third intersection point at —(P + Q).

(iv) Given a point P on FE, the tangent line to E' at P and E have the third inter-
section point at —(P + P).

Given two arbitrary points P = (z1,y1) and @ = (x2,y2) on E, derive a formula for

their sum P + Q.

Remark. The conclusions of this exercise remains valid if one replaces the base field Q with
another field k. In addition, one can verify that the group law on E given by the above
properties is indeed associative. For curious readers who attempt to check this by themselves,
there are two possible approaches as follows:

(a) One can use the formula for the group law obtained here for a direct verification.

(b) One can use the Riemann-Roch theorem to show that the group law on E agrees
with the group law on Pic?(E), the degree 0 part of the Picard group Pic(E).

2. Let E be an elliptic curve over Q and n be a positive integer.

1) Show that E[n](Q) is an abelian group of order n? with a natural action of I'g.
Q

Hint. Identify E[n](Q) as a solution set of polynomials with rational coefficients.

(2) Establish an identification E[n](Q) = (Z/nZ) x (Z/nZ).
Hint. Apply the fundamental theorem for finitely generated abelian groups after
observing that E[d](Q) has d? elements for each divisor d of n.

Remark. If one replaces the base field Q with another field k, the conclusions of this exercise
remains valid as long as n is invertible in k. If n is not invertible in &, the group E[n](k) still
carries a natural action of the absolute Galois group I'y = Gal(k/k) but may have order less

than n2.

3. Given an elliptic curve E over Q and a prime number ¢, show that the ¢-adic Tate-module
Ty(E) is a free Zs-module of rank 2 with a natural action of I'g.

Remark. If one replaces the base field (Q with another field k, the conclusions of this exercise
remains valid as long as £ is different from the characteristic of k. If n has characterstic ¢, the
¢-adic Tate-module Ty(FE) is still a free Zy-module but of rank 0 or 1.
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4. In this exercise, we give a simple analogy between the complex conjugation and the p-adic
cyclotomic character.

(1) Let pioo denote the group of roots of unity in C. Show that the complex conjugation
naturally induces a character

X :Tr — Aut(R) 2 R*
with 7(¢) = ¢XO) for every v € ' and ¢ € fioe.

(2) Let ppo denote the group of p-power roots of unity in @p. Show that the p-adic
cyclotomic character x yields the relation y(¢) = ¢ X() for every v € [, and ¢ € pupee.

5. This exercise requires some knowledge on the étale cohomology and the Hodge theory.
(1) Directly verify the Hodge-Tate decomposition theorem for P*.
(2) Show that the p-adic de Rham comparison theorem fails if we replace Byr by C,.

6. Deduce the identification (1.9 from Theorem and Theorem [2.1.1]

7. Let vs denote the valuations on Bgr and C((z71)).
(1) Show the identity deg(f) = —voo(f) for every f € C(z).
(2) Define the degree of each f € Bgr to be deg(f) := —voo(f). Prove the identity

deg(fg) = deg(f) +deg(f) forany f, g € Bar.

8. In this exercise, we provide a precise description of the Fargues-Fontaine curve X as a
scheme that glues Spec (B.) and Spec (Big) along Spec (Bgr); in other words, we prove
that the topological space obtained by gluing Spec (B.) and Spec (B(TR) along Spec (Bgr) is
naturally a scheme. We define the degree function on Bgg as in Exercise [7}

(1) Under the identification AL = P& — oo, prove the identification
O (U) = OA(%(U) for any open U C P& with oo ¢ U,
Fe B (’)Aé(U —00)~ for any open U C P} with co € U
where we set Oy (U — 00)™ := { feOu(U- 00) : deg(f) <0 }

(2) Let us set X° := Spec (B.) and denote by oo the special point of Spec (B:{R)- Prove
that X is indeed a scheme with the structure sheaf given by

Ox(U) = Ox-(U) for any open U C X with oo ¢ U,
A Oxo(U —o0)™  for any open U C X with co € U
where we set Ox (U —o0)” :={ f € Oxo(U — o) : deg(f) <0 }.
9. Deduce properties [(i)] and in Theorem from the original construction of the

Fargues-Fontaine curve X, given by gluing Spec (B.) and Spec (B$R) along Spec (Bggr), and
the fact that B, is a principal ideal domain.






CHAPTER II

Foundations of p-adic Hodge theory

1. Finite flat group schemes

In this section, we develop basic theory of finite flat group schemes and discuss some of
its applications to arithmetic geometry. Our primary reference for this section is the article of
Tate [Tat97]. Throughout our discussion, all rings are commutative unless specified otherwise.

1.1. Basic definitions and properties
We begin with the notion of group schemes over a base scheme S. We usually take S to

be affine and denote the base ring by R.
Definition 1.1.1. A group scheme over S, or an S-group, is an S-scheme G with maps

e m: G xg G — G, called the multiplication,

e ¢: S5 — @, called the unit section,

e i: G — @, called the inverse,
which satisfy the group axioms given by the following commutative diagrams:

(a) associativity diagram

GxsGxsgG —"" L aysq

fdm lm

G xsG o G
(b) identity diagrams
G xgS = G Sxg@G = G
m / & /
GXSG GXSG

(c) inverse diagram
(iid

)
G —GxgG
(id,7)
| I
S ——— G
Remark. In other words, S-groups are group objects in the category of S-schemes.

LEMMA 1.1.2. A scheme G over S is a group scheme if and only if it defines a functor from
the category of S-schemes to the category of groups sending each S-scheme T to G(T).

PRrROOF. The assertion is immediate by Yoneda’s lemma. O

23
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Definition 1.1.3. Let f : G — H be a morphism between S-groups G and H.

(1) We say that f is a homomorphism if the induced map fr : G(T) — H(T) for each
S-scheme T’ is a group homomorphism.

(2) If f is a homomorphism, we define its kernel to be the S-group ker(f) with ker(f)(7T)
for each S-scheme T' given by the kernel of the induced map fr: G(T) — H(T).

Example 1.1.4. Given an S-group G and an integer n, the multiplication by n on G is the
homomorphism [n]g : G — G given by the n-th power map on G(T') for each S-scheme T

LEMMA 1.1.5. Let f: G — H be a morphism between S-groups G and H.

(1) The morphism f is a homomorphism if and only if it fits ito a commutative diagram

GXSGL HxgH
S
G ! H

where mg and mp respectively denote the multiplications of G and H.

(2) If f is a homomorphism, its kernel ker(f) is naturally isomorphic to the fiber of f
over the unit section of H.

PrOOF. The assertions are straightforward to verify by Lemma [1.1.2 H
Definition 1.1.6. Let G = Spec (A) be an affine R-group.

(1) Tts comultiplication is the map p: A — A ®p A induced by the multiplication.

(2) Its counit is the map € : A — R induced by the unit section.

(3) Its coinverse is the map ¢ : A — A induced by the inverse.
LEMMA 1.1.7. Let G = Spec (A) be an affine R-group. Its comultiplication u, counit €, and
coinverse ¢ fit into the following commutative diagrams:

(a) coassociativity diagram

AR AR A "9 AgpA

= [»

A®rA g A
(b) coidentity diagrams
A®rR - A R®r A - A
k / h /
ARrA ARRrA
(¢c) coinverse diagram
1®id

A——— A®rA

T

R+—"—— A

PRrROOF. The assertion is evident by definition. O
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Example 1.1.8. We present some important examples of affine group schemes.

(1) The additive group over R is the R-scheme G, := Spec (R[t]) with the natural ad-
ditive group structure on G,(B) = B for each R-algebra B. Its comultiplication g,
counit €, and coinverse ¢ are determined by the identities

pt) =te1+1et, e(t) =0, ot) = —t.

(2) The multiplicative group over R is the R-scheme G,, := Spec (R[t,t!]) with the
natural multiplicative group structure on G,,(B) = B* for each R-algebra B. Its
comultiplication 4, counit €, and coinverse ¢ are determined by the identities

pt)=tet, et)=1, (t)=t""

(3) The n-th roots of unity is the R-scheme p,, := Spec (R[t]/(t" — 1)) with the natural
multiplicative group structure on u,(B) = {b € B:b" =1} for each R-algebra B.
We can regard u, as a closed subgroup scheme of G,, via the natural surjection
R[t,t71] — R[t]/(#" — 1) with comultiplication, counit, and coinverse as in

(4) If R has characteristic p, we have an R-group «,, := Spec (R[t]/t?) with the natural
additive group structure on op(B) = {be€ B: b’ =0} for each R-algebra B. We
can regard o, as a closed subgroup scheme of G, by via the natural surjection
R[t] — RJt]/(t?) with comultiplication, counit, and coinverse as in

(5) Given an abstract group M, the constant group scheme on M over R is the R-scheme
M = H Spec (R) = Spec (A) for A := H R with the natural group structure

meM meM
(induced by M) on M(B) regarded as the set of locally constant functions from

Spec (B) to M for each R-algebra B . If we identify A and A ®pr A respectively as
the rings of R-valued functions on M and M x M, the comultiplication pu, counit e,
and coinverse ¢ are given by the identities

p(f)(m,m') = fmm'),  e(f) = f(ar),  o(f)(m) = f(m™")

for all f € A and m,m’ € M, where 1;; denotes the identity element of M.

Definition 1.1.9. Given an affine R-group G = Spec (A4), we define its augmentation ideal
to be the kernel of its counit ¢ : A — R.

PropoOSITION 1.1.10. Let G be an affine R-group.

(1) The unit section of G is a closed embedding.
(2) The kernel of an R-group homomorphism f : H — G is a closed R-subgroup of H.

PROOF. Let us write G = Spec (A) and denote its augmentation ideal by I. The first
statement is evident as we naturally identify the unit section e of G with the closed embed-
ding Spec (A/I) — Spec(A). The second statement follows from the first statement after
identifying ker(f) as the fiber of f over e as noted in Lemma m O

Remark. Proposition|l.1.10|does not hold for general group schemes which are not necessarily
affine. In fact, we can show that the unit section G is a closed embedding if and only if G is
separated over R.

Example 1.1.11. Given an affine R-group G, its n-torsion subgroup Gn] := ker([n]q) for
each integer n is a closed R-subgroup of G' by Proposition [1.1.10

Remark. We have a natural identification p, = G,,[n| for each integer n > 1.
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Let us now introduce the objects of main interest for this section. For the rest of this
section, we assume that R is noetherian unless stated otherwise.

Definition 1.1.12. Let G = Spec (A) be an affine group scheme over R.

(1) We say that G is commutative if it yields the commutative diagram

G xpnG (g:h)—(h,g) G xpG
R /
G
where m denotes the multiplication of G.
(2) We say that G is finite flat of order n if it is commutative with A being locally free
of rank n over R.
LEMMA 1.1.13. Let G = Spec (A) be an affine group scheme over R.

(1) G is commutative if and only if G(B) is commutative for each R-algebra B.

(2) G is finite flat if and only if it is commutative with its structure morphism to Spec (R)
being finite flat.

PROOF. The first assertion is an immediate consequence of Lemma [1.1.2] The second
assertion follows from a general fact stated in the Stacks Project [Stal, Tag 02KB]. g

Example 1.1.14. Some group schemes introduced in Example are finite flat, as easily
seen by their affine descriptions.

(1) The n-th roots of unity p, is finite flat of order n.

(2) If R is has characteristic p, the R-group «, is finite flat of order p.

(3) For an abelian group M of order n, the constant R-group M is finite flat of order n.

PropPOSITION 1.1.15. For an abelian scheme A of dimension g over R, its n-torsion subgroup
A[n] = ker([n] 4) is a finite flat R-group of order n?9.

PrROOF. Since all fibers of A are abelian varieties of dimension g, the assertion follows
from a standard fact about abelian varieties stated in the Stacks Project [Stal Tag 03RP]. O

Remark. Readers who are unfamiliar with abelian schemes should not be concerned. For
most parts of our discussion, it suffices to understand them as generalizations of elliptic curves.

Many basic properties of finite abelian groups extend to finite flat group schemes. Here
we state two fundamental theorems without proof.

THEOREM 1.1.16 (Deligne). Let G be a finite flat R-group of order n. The homomorphism
[n] annihilates G; in other words, it factors through the unit section of G.

Remark. Curious reader can find Deligne’s proof of Theorem [1.1.16]in the lecture notes of
Stix [Sti, §3.3]. It is unknown whether Theorem [1.1.16| holds without the commutativity
assumption on G.

THEOREM 1.1.17 (Grothendieck [Gro60]). Let G be a finite flat R-group of order n with a
finite flat closed R-subgroup H of order m. There exists a unique finite flat R-group G/H of
order n/m which fits into a short exact sequence

0—H—G—G/H—0.

Definition 1.1.18. Let G be a finite flat R-group with a finite flat closed R-subgroup H.
We refer to the R-group G/H in Theorem [1.1.17| as the quotient group scheme of G by H.


https://stacks.math.columbia.edu/tag/02KB
https://stacks.math.columbia.edu/tag/03RP

1. FINITE FLAT GROUP SCHEMES 27
1.2. Cartier duality

In this subsection, we discuss a duality for finite flat R-groups. Given an R-module M,
we write M"Y for its dual module. For an R-module map f, we denote its dual map by fV.

LEMMA 1.2.1. Let B be an R-algebra.

(1) Given an R-group G, the B-scheme Gp is naturally a B-group.
(2) Given a finite flat R-group G of order n, the B-group Gp is finite flat of order n.

(3) Given a short exact sequence of finite flat R-groups
0—G —G—G" —0,
the base change to B yields a short exact sequence
0 — (G")p — Gp — (G")p — 0.
PROOF. The assertions are straightforward to verify by Lemma[1.1.2] Lemma[TI.1.13] and
a standard fact about finite flat morphisms stated in the Stacks project [Stal, Tag 02KD|. O

Definition 1.2.2. Given a finite flat R-group G, its Cartier dual GV is the group-valued
functor on the category of R-algebras with

GY(B) = Homp.g1p(GB, (G B) for each R-algebra B
where the group structure is induced by the multiplication map on (G,,) 5.
LEMMA 1.2.3. Given be a finite flat R-group G with [n|g = 0, we have

GY(B) = Homp.gp(Gg, (1in) B) for each R-algebra B.

PROOF. The assertion follows immediately from the identification p,, = Gy,[n]. O

THEOREM 1.2.4 (Cartier duality). Let G = Spec (A) be a finite flat R-group of order n with
comultiplication pu, counit €, and coinverse ¢. For the R-algebra A we write s : R — A for its
structure morphism and my : A ® g A — A for its ring multiplication map.

(1) AY is an R-algebra with structure morphism € and ring multiplication map p".

(2) GV is an R-group which admits a natural identification GV = Spec (A") with comul-
tiplication mY, counit s, and coinverse ¢".

(3) GV is finite flat of order n.

(4) There exists a canonical R-group isomorphism G = (GY)V.

PROOF. Let us consider the natural identifications
RV=R and (A®RA)V >~ AV ®RAV.

The map " fits into associativity and commutativity diagrams induced by the corresponding
diagrams for the multiplication on G. In addition, we have commutative diagrams

AY Qr R = AY R®RAV = » AV

im % em %

A\/ ®RA\/ A\/ ®RA\/

induced by the identity diagrams for G. Hence we deduce statement


https://stacks.math.columbia.edu/tag/02KD
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Let us now consider statement It is straightforward to verify that GV := Spec (A"Y)
is an R-group with comultiplication m}, counit s, and coinverse ¢¥. Let B be an arbitrary
R-algebra. In light of Lemma [1.1.2] we wish to establish a canonical isomorphism

GY(B) =~ GY(B). (1.1)

Let pup, €, and tp respectively denote the comultiplication, counit, and coinverse of
Gp = Spec (Ap). By the affine description of G,, given in Example we find

GY(B) = Homp g,(Gp, (Gm)p) = { f € Hompag(B[t,t™"], Ap) : pp(f(1)) = f(t) @ f(1) }

where the identity pp(f(t)) = f(t) ® f(t) comes from compatibility with comultiplications.
Since we have the canonical isomorphism Homp e (B[t,t 7], Ag) = A} which sends each
f € Homp 14 (B[t,t71], Ap) to f( ), we obtain a natural identification

G'(B)={uecAf :ppu) =u®u}. (1.2)
Meanwhile, as AY, is a B—algebra by statement |(1)| ., we have
Gv (B) = HomR_alg(AV, B) = HOHIB_a]g(A%, B) (13)

Let us denote the ring multiplication map on B by mp and the identity map on B by idp.
By definition, Homp a14(A};, B) is the group of B-module homomorphisms AY, — B through
which p}; and €}, are respectively compatible with mp and idp. Taking B-duals, we identify
this group with the group of B-module homomorphisms B — Ap through which m}, and
id}; are respectively compatible with pup and eg. Since we have the canonical isomorphism
Homp a15(B, Ap) = A} which sends each f € Homp_a4(B, Ap) to f( ), we find

Homp.ag(Af, B) 2 {uec Af : pp(u) =u®u, ep(u)=1}. (1.4)

Moreover, the group scheme axioms for Gp yields the relation (EB ® idp) o up = idp and
consequently implies that every u € A% with p1p(u) = u®u must satisfy the identity ep(u) = 1.
Hence the isomorphisms ([1.3]) and . 1.4]) together yield a natural identification

Gv ={uecAf:puplu)=u®u}. (1.5)

Now we establish the desired 1somorphlsm by the identifications ((1.2)) and (|1.5]), thereby
completing the proof of statement

It remains to prove statements |(3)] - and |(4)| . Since GV is commutative by Lemma
and the commutativity of G,, we deduce statement [(3)] from statement [(2)] by observing that
AV is locally free of rank n over R. In addition, we apply statemen and |(2)] - to see
that the canonical R-module isomorphism A 2 (Av) is indeed an R-algebra isomorphism
which respects comultiplications, counits, and coinverses on both sides, thereby establishing
statement g

PropoOSITION 1.2.5. Given a finite flat R-group G and an R-algebra B, there exists a natural
B-group isomorphism GV xg B = (G xg B)".

PROOF. It is evident that GV xg B and (G xg B)Y are naturally isomorphic as group-
valued functors. Lemma and Theorem together imply that these functors are
indeed finite flat B-groups and thus yield the desired assertion. O

Definition 1.2.6. Given a homomorphism f : G — H of finite flat R-groups, we refer to the
induced homomorphism fV : G¥ — H" as the dual homomorphism of f.

Example 1.2.7. Given a finite flat R-group G, we have [n]% = [n]gv for every integer n > 0;
indeed, [n]{ maps each f € GY(B) = HomB_grp(GB,( m)B) for an arbitrary R-algebra B to

foln ]GB = [nlav (f).
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PROPOSITION 1.2.8. For every positive integer n, we have (Z/nZ)" = u, and p,, = 7Z/nZ.

PROOF. Let us set A := H R and write e; for the element of A whose only nonzero
1€L/nZ
entry is 1 in the component corresponding to i. As explained in Example we have
Z/nZ = Spec (A) with comultiplication p, counit €, and coinverse ¢ given by the relations

1 fori=0
i) = E v @ ey, i) = . ) i) = e—i.
ples) U+w:ie ¢ (e:) {0 otherwise Hei) =e

Let my : AQr A — A and s : R — A respectively denote the ring multiplication map and
structure morphism of A. We have the dual basis { f; } of AY with

1 fori=j,
files) = {0 otherwise.

Theorem [1.2.4] yields a natural identification (Z/nZ)" = Spec (A¥) with comultiplication mY,
v

counit sY, and coinverse ¥, where A" is an R-algebra with structure morphism €" and ring
multiplication map p¥. The maps p, €¥, mY, sV, and ¢V are determined by the identities

1 (fi ® ;) = fivgs €)= fo, ma(fi)=fi®fi, s'(fi)=1, '(fi)=f
Hence the map AV — R[t]/(t" — 1) sending each f; to ¢! induces an R-group isomorphism

(Z/nZ)" = p, by Example and in turn yields an R-group isomorphism pu,! = Z/nZ by
Theorem [1.2.4 O

ProrosITION 1.2.9. If R has characteristic p, the R-group «, is self-dual.

PROOF. As explained in Example we have a;, = Spec (A) for A := R[t]/(t?) with
comultiplication u, counit €, and coinverse ¢ given by the relations

' i ; 1 fori=0 . .
) = @Y, ) = , ) = (=t)".
) wgu::i <U> <t {O otherwise (t) = (=)

Let my : AQr A — A and s : R — A respectively denote the ring multiplication map and
structure morphism of A. We have the dual basis { f; } of AY with

. 1 fori=j
filt)) = .
0 otherwise.
Theorem yields a canonical identification o, = Spec (AY) with comultiplication m},
counit sV, and coinverse ¢V, where AV is an R-algebra with structure morphism €" and ring
multiplication map p¥. The maps p, €, mY, sV, and ¢V are determined by the identities
1+
w(fi® f5) = < i )f“rj» e’(1) =0,

V. N V. N 1 fOI”L':O V; N (1Y
mA(fz)—v—%:ifv®fwv S (fz)_{o otherwise V(fi) = (1) fi

Hence the map AY — A sending each f; to t*/i! yields an R-group isomorphism a;,/ =, O

Remark. When R has characteristic p, we have an R-scheme isomorphism 1, ~ o, given by
the ring isomorphism R[t]/(tP) ~ R[t]/(t’ — 1) sending ¢ to t + 1. Propositions and

together show that p, and «a, are not isomorphic as group schemes.
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PROPOSITION 1.2.10. Given an abelian scheme A over R with dual abelian scheme AV, we
have a natural isomorphism A[n]Y = AY[n] for every positive integer n.

PROOF. The homomorphism [n] 4 is surjective by a standard fact about abelian varieties
stated in the Stacks Project [Stal Tag 03RP]. Hence we have a short exact sequence

0— A — A 40
which gives rise to a long exact sequence

0 — Hom(A, G,n) ™5 Hom (A, Gr) — Hom(A[n], G) — Ext' (A, Gu) 15 Ext! (A, Grn).

In addition, we have natural identifications
Hom(A,Gr) =0,  Hom(A[n],Gp) 2 Aln]”,  Ext'(A Gp) = A

by definition of Cartier duals and some general fact about abelian varieties stated in the notes
of Milne [Mil, §9]. Therefore we obtain an exact sequence

0— An]Y — 4¥ L gv
which yields the desired isomorphism A[n]Y = AY[n]. O
Example 1.2.11. If R = k is a field, every elliptic curve E over k£ admits a natural isomor-

phism E[n]Y = E[n] for each integer n > 1 by Proposition [1.2.10| a standard fact that elliptic
curves are self-dual as stated in the notes of Milne [Mil, §9].

LEMMA 1.2.12. Given a closed embedding f : H — G of finite flat R-groups, we have a
canonical isomorphism ker(fY) = (G/H)".

PROOF. Let B be an arbitrary R-algebra and fp : Hp — G p denote the homomorphism
induced by f. Theorem [1.1.17] and Lemma together yield a canonical isomorphism
Gp/Hp = (G/H)p. Hence we obtain an identification

ker(f*)(B) = { g € Homp g (G, (Gm)p) 1 g0 f5 =0}
= {g S HOl’nB_grp(GB, (Gm)B) :Hp C ker(g) }
= Homp g, (G/Hp, (Gm)p) = Homp.grp((G/H)p, (Gm)5) = (G/H)"(B),

thereby establishing the desired assertion. O

PRrOPOSITION 1.2.13. Given a short exact sequence of finite flat R-groups
Q—>G/—>G—>G//—>Q,
the Cartier duality gives rise to a short exact sequence

Q—>G”\/—>Gv—>G/v—>Q.

PROOF. Let f and g respectively denote the maps G’ — G and G — G” in the given
short exact sequence. It is straightforward to verify the injectivity of gV by the surjectivity
of g. In addition, Lemma yields a canonical isomorphism ker(fV) = G”V. Therefore
it remains to establish the surjectivity of fV. Since GV is a finite flat closed R-subgroup
of GV by Proposition [1.1.10] and Theorem we obtain the quotient R-group GV/G"Y
by Theorem [1.1.17] Now f" factors through a homomorphism GV/G"Y — G'Y, whose dual
coincides with the isomorphism ker(g) = G’ induced by f under the identifications

@V)Y=G  and  (GY/G™)Y 2 ker((g")") = ker(g)

given by Theorem and Lemma [1.2.12] Hence we deduce that fV is surjective as desired,
thereby completing the proof. O
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1.3. Finite étale group schemes
In this subsection, we introduce finite étale group schemes and discuss their properties.

Definition 1.3.1. Let G = Spec (A) be an affine R-group. We say that G is finite étale if it
is finite flat with @4,z = 0, where {24,z denotes the module of relative differentials.

LEMMA 1.3.2. Let G = Spec (A) be a commutative affine R-group.

(1) G is finite étale if and only if its structure morphism to Spec (R) is finite étale.
(2) When R = k is a field, G is finite étale if and only if there exists a k-algebra

n
isomorphism A ~ H k; where each k; is a finite separable extension of k.
i=1

PRrROOF. The first assertion is an immediate consequencel of Lemma [[.1.13] The second
assertion follows from the first assertion by a standard fact about étale morphisms stated in
the Stacks project [Sta, Tag 00U3]. O

LEMMA 1.3.3. Given a finite étale R-group G and an R-algebra B, the B-scheme Gp is a
finite étale B-group.

PROOF. The assertion follows from Lemma/[l.2.1] Lemma and a standard fact that a
base change of an étale morphism is étale as stated in the Stacks project [Stal Tag 02GO|. O

PRrROPOSITION 1.3.4. Assume that R is a henselian local ring with perfect residue field k.
(1) There exists an equivalence of categories
{ finite étale R-groups } — { finite abelian groups with a continuous I';-action }

which sends each finite étale R-group G to G(k).
(2) If a finite étale R-group G has order n, the abelian group G(k) also has order n.

PROOF. Let us first consider statement By some standard facts about finite étale
morphisms stated in the Stacks project [Sta, Tag 09ZS and Tag 0BQS|, there exists an
equivalence of categories

{ finite étale R-schemes } — { finite sets with a continuous I';-action }

which maps each R-scheme T to T'(k). Hence we obtain the desired equivalence by passing
to the corresponding categories of commutative group objects.

For statement we write G = Spec (A) for some locally free R-algebra A of rank n. By
m

Lemma [1.3.2] and Lemma |1.3.3] there exists a k-algebra isomorphism A ®g k =~ H k; where
i=1

each k; is a finite separable extension of k. Hence we find

G(k) = HomR_alg(A,E) = Hompg alg(A ®r k, k) ~ HomR_alg(H ki k) = H Homy, (k;, k)
i=1 i=1

and in turn deduce that the order of G(k) is
> dimy(k;) = dimp(A ®g k) = n,
i=1

thereby completing the proof. O

Remark. Primary examples of henselian local rings are complete local rings and fields.
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LEMMA 1.3.5. For an affine R-group G = Spec (A4) with augmentation ideal I, we have a
canonical R-module isomorphism A = R @ I.
PROOF. The assertion follows from the observation that the structure morphism R — A
splits the short exact sequence
0—I—A-R—0

where € denotes the counit of G. g
PROPOSITION 1.3.6. Let G = Spec (A) be a finite flat R-group with augmentation ideal I.

(1) There exist natural isomorphisms

I/IP 9 A= Qu R and I/ = Qa4 A/l
(2) G is étale if and only if we have I = I

PRrROOF. Let us consider a commutative diagram

— —1
G xpnG (g,h)—(g,.gh™") G xpnG
k Af)
G

where A and e respectively denote the diagonal morphism and the unit section of G. The
horizontal map is an isomorphism of R-schemes; indeed, it has an inverse which sends each
(9,h) € G xr G to (g,h~1g). Hence we obtain a commutative diagram

AprA +—F—— A®rA

a®b% A»—m e(

where € denotes the counit of G. The horizontal map induces an isomorphism between the
kernels of the two downward maps. Let J denote the kernel of the left downward map. Under
the canonical decomposition

A®RA2A®RREBA®RI

given by Lemma we identify the kernel of the right downward map with A ®p I and
consequently obtain a natural isomorphism J =2 A ® I. Therefore we have

Qup=J/7?=(AerD)/(AorI) = (AQrD)/(A®rI?) = Ag (I/T%),

where the first identification comes from a standard fact about relative differentials stated in
the Stacks project [Stal Tag 00RW], and thus find

Qur®a (A/]) = (I/T°) @r A) @4 AJT = (I/I*) @ AJT = (I/1*) @g R=1/T%.
Now we see that 24, vanishes if and only if /1 2 vanishes, thereby completing the proof. [

Remark. Let us provide some geometric intuition behind the isomorphisms in statement
Since (2p/R vanishes, we can alternatively obtain the isomorphism 7/1 220y /rR®A A/I from
the conormal exact sequence

0—I/I* — Qup®aA/] — Qpp — 0

given by a standard fact stated in the Stacks project [Stal, Tag 06AA|. The isomorphism
I/I?®p A = Q4/r says that we can recover Qg gpec(r) = 24/g from its pullback along the
unit section by multiplying functions on G.


https://stacks.math.columbia.edu/tag/00RW
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PRroroOSITION 1.3.7. Every finite flat constant group scheme is étale.

PrOOF. Let M be a finite abelian group with identity element denoted by 0. By the affine
description in Example we have

M ~ Spec < H R>
ieM
with counit given by the projection to the factor for ¢ = 0. Hence the augment ideal of M is

=[x

€M

i#0
Since I is naturally a multiplicative monoid, we have I = I?. Therefore Proposition m
implies that M is étale. O

PropoSITION 1.3.8. Assume that R = k is an algebraically closed field.

(1) Every finite étale k-groups is a constant group scheme.
(2) Given a prime p, the k-group Z/pZ is a unique finite étale k-group of order p.

PROOF. Proposition [I.3.4] yields an equivalence of categories
{ finite étale k-groups } — { finite abelian groups }

which sends each finite étale k-group G to G(k). For every finite abelian group M, we find
M (k) = M by Example Hence we establish the desired assertions by Proposition [L.3.7]
and the fact that Z/pZ is a unique group of order p. O

PROPOSITION 1.3.9. A finite flat R-group G is étale if and only if the (scheme theoretic)
image of the unit section is open.

PROOF. Let us write G = Spec (A) for some locally free R-algebra A of finite rank and
denote by I the augmentation ideal of G. We naturally identify the (scheme theoretic) image
of the unit section with Spec (A/I). By Proposition it suffices to show that the closed
embedding Spec (A/I) < Spec (A) is open if and only if I/I? vanishes.

Suppose that I/I? vanishes. By Nakayama’s lemma, there exists an element a € A with
a—1¢€ I and al = 0. We observe that a is idempotent; indeed, we find a® = a(a —1) +a = a.
Let us consider the localization map A — A,, which is surjective since we have

izbi:bﬁ:é foreach b e A and n > 1.
a® qntl a 1

Its kernel consists of elements b € A with ab = 0 for some n > 1, or equivalently ab = 0 as
a is idempotent. It contains I since the element a annihilates I, while for every element b in
the kernel we have b = —(a — 1)b+ ab = —(a — 1)b € I. Hence the localization map A — A,
has I as its kernel and thus induces an isomorphism A/I = A,. It is now evident that the
closed embedding Spec (A/I) < Spec (A) is open.

For the converse, we now assume that the embedding Spec (A/I) — Spec(A) is open.
Since open embeddings are flat as stated in the Stacks project [Stal Tag 0250], the ring
homomorphism A — A/I must be flat. Therefore we obtain a short exact sequence

0 —I®RAA/] — AR A/l — A/T®4 AJI — 0,
which in turn yields a short exact sequence
0— I/I? — AJT — AJT — 0
with the third arrow being the identity map. We thus deduce that I/I? vanishes as desired. [


https://stacks.math.columbia.edu/tag/0250
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THEOREM 1.3.10. A finite flat R-group G with order invertible in R must be étale.

PROOF. Let us write G = Spec (A) for some locally free R-algebra A of finite rank. The
group axioms for G yield commutative diagrams

Spec(R) ——— G G 4

(eve)J / (id,e u(e 1d/
GxrG GxrG

where m and e respectively denote the multiplication map and unit section of G. These
diagrams are equivalent to the commutative diagrams

R+ A QP —|
6®6T / 1d®eHe®1d/ (16)
ARrA A®RRrA

where p and € respectively denotes the comultiplication and counit of G. Let us denote the
augmentation ideal of G by I and take an arbitrary element ¢t € I. We have €(t) = 0 and thus
find u(t) € ker(e ® €) by the diagram (|1.6). Under the decomposition

ARRAY (RORR)®(I®rR)® (RRrI)® (I®rI)
given by Lemma [1.3.5] we obtain a natural identification
ker(e®@e) = (I @rR)® (R®r1)® (I ®rl)

and thus have u(t) €a®1+1®b+ 1 ®p I for some a,b € I. Now the diagram (1.6) implies
that a and b are both equal to ¢, thereby yielding the relation

pt) et@1+1@t+1®g1. (1.7)

We assert that [n]g for each n > 1 induces multiplication by n on I/I%. Let [n]a: A — A
denote the R-algebra homomorphism induced by [n]g. We have commutative diagrams

[nla [n]a

G———m— G A+—-""FT A
([n—l]G,id)J / [n_1]A®idT /
G xXrG ARrA

and thus apply the relation to find [n]a(t) € [n — 1]a(t) +t + I?. Since [1]4 is the
identity map on A, we obtain the relation [n]4(t) € nt + I? for each n > 1 by induction,
thereby deducing the desired assertion as ¢ is an arbitrary element in I.

Let us denote the order of G by m. Since [m]g factors through the unit section of G
by Theorem its induced map on Q4,5 factors through Qp,p = 0 and thus must be
zero. We find that [m]¢ induces a zero map on I/1% = Q4,5 ®4 A/I by Proposition m
Meanwhile, [m]g induces multiplication by m on I/I? and thus is an isomorphism as m
is invertible in R. Hence we deduce that I/I? vanishes, thereby completing the proof by

Proposition [I.3.6] O

Remark. Theorem [1.3.10]is the only result which relies on Theorem [1.1.16]in our discussion.
If R is a field, it is possible to prove Theorem [1.3.10| without using Theorem [1.1.16

COROLLARY 1.3.11. Every finite flat group scheme over a field of characteristic 0 is étale.
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1.4. The connected-étale sequence

Throughout this subsection, we assume that R is a henselian local ring and denote its
residue field by k. Our main goal for this subsection is to discuss a fundamental theorem that
every finite flat R-group naturally arises as an extension of an étale R-group by a connected
R-group.

LEMMA 1.4.1. A finite flat R-scheme is étale if and only if its special fiber is étale.

PRrROOF. The assertion immediately follows from some standard facts about étale mor-
phisms stated in the Stacks project [Stal Tag 02GO, Tag 02GM, and Tag 00U3|. O

Remark. Our proof shows that Lemma does not require R to be henselian.

LEMMA 1.4.2. For a finite R-scheme T', we have the following equivalent conditions:

(i) T is connected.
(ii) T is a spectrum of a henselian local finite R-algebra.

(iii) The action of 'y, on T'(k) is transitive.

PROOF. Let us write 7' = Spec (B) for some finite R-algebra B. By a general fact about
henselian local rings stated in the Stacks project [Stal Tag 04GH], we have

n
B~ HBZ
i=1

where each B; is a henselian local finite R-algebra. Since the spectrum of a local ring is
connected, each T; := Spec(B;) corresponds to a connected component of 7. Hence we
deduce the equivalence between conditions and

We denote the residue field of each B; by k;. Via the isomorphism
— — n —
T(k) = Homp.ag(B, k) ~ [ [ Homy (ks &),
i=1

we identify each Homy,(k;, k) as an orbit under the action of I'y on T'(k). Therefore we obtain
the equivalence between conditions and Il

Remark. If k is algebraically closed, Lemma([I.4.2)shows that a finite R-scheme T is connected
if and only if T'(k) is a singleton.

LEMMA 1.4.3. A finite R-scheme is connected if and only if its special fiber is connected.
PROOF. The assertion is evident by Lemma [1.4.2] O

Remark. Lemma [1.4.3|is a special case of a general fact that for every proper R-scheme T
there exists a natural bijection between the connected components of T' and the connected
components of T}, as stated in SGA 4 1/2, Exp. 1, Proposition 4.2.1.

LEMMA 1.4.4. Connected components of a finite flat R-scheme T are finite flat over R.

PrROOF. Let T° be a connected component of T. The closed embedding T° < T is finite
flat by general facts stated in the Stacks project [Sta, Tag 035C, Tag 04PX]. Hence T° is
finite flat over R by a standard fact that the composition of finite flat morphisms is finite flat
as stated in the Stacks project [Stal, Tag 01WK| Tag 01U7]. O

Remark. Our proof shows that Lemma|[I.4.4 holds without any assumption on the base ring.


https://stacks.math.columbia.edu/tag/02GO
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Definition 1.4.5. Given an R-group G, its identity component G° is the connected compo-
nent of the unit section.

LEMMA 1.4.6. For a finite flat R-group G, we have G°(k) = 0.

PROOF. Let us write G = Spec(A) for some locally free R-algebra A of finite rank.
By Lemma and Lemma we have G° = Spec (A°) for some henselian local finite
R-algebra A°. Since the unit section factors through G°, it induces a surjective ring homo-
morphism A° — R. We denote its kernel by I° and obtain an isomorphism A°/I° = R, which
induces an isomorphism between the residue fields of A° and R. Hence we find

G°(k) = Homp a1g(A°, k) = Homy (k, k) =0
as desired. ]

PROPOSITION 1.4.7. A finite flat R-group G is connected if and only if we have G(k) = 0.

ProOOF. If G(k) is trivial, G is connected by Lemma Conversely, if G is connected,

we have G = G° and thus find G(k) = 0 by Lemma O

Example 1.4.8. Let us present some primary examples of connected R-groups.
(1) If k has characteristic p, the R-group p,» for each integer v > 1 is connected by
Proposition
(2) If R has characteristic p, the R-group «, is connected by Proposition m

THEOREM 1.4.9. Let G be a finite flat R-group. The identity component G° is naturally a
finite flat closed R-subgroup of G such that the quotient G := G /G° is étale.

PROOF. Let us first prove that G° is a finite flat closed R-subgroup of G. Since we have
(G° xr G°)(k) = G°(k) x G°(k) = 0 by Lemma the scheme G° xpr G° is connected
by Lemma Hence the image of G° xr G° under the multiplication map lies in G° for
being a connected subscheme of G which contains the unit section. Similarly, the image of
G° under the inverse map lies in G°. Therefore G° is an R-subgroup of G, which is evidently
closed by construction. Moreover, G° is finite flat by Lemma [l.1.13|and Lemma [1.4.4

We now consider the finite flat R-group G¢ = G/G° given by Theorem Its unit
section G°/G° has an open image as G° is open in G by the noetherian hypothesis on R.
Hence we deduce from Proposition that G¢' is étale, thereby completing the proof. [

Definition 1.4.10. Given a finite flat R-group G, we refer to the short exact sequence
Q—)GO—>G—>Gét—>Q
given by Theorem [[.4.9] as the connected-étale sequence of G.

Example 1.4.11. Let us describe the connected-étale sequence of p,, for each integer n > 1.
If k has characteristic 0, Corollary [1.3.11] and Lemma together imply that pu, is étale,
thereby yielding the connected-étale sequence

0— 0 — pin -5 1, — 0.
Let us henceforth assume that k£ has characteristic p. We may write n = p¥m for some positive
integers v and m such that m is not divisible by p. Then we have a short exact sequence
0 [p"]
0 — ppr — pin, — o, — 0. (1.8)

The R-group p,» is connected as noted in Example Moreover, since i, has order m

by Example it is étale as easily seen by Theorem [1.3.10] and Lemma Hence the
exact sequence (|1.8)) is indeed the connected-étale sequence of .
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PROPOSITION 1.4.12. Let G be a finite flat R-group.

(1) The natural surjection G — G induces a canonical isomorphism G(k) = G*(k).
(2) G is étale if and only if we have G° = 0.

PROOF. The first statement is evident by Lemma and Theorem Since the
(scheme theoretic) image of the unit section is closed as noted in Proposition [1.1.10} it is open
if and only if it coincides with its connected component G°. Therefore the second statement
follows from Proposition [1.3.9 U
PROPOSITION 1.4.13. Let f: G — H be a homomorphism of finite flat R-groups.

(1) If G is connected, f factors through the embedding H® — H.
(2) If H is étale, f factors through the surjection G — G**.
(3) f naturally induces homomorphisms f°: G° — H® and f¢ : G¢* — H®,

PRrROOF. The first statement is evident since the image of G is a connected R-subgroup
of H. The second statement follows from the fact that the image of G° lies in H® by the
first statement and thus is trivial by Proposition The last statement is an immediate
consequence of the previous two statements. O
PROPOSITION 1.4.14. Let G, G’, and G” be finite flat R-groups with a short exact sequence

0—G —G—G" —0.
(1) The given exact sequence induces short exact sequences
Q _ (G/)o _ GO _ (G//)o SN 97
0— (G/)ét _ Gét _ (G//)ét — 0.
(2) G is connected if and only if both G’ and G” are connected.
(3) G is étale if and only if both G’ and G” are étale.

PrROOF. Theorem and Proposition together yield a commutative diagram

0 0 0
0 —— (C;)C’ 5’ (G\’()ét ——0
0 5" sy G S Get » 0
0—— (G G" ) (G\’;)ét — 0
0 0 0

where the rows are exact. Since the middle column is exact, Proposition [1.4.12] implies that
the right column is exact on the level of k-points. We deduce from Proposition that
the right column is exact and consequently find by the snake lemma (or the nine lemma)
that the left column is exact as well, thereby establishing statement Statement is an
immediate consequence of Proposition m Statement follows form the first statement
by Proposition [1.4.12 O
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PROPOSITION 1.4.15. Assume that R = k is a perfect field. For every finite flat k-group G,
the connected-étale sequence canonically splits.

PROOF. Let G™Y denote the reduction of G. If we write G = Spec (A) for some finite
dimensional k-algebra A, we have G™ = Spec (Ad) for A™d := A/n where n denotes the

nilradical of A. We wish to prove that the homomorphism G — G¢* admits a canonical section
induced by the closed embedding G™? — G.

We assert that G™4 is a k-subgroup of G. The scheme G**4 x;, G™4 is reduced by a general
fact that the product of two reduced schemes over a perfect field is reduced as noted in the
Stacks project [Stal, Tag 035Z]. Hence the image of G*¢ x;, G™4 under the multiplication map
lies in G™4 by a standard fact stated in the Stacks project [Stal, Tag 0356|. Similarly, the
image of G™Y under the inverse map lies in G™4. In addition, the unit section of G factors
through G™4 as k is reduced. Therefore G™4 is a k-subgroup of G as desired.

Let us now prove that G is finite étale. By construction, the affine ring A4 of G*d is

a finite dimensional k-algebra. Hence we deduce from some general facts stated in the Stacks
project [Stal Tag 00J6 and Tag 00JB] that there exists a k-algebra isomorphism

n
Ared ~ Aged
-
where each Afd is a finite dimensional local k-algebra with a unique prime ideal. In fact, since
Ared is reduced, each A;’ed is a finite field extension of k, which is separable as k is perfect.
Now Lemma implies that G*4 is finite étale as desired.

It remains to show that the homomorphism G™¢ — G — G¢ is an isomorphism. The
embedding G*? < G induces an isomorphism G™4 (k) = G (k) as k is reduced. Moreover, the
surjection G — G induces an isomorphism G(k) = G*(k) as noted in Proposition
Therefore the homomorphism G™ < G — G¢ yields an isomorphism G™4(k) = G (k)

which is clearly I';-equivariant. Since G™ and G are both finite étale, we establish the
desired assertion by Proposition O

Example 1.4.16. We say that an elliptic curve E over F,, is ordinary if E[p](F,) is isomorphic
to Z/pZ. We assert that every ordinary elliptic curve E over F, yields an isomorphism

Elp| ~ p, x Z/pZ.

Let us consider the connected-étale sequence

7

0 — E[p]° — Elp] — E[p]" — 0. (1.9)

We have E[p]*(F,) ~ E[p|(F,) ~ Z/pZ by Proposition [1.4.12|and thus find E[p]* ~ Z/pZ by
Proposition m Therefore the exact sequence (|1.9)) induces a dual exact sequence

0 — (2/p2)’ — Efp" — (E[p]*) — 0 (1.10)

by Proposition [1.2.13] where the second arrow is a closed embedding by Proposition [1.1.10
Now we apply Proposition [1.2.8] and Example [1.2.11] to identify the map (Z/pZ)" — El[p]"

with a closed embedding 1, — FE[p], which in turn gives rise to a closed embedding y, — E/[p]°

by Proposition|1.4.13|and Example Moreover, as Example|l.1.14|and Proposition|1.1.15
show that E[p]®® ~ Z/pZ and E[p] respectively have order p and p?, Theorem [1.1.17| implies

that E[p]° has order p?/p = p. Since p, also has order p by Example [1.1.14] the closed
embedding p, < E[p|® is indeed an isomorphism by Theorem |I.1.17, Hence we obtain the
desired isomorphism by Proposition [1.4.15
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1.5. The Frobenius morphism

For this subsection, we assume that R = k is a field of characteristic p and write o for the
Frobenius endomorphism of k. Finite flat k-groups admit natural homomorphisms induced
by o. In this subsection, we describe these homomorphisms and explore their applications.

Definition 1.5.1. Let 7' = Spec (B) be an affine k-scheme and r be a positive integer.
(1) The p"-Frobenius twists of B and T are respectively
B®) .= B Qpor k and T®) =T Xpor k = Spec (B(pT)),
where the factor k in the products has ¢” as structure morphism.

(2) The relative p"-Frobenius of B is the k-algebra homomorphism gog] : B®) - B
which maps each b® ¢ € B?") =B Qe k to c- " € B.

(3) The relative p"-Frobenius of T is the morphism go[qﬂ : T — T®") induced by go[g.

(4) For r = 1, we often refer to pp := gp%,] and pp := goéy as the Frobenii of B and T.
Remark. We can similarly define the Frobenius twists and relative Frobenii for all k-schemes.
LEMMA 1.5.2. Let T'= Spec (B) be an affine k-scheme and r be a positive integer.

(1) The Frobenius twists satisfy recursive relations

Bt — (B(pT))(P) and TE ) — (T(pr))(p).

(2) The relative Frobenii satisfy recursive relations

+1 +1
o™ = ol o g and P = oo 0 .
PRrROOF. The assertions are evident by definition. O
PROPOSITION 1.5.3. Let T' = Spec (B) be a k-variety with B = k[t1,--- ,t,]/(f1, -, fm) for
some polynomials f1,--- , f;, in n variables. Fix a positive integer r.

(1) There exists a canonical k-algebra isomorphism
BED = kit tal () SE)
with fl-(p ") obtained from fi by raising each coeflicient to the p”-th power.
(2) The homomorphism 4,05;} maps each t; € BP") to ¢? "eB.

(3) For a k-point on T that represents a common root (c1,---,c,) of fi, -+, fm, its
image under go[jf] represents the common root (czfr, e ,cf;) of fl(pr), ‘e ,fr,fr .

PROOF. Statement is follows from the fact that under the canonical identification

kt1, -, ta]®) =2 E[ty,--- ,t,], the natural map k[ty,---,t,] — k[t1,--- ,t,]®") rasies the

coefficients of each polynomial to their p"-th powers. Statement follows immediately from

statement Statement is a straightforward consequence of statement U

PROPOSITION 1.5.4. Given an affine k-scheme 7' = Spec (B) and a positive integer r, the
morphism g@i}q induces a natural bijection T'(k) = T®") ().

PROOF. Let Froby : T' — T denote the morphism induced by the p-th power map on B.

Under the natural bijection T®") (k) = T(k) x (Spec (k)) (k) = T(k) given by the fact that
(Spec (k)) (k) is a singleton, goi}ﬂ] maps each t € T'(k) to Frobl(¢) by construction. Hence we

establish the desired assertion by observing that Frob!. induces a bijection T'(k) = T'(k). O
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Definition 1.5.5. Given a morphism f : T — U of affine k-schemes and a positive integer 7,
we refer to the induced morphism f®") : T®") — U®") as the p"-Frobenius twist of f.

Example 1.5.6. Given an arbitrary affine k-scheme 7" = Spec (B), we show the equality

() =l

for any positive integers » and s. For r = 1 and s = 1, since we have a commutative diagram
(»)
70 EI5 70?) — Spec (k)

L1

7, 7o) » Spec (k)

where each square is cartesian, we find (p7)® = @) by observing that the morphism
T® — 7 2L, 7P given by the left square induces the p-th power map on B®. For
r=1and s > 2, we have (p7)®") = ((@T)(p571))(p) and thus proceed by induction to find
(cpT)(pS) = Qpps). Finally, for r > 2 and s > 2, we have

(90[%])(1)5) = (‘PT@T—I) © 903271})@5) = (SOT@T—l))(pS) °© (W[%ﬂil])(ps)

by Lemma [I.5.2] and thus proceed by induction to obtain the desired equality.
LEmMA 1.5.7. Let T and U be affine k-schemes. Take a positive integer r.
(1) There exists a natural isomorphism (7" x U)®") = T®") x, U®") which canonically
identifies cp[(ZleU) with gol_,f] Xk @EE}.
(2) Every k-scheme morphism f: T — U gives rises to a commutative diagram

[r]
T 1 7"

f ®")
l [r] lf
U®)

Yu
where all maps are k-scheme morphisms.

PROOF. The assertions are straightforward to verify using properties of fiber products. [

ProPOSITION 1.5.8. Let G be an affine k-group and r be a positive integer.
(1) The p"-Frobenius twist GP") is naturally an affine k-group.
(2) The relative p"-Frobenius cp[g is a k-group homomorphism.
(3) If G is finite flat, G(*") is finite flat with a natural isomorphism (G(pr))v =~ (GV)P"),
PROOF. As we have G?) = G X or k, statements and are evident by Lemma
and Proposition Statements is a straightforward consequence of Lemma g

LEMMA 1.5.9. Let f: G — H be a homomorphism of affine k-groups.
(1) The p"-Frobenius twist f®") is a k-group homomorphism for each r > 1.
(2) If f is a closed embedding, f (?") is also a closed embedding for each r > 1.
(3) If f is an isomorphism, f (P") is also an isomorphism for each r > 1.

PRrROOF. The first statement is striaghtforward to verify by Lemma [1.5.7] The remaining
statements are evident by the construction of the Frobenius twists via base changes. O
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Definition 1.5.10. Let G be a finite flat k-group and r be a positive integer.

v

(1) We define the p"-Verschiebung to be Q/Jg] = ((p[gv) , regarded as a homomorphism
from G#") = ((Gv)(pr))v to G = (GY) under the identifications given by Proposi-
tion [L5.8 and Theorem [[.2.4

(2) For r =1, we often refer to g := 1/1[” @by as the Verschiebung of G.

PROPOSITION 1.5.11. We identify the Frobenius and Verschiebung of oy, pp,, Z/pZ as follows:

(1) For oy, we have ¢q, = 0 and 94, = 0.
(2) For pp, we have ¢, =0 and v, = id, .
(3) For Z/pZ, we have @z ,7 = idz /7 and 17,7 = 0.
PROOF. Let us begin with the Frobenii. We use the affine descriptions in Example
For «,, we find a](op ) ap and ¢q, = 0 by Proposition For p,, we similarly find uép ) & Hp
and ¢, = 0. Let us now consider Z/pZ. We write A := H k for its affine ring and e;

€L /DL
for the element of A whose only nonzero entry is 1 in the component corresponding to i. We
have a natural identification

AP = [ ] k| @rokz ] kerek)= [[ k=4

i€Z/pl. i€Z/pT. i€Z)pl.
Hence for each a = Z ce; € A with ¢; € k we find
1€Z/PZL
oa@=pa| 3 o)=Y eatcer= 3 = Y ae—a
€L/ €L/ L €L/ L €L/ pZ

thereby deducing that ¢gz/,7 coincides with the identity map. Now that we have the desired

identifications of the Frobenii, we deduce the identifications for the Verschiebungs from the
results on Cartier duals such as Proposition [1.2.8] and Proposition [1.2.9 O

LEMMA 1.5.12. Given a finite flat k-group G, we have ¢[C§H] = @D[GT] 0 Yaer) for each r > 1.

PROOF. The assertion is evident by Lemma [I.5.2] O

LEMMA 1.5.13. Let G and H be finite flat k-group schemes. Take a positive integer 7.
(1) There exists a natural isomorphism (G xp H)?") 2 G®") x,, H®") which canonically

identifies ¢(Gx ) with 1/JG Xk %05;]

(2) Every homorphism f : G — H of finite flat k-groups induces commutative diagrams

[
e, qbn) L el

fl J{f(p’“) fl J{f(p’“)

H@®) H®)
where all maps are k:-group homomorphisms.

PROOF. By Lemma [T fiber products of finite flat k-groups are finite flat k-groups.
Hence the assertions follovv from Lemma Proposition 8l and Lemma [1.5.9 Il
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PROPOSITION 1.5.14. Let G = Spec (A) be a finite flat k-group. We denote the symmetric
group of order p by &,, which acts on A®? by permuting factors of pure tensors.

(1) There exists a k-algebra homomorphism v : (A®?)® — AP with the following
properties:
(i) For each a € A, we have v(a®?) =a® 1.

(ii) For each pure tensor in A®P with unequal factors, the sum of elements in its
S,p-orbit maps to 0 under ~.

(2) The k-algebra homomorphism 14 induced by ¢ fits into a commutative diagram
pa

e

AT (A% 3 4

J

A®P
with the map A — A®P induced by the comultiplication of G.

PRrROOF. Let us work with the natural k-algebra isomorphisms
v
A (AV)Y, (Sym” A\/)V ~ (A®P)Sp, AP) <(AV)(p)> 7

given by Theorem Proposition and the fact that SymP(AY) is the k-algebra of
S,-covariants for (AY)®P. Since k has characteristic p, we have (f1 + f2)®F = 1®p + fg)p in
SymP(AY) for any f1, fo € AY. Therefore there exists a unique k-algebra homomorphism
0 : (A)P) — SymP AV which maps each f ®c € (AY)P) = AV @4, k to ¢+ f®P € SymP AV,
Let us take v to be the dual of 6. In addition, we identify each a € A with its image ¢, under
the isomorphism A = (4Y)Y. For each a € A and f ® c € (AV)P) = AV @, k, we have

(@) (f @) = (ea)*(c- fF) = c- fla)f = (ea @ 1)(f @ ¢)
where the last equality follows from the identity f(a)®c =1®(c- f(a)?) in A®y k. Moreover,
given a pure tensor ®a; € A®P with unequal factors, we denote its S-stabilizer by S and find

7< ) ®a7<i>><f®c>= ) <®eaf<i>)<c~f®p>=c > If@) =0

7€6,/8 i=1 7€6,/8 \i=1 7€6,/8 i=1
for each f ® c € (AV)?) = AV @y, k, where the last equality follows from the fact that the
number of elements in &,/ is divisible by p. Therefore we establish statement
Let us now consider statement By construction, ¢ 4v fits into a commutative diagram

Pav

— . T

(AV)@) —— Sym” A ——3 A
T ®fi = [lav fi
( AV )®P
where [] v denotes the ring multiplication on AY. Theorem implies that the dual of
the map (AY)®? — AY in the diagram coincides with the map A — A®P induced by the

comultiplication of G. Since we have ¢4 = ¢4, by construction, we obtain the diagram in
statement by dualizing the above diagram, thereby completing the proof. O
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PRroOPOSITION 1.5.15. Every finite flat k-group G yields the identities
@/;[GT] ) cp[g =[p"l¢ and cp[g o @/}[GT] = [p"]aw) for each integer r > 1.

PROOF. An inductive argument based on Lemma and Lemma shows that it
suffices to establish the desired identities for » = 1. Let us write G = Spec (A4) for some
finite dimensional k-algebra A. In addition, we let ¥4 denote the k-algebra homomorphism
induced by ¥¢ and &, denote the symmetric group of order p. Proposition yields a
commutative diagram

YA

e 3w

AT (A 34
\ \[ JWA
A®p ®a; — HA Qag A

with the map A — A®P induced by the comultiplication of G and [[, denoting the ring
multiplication on A. Therefore we have a commutative diagram

G Yo G®)
gr~gpeﬂghii;;;\\\\\ TWG
G*P G
(g,,9)g

and in turn find ¥g o ¢ = [p]g. Moreover, we have cp(Gp) = ¢a as noted in Example m

and thus obtain a commutative diagram

aw) TP aw?)
wc{ J’%(p)
G % g

by Lemma [1.5.13] Since we have established the identity g o pg = [p]g for an arbitrary
finite flat k-group G, we find ¢¢ 0 g = Yaw) © Paw = [Plaw as desired, thereby completing
the proof. O

Remark. Let us briefly discuss the Verschiebung for a general affine k-group G = Spec (A)
which is not necessarily finite flat. Our proof of Proposition readily shows that state-
ment holds for an arbitrary k-algebra A. In addition, the associativity axiom for G
implies that the k-algebra homomorphism A — A®P induced by the comultiplication of G
factors through the embedding (A®P)®» < A®P. Therefore there exists a unique k-algebra
homomorphism 14 : A — A® which fits into the diagram in statement We define the
Verschiebung of G to be the k-scheme morphism ¢ : G®) — G induced by 1 4. It is not hard
to verify that 14 is compatible with comultiplications, which means that g is a k-group
homomorphism. Moreover, for each integer » > 1 we inductively define the k-group homo-
morphism wg} by the recursive relation in Lemmam It turns out that Lemma|l.5.13|and
Proposition [I.5.15] hold for general affine k-groups; indeed, we can establish Lemma iS [3

by a straightforward argument on affine rings and in turn deduce Proposition [1.5.15| by the
same proof. In addition, we can suitably adjust our argument in Example to obtain the

identity (w[Gr])(ps) = w[(;r]uﬁ) for any positive integers r and s.
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LEMMA 1.5.16. Let G = Spec (A) be a finite flat k-group.
(1) The Frobenius ¢¢ is an isomorphism if and only if it is injective.

(2) If G is connected, A is an artinian local k-algebra with its maximal ideal given by
the augmentation ideal of G.

PROOF. Since G and G are of the same order by construction, statement follows
from Proposition and Theorem If G is connected, A is an artinian local ring by
Lemma Lemma and a general fact that every finite dimensional algebra over a
field is artinian as noted in the Stacks project [Stal, Tag 00J6]. Hence we deduce statement
by observing that the augmentation ideal I of G is a maximal ideal as we have A/T 2 k. O

PROPOSITION 1.5.17. Let G = Spec (A) be a finite flat k-group.
[r]

(1) G is connected if and only if . vanishes for some integer > 1.
(2) G is étale if and only if ¢ is an isomorphism.

PROOF. Let us begin with statement |[(1)l If go[(";] vanishes for some r > 1, we find by

Proposition that G(k) is trivial and thus deduce from Proposition that G is con-
nected. For the converse, we now assume that G is connected. Its augmentation ideal I is
nilpotent by Lemma and a standard fact stated in the Stacks project [Stal, Tag 00J8];
in particular, there exists an integer » > 1 with t*" = 0 for all ¢t € I. Therefore @Z} factors
through the surjection A®") = AQ®p ork — (A/I) ®} or k induced by the unit section of G,
We deduce that gp[é] vanishes and in turn establish statement m

It remains to prove statement Let us assume that (¢ is an isomorphism. It is not hard
to see that pgo is an isomorphism, for example by Lemma [1.5.7] and Lemma [1.5.16] Hence

[r]

Example [1.5.6) and Lemma [1.5.9| together imply that ¢ Go)r) = gogo is an isomorphism for
each r > 1. Now a simple induction based on Lemma shows that o, is an isomorphism

for each r > 1. Since gog]o vanishes for some r > 1 by statement we find that G° is trivial

and consequently deduce from Proposition that G is étale.

We now assume for the converse that G is étale. Since Lemma implies that ¢yer(pe)
vanishes, ker(p¢) is connected by statement in particular, ker(¢¢) lies in G°. Hence we
find by Proposition that ker(pq) is trivial and in turn deduce from Lemma that
Y is an isomorphism, thereby completing the proof. O

Remark. Proposition yields similar criteria for GV to be connected or étale in terms
of the Verschiebungs.

Example 1.5.18. Let E be an ordinary elliptic curve over Fp. We assert that there exists an
isomorphism ker(¢pp,) =~ p. Example shows that we have E[p]° ~ p,. Lemma
and Proposition together imply that ker(¢pp,)) is connected and thus lies in E[p]® >~ p,.
On the other hand, ker(¢gp,) contains E[p]° =~ pu, as ¢, vanishes by Proposition
Therefore we have ker(¢g,) = E[p]® ~ p, as desired.

Remark. As noted after Definition [1.5.1] we can define the relative Frobenii for general k-
schemes, including abelian k-varieties. Moreover, since abelian varieties admit a notion of
duality, we can define their relative Verschiebungs as in Definition It turns out that
most results that in this subsection remain valid for abelian varieties. In particular, for an
ordinary elliptic curve E over F,, we find ker(pg) C E[p] by the identity @b[ET] o cpg] =[p'E
and in turn obtain an isomorphsim ker(¢g) ~ p, from Example


https://stacks.math.columbia.edu/tag/00J6
https://stacks.math.columbia.edu/tag/00J8
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PROPOSITION 1.5.19. Let G = Spec (A) be a finite flat k-group with augmentation ideal I.

(1) For each integer r > 1, there exists a natural isomorphism
ker(go[é]) =~ Spec (A/I%))

where I®") denotes the ideal generated by the p"-th powers of elements in 1.

(2) If @@ vanishes, the order of G is p? where d denotes the dimension of I/I? over k.

PRrROOF. Let us denote by e the unit section of G, which we naturally identify with the
closed embedding Spec (A/I) < Spec(A). The unit section of G®") is ") induced by
natural surjection AP = A Qo k = (A/I) @ o k. Hence statement follows from the

identification of ker(go[é]) as the fiber of (p[g over e,

Let us now consider statement We chooose ay,- - - ,aq € I whose images in I/I? form
a basis over k. Since Proposition shows that G is connected, we note by Lemma
that A is a local ring with maximal ideal I and in turn deduce from Nakayama’s lemma that
ai,- -+ ,aq generate I. Therefore statement |(1)| yields an isomorphism A = A/(af,--- ,dh).
Let us take the k-algebra homomorphism

Aikltr, et — A=A/, ah)
which maps each t; to a;. Since X is surjective as easily seen by Lemma [1.3.5] we have
k[tl, s ,td]/ker()\) ~ A

and thus obtain an isomorphism

d
QA/k:@A-dti/ Yo A-df

i=1 f€ker(X)

by a general fact about differentials stated in the Stacks project [Stal Tag 00RU]. Moreover,
Proposition implies that €4/, is a free A-module of rank d. Hence we deduce that

Z A - df is trivial, which means that ker(\) is stable under partial derivatives. Now we
f€ker(X)
must have ker(X) C (f,--- ,t}), since otherwise we take an element f € ker(A)\(}, - ,t})
with minimal sum of degrees of its terms and find that its partial derivatives yield elements in
ker(A) which violate the minimality for f. As ker()) evidently contains (¢}, --- ,¢}), we obtain
an isomorphism kft1,--- ,tq]/(t], - ,t5) ~ A and thus establish statement |(2)| by observing
that k[t1,--- ,tq]/(t], -+ ,t5) is free of dimension p? over k. O

ProprosiTION 1.5.20. If a finite flat k-group G is connected, its order is a power of p.

PROOF. Let us denote the order of G by n. Since the assertion is trivial for n = 1, we
henceforth assume n > 1 and proceed by induction on n. It is evident by Proposition [1.4.12
that G is not étale. Hence Lemma and Proposition together imply that ker(yq)
is not trivial. In addition, as ker(pg) is a closed k-subgroup of G by Proposition we
apply Proposition to see that both ker(pg) and G/ ker(¢g) are connected. Let us write
ny and ng respectively for the orders of ker(¢g) and G/ ker(pg). By Theorem we have
n = nine. If pg does not vanish, we find that both n; and no are less than n and thus are
powers of p by the induction hypothesis, which in particular implies that n is a power of p. If
¢ vanishes, Proposition readily shows that n is a power of p. Hence we establish the
desired assertion. O


https://stacks.math.columbia.edu/tag/00RU
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PROPOSITION 1.5.21. Given a finite flat k-group G = Spec (A) with unit section e, its tangent

space at e admits a canonical isomorphism ¢q . = Homy g, (G, Gg).

PRrROOF. Let us write I for the augmentation ideal of G and regard the unit section e
as a k-point of G via the natural closed embedding Spec (k) = Spec(A/I) — Spec(A).
The tangent space tg, is by definition canonically isomorphic to the kernel of the natural
homomorphism G(k[t]/(t?)) — G(k), which we naturally identify with the group of k-algebra
homomorphisms A — k[t]/(t?) whose composition with the map k[t]/(t?) — k equals the
counit € of G. Since we can uniquely write every k-linear map A — k[t]/(¢?) in the form
fo +tf1 with fo, fi € AY = Homy_poa(4, k), we find

tae 2 { f € Homyaig(A, k[t]/(t?)) : f = e+ tg with g€ A }
~{ge A :e+tg € Homyag(A, k[t]/ () }.
For each g € A, we have e +tg € Homy aig(4, k[t]/(t?)) if and only if it satisfies the identities
€(ab) +tg(ab) = (e(a) +tg(a)) (e(b) +tg(b)) and €(1)+tg(l)=1 foreacha, be A,
which are equivalent to the identities
g(ab) = €(a)g(b) + €(b)g(a) and ¢(1)=0 foreacha, be A

by the fact that € is an k-algebra homomorphism. We observe that the second identity is
redundant as it follows from the first identity for a = b = 1. In addition, the first identity is
equivalent to the commutative diagram

A—9 s k~keLk

mA
€Rg+gRe

AR, A

where my4 denotes the ring multiplication map on A. We dualize this diagram under the
identification A = Homy.mod(4, k) = Homy med(k, AY) and find mY%(9) = g®@1+1®g.
Therefore we obtain a natural isomorphsim
tge={geA :mylg)=g@1+1®g}.
Meanwhile, by Example and Theorem we find
Homk—grp(GvaGa) = { fe Homk—alg(k[t]v AV) : m\//!(f(t)) = f(t) ®1+1® f(t) }

where the identity mY{(f(t)) = f(t) ® 1 + 1 ® f(t) comes from compatibility with comultipli-
cations. Since we have the canonical isomorphism Homy.a1s(k[t], AY) = AY which sends each
[ € Homy,_aig(k[t], AY) to f(t), we obtain a natural identification

Homy grp (GY,Go) = {ge A :my(9) =9g®1+1®g}.
Therefore we deduce the desired assertion, thereby completing the proof. O

PROPOSITION 1.5.22. A finite flat k-group G is étale if and only if Homy, g, (G, G,) vanishes.

PROOF. Let us write G = Spec (A) for some finite dimensional k-algebra A. We denote
the augmentation ideal of G by I and regard the unit section e as a k-point of G via the closed
embedding Spec (k) = Spec (A/I) — Spec (A). The tangent space tg . is naturally isomorphic
to the dual of I/I? by a general fact stated in the Stacks project [Stal Tag 0B2E|. Therefore,
by Proposition G is étale if and only if {g . vanishes. Now the desired assertion follows

from Proposition [1.5.21 U


https://stacks.math.columbia.edu/tag/0B2E
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THEOREM 1.5.23. Assume that k is algebraically closed.

(1) Every simple finite flat k-group is either étale or connected.
(2) The simple finite étale k-groups are Z/¢7Z where ¢ ranges over all prime numbers.

(3) The simple connected finite flat k-groups are p, and o,.

PROOF. Statement is straightforward to verify by Theorem Statement fol-
lows from Proposition [1.3.7] Proposition [1.3.8] and the fact that the simple abelian groups
are precisely the cyclic groups of prime order. Hence it remains to prove statement

The k-groups 1, and «, are indeed connected as noted in Example[T.4.8] Moreover, they
are of order p by construction and thus are simple by Theorem We wish to show that
they are the only simple connected finite flat k-groups.

Let G be a simple connected finite flat k-group. Theorem and Proposition [1.2.13
together imply that GV is simple. Hence GV is either étale or connected by statement @

We consider the case where GV is étale. Statemeyields an isomorphism G ~ Z/{Z
for some prime ¢. Hence GG has order ¢ by Example and Theorem On the other
hand, the order of G is a power of p as noted in Proposition We thus find ¢ = p and
in turn obtain an isomorphism G ~ p, by Proposition m

Let us now consider the case where GV is connected. It is evident by Proposition
that neither G nor GV is étale. Theorem [1.2.4and Proposition together yield a nonzero
k-group homomorphism f : G — G,, which is indeed a closed embedding as GV is simple.
Moreover, Lemma and Proposition together imply that ker(¢¢g) is not trivial,
which means that ¢ vanishes as G is simple. Therefore f must factor through ker(y¢g, ),
which is isomorphic to «, as easily seen by Example and Proposition Since a, is
simple, we deduce that f induces an isomorphism G ~ «,. O

Remark. In the category of finite flat group schemes, the image of a homomorphism is a
scheme theoretic image and thus is closed in the target; in particular, subobjects of a finite
flat k-group scheme is a closed k-subgroup.

Example 1.5.24. We say that an elliptic curve E over F,, is supersingular if E[p](F,) is trivial.
We assert that every supersingular elliptic curve E over F,, yields a short exact sequence

0—ap — Efp] — o — 0.

Example and Theorem [1.5.23] together show that the order of every simple finite flat
il.l.lS

F,-group is a prime. Since E[p] has order p? as noted in Proposition it is not simple
and thus admits a nonzero proper closed IF,,-subgroup H. Let us consider the exact sequence

Proposition [I.2.13] and Example [I.2.1] together yield a short exact sequence
00— (E[p}/H)v — Elp| — HY — 0.

Since E[p] is connected as easily seen by Proposition we deduce from Proposition [1.4.14
that H, E[p]/H, H'Y, (E[p]/H)" are all connected. In addition, we find by Theorem [1.1.17]
that both H and E[p|/H have order p and thus are simple. Therefore Proposition |1.2.§8
and Theorem together imply that both H and E[p]/H are isomorphic to «;, thereby
yielding the desired assertion.

Remark. It turns out that the Fy-subgroup H ~ a, coincides with ker(ogp).
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2. p-divisible groups

In this section, we introduce p-divisible groups as limits of finite flat group schemes and
discuss some fundamental theorems about their structures. The primary references for this
section are the book of Demazure [Dem72] and the article of Tate [Tat67]. Throughout this
section, we let R denote a noetherian base ring.

2.1. Basic definitions and properties

In this subsection, we define p-divisible groups and describe their basic properties inherited
from properties of finite flat group schemes.

Definition 2.1.1. A p-divisible group of height h over R is an ind-scheme G = lim G, with
v>0

the following properties:
(i) Each G, is a finite flat R-group of order p¥".
(ii) Each transition map i, : G, — G441 fits into a short exact sequence

0 Gy — Gor 2 G

Remark. Some authors prefer to say Barsotti-Tate groups for p-divisible groups.

Example 2.1.2. We present some important examples of p-divisible groups.

(1) The trivial R-group 0 is a unique p-divisible group of height 0 over R via the identi-
fication 0 = liLQQ.

(2) The constant p-divisible group over R is Qp/Zy := lim Z/p"Z with natural inclusions.

It is a p-divisible group of height 1 over R.

3) The p-power roots of unity over R is o := lim p,» with natural inclusions. It is a
P I fbp
p-divisible group of height 1 over R.

(4) Every abelian scheme A of dimension g over R gives rises to a p-divisible group
A[p>] := lim A[p*] of height 2¢ over R by Proposition [L.1.15

Remark. When R has characteristic p, we have a finite flat R-group a,» := Spec (R[t]/tP") for
each integer v > 1 with the natural additive group structure on aye(B) = {be B: " =0}
for each R-algebra B. However, the ind-scheme lim aye over R with natural inclusions is not
a p-divisible group since [p]y» vanishes for each v > 1.

Definition 2.1.3. Let G = h_rr}le and H = lii>nHv be p-divisible groups over R.
(1) A homomorphism from G to H is a system f = (f,) of R-group homomorphisms
fv: Gy — H, which fit into commutative diagrams

G, —— m,

fv+l
Gyt1 — Hyq

where i, and j, respectively denote transition maps of G and H.
(2) The kernel of a homomorphism f = (f,) from G to H is ker(f) := limker(f,).

Example 2.1.4. Given a p-divisible group G = li_n)le over R and an integer n, the multi-
plication by n on G is the homomorphism [n]g := ([n]q, ).
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LEMMA 2.1.5. Let B be an R-algebra.
(1) Given a p-divisible group G = lim G, of height i over R, the base change to B yields
a p-divisible group Gp = lim (Gy) g of height h over B.
(2) Given a short exact sequence of p-divisible groups over R
0 —G —G—G" —0,
the base change to B yields a short exact sequence of p-divisible groups

0— (G")p — Gp — (G")p — 0.
PROOF. The assertions are straightforward to verify by Lemma [T.2.1] O

LEMMA 2.1.6. Every p-divisible group G = hL>nGU over R yields R-group homomorphisms
tow Gy = Gygw and Jy o @ Gypw — Gy for each v, w > 1 with the following properties:

(i) The map 4,4, induces a canonical isomorphism G, = G4 [p"].
(ii) There exists a commutative diagram

(p*]

Gv—f—w > Gv+w
Jm /’w,v
Guw
(iii) We have a short exact sequence
iv,w jv,w
0 Gy > Gytw > Gy > 0.

PROOF. Let us write i, : G, — Gy41 for the transition map. For each v, w > 1 the map
ty+w—1 induces a natural isomorphism

Gv+w [pv] = Gv+w [pv+w_1] N Gv+w [pv] = Gvﬂvfl N Gv+w [PU] = Gerwfl [pv]
Hence we set 4, 4 1= ty4w—10--- 01, and establish property by induction on w. Moreover,
as the image of [p¥|q, ., lies in Gyyw[p*] by the fact that [p"**]q, ., vanishes, property
implies that there exists a unique map jyw : Gy4+w — G Which satisfies property

It remains to verify property The map 1,4 is a closed embedding as easily seen

by Proposition [1.1.10} In addition properties and together yield an identification
ker(jyw) = Gutw[p'] = Gy. Hence j,,, gives rise to a closed embedding Gyyw/Gy — G,

which is indeed an isomorphism by Theorem as both Gy4.,,/Gy and G, have order p*.
We deduce that j,,, is surjective and consequently establish property 0

PropoOSITION 2.1.7. Let G = li_n}Gv be a p-divisible group over R.

(1) There exists a canonical identification G, = ker([p"]¢) for each v > 1.

(2) The homomorphism [p]q is surjective.

PROOF. Given an integer v > 1, we obtain a natural isomorphism ker([p"]q,, ) = G, for
each w > v by Lemma and thus establish statement In addition, we deduce from
Lemma that the map [p|g, ., factors through a surjection Gy,41 — G, for each v > 1
and consequently establish statement O

Remark. Statement shows that the kernel of a homomorphism between two p-divisible
groups is not necessarily a p-divisible group. For statement we may define the surjectivity
of [p|¢ in terms of fpqc sheaves over R.
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PROPOSITION 2.1.8. Let G = h_II)lGU be a p-divisible group of height h over R.

(1) The ind-scheme G := lim G with transition maps induced by [p]g is a p-divisible
group of height h over R.
(2) There exists a canonical isomorphism G = (G¥)V.

PrROOF. Lemma [2.1.6| yields a commutative diagram

G
o
(p"]

\

jvzjl,v
Gv+1 4 G'L;Jrl

0 > Gy

G > 0
where the horizontal arrows form an exact sequence. Hence we obtain an exact sequence

0—aY gy, gy

v+1 v+1
by Example and Proposition [1.2.13] Now the desired assertions immediately follow from
Theorem [1.2.4 O

Definition 2.1.9. Given a p-divisible group G over R, we refer to the p-divisible group G
in Proposition as the Cartier dual of G.

Remark. Some authors prefer to call GV the Serre dual of G.

Example 2.1.10. Let us record the Cartier duals of p-divisible groups from Example
(1) The Cartier dual of 0 is evidently 0 by definition.
(2) We have (Q,/Zy)" = pipee and pyeo = Qp/Z, by Proposition m
(3) Given an abelian scheme A over R, we have A[p>]¥ = AY[p*] by Proposition [1.2.10
where A" denotes the dual abelian scheme of A.
ProPoOsITION 2.1.11. Assume that R is a henselian local ring with residue field k. Let
G = lim G, be a p-divisible group over R.
jisininiy
(1) There exists a natural exact sequence of p-divisible groups
0—G —G—G"—0 (2.1)
with G° = lim G% and G* = lim G¢'.
— =
(2) If R = k is a perfect field, the exact sequence ([2.1]) canonically splits.

PROOF. Since the order of Gy is a power of p, we deduce from Theorem that
the R-groups G and G‘%t respectively have order p"° and phet for some integers h° and h¢t.
Meanwhile, as Lemma yields a natural isomorphism G,.1/G, = G; for each v > 1, we
find G9, /G5 = G and GT', /G = G§* by Proposition A simple induction based on
Theorem shows that the R-groups G9 and G respectively have order p**° and p”het.
In addition, Proposition yields short exact sequences

pv , . pU .
0— 06— G e, ad  0—GF — Gl Plad

Therefore G° = lim G2 and G¢ = lim G are p-divisible groups over R. Now the desired
—

assertions are evident by Proposition and Proposition [1.4.15 Il

Remark. Proposition(2.1.11/implies an interesting fact that for a p-divisible group G = lim G,
over a henselian local ring R each G, being connected or étale is equivalent to (G; being
connected or étale.
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Definition 2.1.12. Let G = h_II)lGU be a p-divisible group over R.

(1) We say that G is connected if each G, is connected.

(2) We say that G is étale if each G, is étale.

(3) If R is a henselian local ring, we refer to the p-divisible groups G° and G¢* in Propo-
sition [2.1.11] respectively as the connected part and the étale part of G.

Example 2.1.13. Below are essential examples of étale or connected p-divisible groups.

(1) The constant p-divisible group Q,/Z, is étale by Proposition W

(2) If R is a henselian local ring with residue field of characteristic p, the p-power roots
of unity pp~ is connected by Example

Definition 2.1.14. Assume that R = k is a field of characteristic p. Let G = h_n)le be a
p-divisible group over k and r be a positive integer.

(1) The p"-Frobenius twist of G is G®") := lil)nGS,pT) with transition maps given by the
p"-Frobenius twists of the transition maps for G.

(2) We define the p"-Frobenius of G to be gog] = (np[é]v) and the p"-Verschiebung of G
to be w[GT] = (wg]v)
(1]

(3) For r = 1, we often refer to g := ¢ and g := @Z)g] respectively as the Frobenius
and the Verschiebung of G.

ProPOSITION 2.1.15. Assume that R = k is a field of characteristic p. Let G be a p-divisible
group of height h over k and r be a positive integer.

(1) The ind-scheme G?") is a p-divisible group of height h over k.
(2) The maps gog] and w[g are homomorphisms of p-divisible groups.
(3) We have w[GT} o go[é] = [p"]¢ and go[é] o z/J[Gﬂ = [P"com -

PROOF. The assertions are direct consequences of Proposition Lemma [1.5.13] and
Proposition [1.5.15 O

Remark. We can alternatively deduce the first statement from Lemma [2.1.5

Definition 2.1.16. Assume that R = k is a field. For a p-divisible group G = li_I)nGU over k,

we define its Tate module to be T,(G) := lim G, (k) with transition maps induced by [p]c-
Remark. We define T),(G) as an inverse limit of groups, while G is a direct limit of k-groups.

PROPOSITION 2.1.17. Assume that R = k is a perfect field of characteristic not equal to p.
There exists an equivalence of categories

{ p-divisible groups over k } — { finite free Z,-modules with a continuous I'y-action }

which sends each p-divisible group G over k to T),(G).
PROOF. Let G = lim G, be a p-divisible group over k. Lemma implies that each

Gy (k) is a finite free module over Z/p"Z. Moreover, each G, (k) naturally carries a continuous

I'g-action. Hence T,,(G) = lim Gy (k) is a finite free Z,-module with a continuous I';-action.

Since all finite flat k-groups of p-power order are étale by Theorem [1.3.10} it is not hard
to deduce from Proposition [I.3.4] that the functor is fully faithful. Moreover, given a finite
free Z,-module M with a continuous I'y-action, Proposition [I.3.4] yields a finite étale k-group

Gy with Gy(k) = M/(p”) for each v > 1 and in turn provides a p-divisible group G = lim G,
with T),(G) = M. Therefore we deduce that the functor is an equivalence as desired. g
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2.2. Serre-Tate equivalence for connected p-divisible groups

In this subsection, we introduce formal group laws and explore their relations to p-divisible
groups. Throughout this subsection, we assume that R is a complete reduced noetherian local
ring with residue field k of characteristic p and let «7; := R][t1, - - - , t4]] denote the ring of power
series over R in d variables. We often write o7 := 7, if the context clearly specifies d. We work
with the canonical identifications @®@re = R[[T,U]] and #@rAy@pry = R[[T,U, V]|,
where we write T := (t1,- -+ ,tq), U := (u1,--- ,uq), and V := (vy, -+ ,vq).

LEMMA 2.2.1. An R-algebra homomorphism f : R[[t1,--- ,ty]] — R[[u1,- -, up]] is continu-
ous if and only if each f(¢;) lies in the ideal & := (uq, -, up).

PROOF. The map f is continuous if and only if there exists an integer v with f(t}) € &
for each i = 1,--- ,n. Hence the assertion follows from our assumption that R is reduced. [

Definition 2.2.2. A formag\gmup law of dimension d over R is a continuous R-algebra
homomorphism p : o7y — 3® gy such that ®(T,U) := (u(t;)) satisfies the following axioms:
(i) associativity axiom ®(7,®(U,V)) = ®(®(T,U),V),
(ii) unit section axiom ®(7,0) =71 = ®(0,7),
(iii) commutativity axiom ®(T,U) = ®(U,T).
Example 2.2.3. We present two primary examples of one-dimensional formal group laws.

(1) The additive formal group law over R is the continuous R-algebra homomorphism
ug: : R[] — R[[t, u]] with pg-(t) =1+ u.

(2) The multiplicative formal group law over R is the continuous R-algebra homomor-
phism pg~: R[[t]] — R[[t, u]] with pg=(t) =t +u+tu=(1+1)(1+u) - 1.

LEMMA 2.2.4. Let p: &/ — &/ @pa/ be a formal group law of dimension d over R represented
by ®(T,U) := (u(ti)). We have a d-tuple =Z(T7") = (Z;(T")) of power series in d variables with
(T,Z(T)) = 0 = B(E(T), T).

PROOF. By the commutativity axiom for pu, it suffices to construct a d-tuple Z(7") with
®(T,Z(T)) = 0. Let us consider the ideal .# := (t1,---,tq) of &/. We have a natural

identification S ®.7 = (t1,--- ,tq,u1,--- ,uq). For each R-module M, we regard M*? as the
set of d-tuples whose entries all lie in M. We wish to present the desired d-tuple as a limit

—_

=(T) = Jlirrolo P;(T) where each P;(T') is a d-tuple of polynomials with

Pi(T) € Pj_1(T) + (#9)*4 and O(P;(T),T) € (F7H1)xd,

The unit section axiom for u yields the relation

(T, U)eTHU + (FR.5)%)*4 (2.2)

Let us set P(T") := —T and inductively construct P;(T") for each j > 1. By the relation
®(P;_1(T),T) € (#9)*4 there exists a d-tuple A;(T) € (#£7)*? with

A(T) € —(P;_1(T),T) + (F7H)*2, (2.3)

For Pj(T) := Pj_1(T) + Aj(T), we have P;(T) € Pj_1(T) + (.#7)*?¢ and find
®(Py(T),T) = ®(Pj—1(T) + Aj(T), T) € ®(Pj—1(T),T) + Aj(T) + (F7H1) " = (g7H1)
by the relations and (2.3)). Therefore we obtain a desired d-tuple =(T). g

Remark. Lemma shows that the inverse axiom is automatic for formal group laws.
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LEMMA 2.2.5. Let p : & — &/ @p</ be a formal group law of dimension d over R.

(1) The formal group law p yields commutative diagrams

o N R -~ (EA — AZE -~
o » S OpA ABpd — 2V AR pad

| b TN A

ASpd — SRR AR

(2) The R-algebra map €: o/ — R with €(¢;) = 0 fits into commutative diagrams

od —9 g~ s JORR od —9 s~ REpo
A Qg ADpod

(3) There exists an R-algebra map ¢ : &/ — & that fits into a commutative diagram

od —B s ARp

Jﬁ id@bﬂb@id

R—— &

PRrROOF. Statements and are evident by the axioms for p. Statement is a

reformulation of Lemma 2.2.4] O

Remark. We can extend the notion of R-groups to define formal R-groups as group objects
in the category of formal R-schemes. Lemma shows that every formal group law p of
dimension d over R corresponds to a unique a formal R-group ¥, = Spf(%/) with comultipli-
cation pu, counit €, and coinverse ¢.

Definition 2.2.6. Let p and v be formal group laws over R.

(1) A homomorphism from p and v is a continuous R-algebra map 0 : @7y — <f; with a
commutative diagram

&Zfd/ —Z dd’@RbQ{d’

le le@e
Ay —L s Ay® gty

where d and d’ respectively denotes the dimensions of p and v.

(2) A homomorphism 0 : @y — o from p and v is finite flat if <7; becomes a free
module of finite rank over &7y via 6.

Remark. The map 6 goes from the power series ring for v to the power series ring for u so
that it corresponds to a formal R-group homomorphism ¥,, — ¢, . If we consider the tuples
O(T,U) = (u(ts)), ¥(T,U) := (v(t)), and Z(T) := (0(t;)), the commutative diagram for ¢
is equivalent to the identity W(=(7),2(U)) = 2(®(1,T)).

Example 2.2.7. Let p be a formal group law of dimension d over R. For each integer n > 1,
the multiplication by n on p is the homomorphism [n], : & — & inductively defined by the
relations [1],, := id, and [n], := ([n — 1],&®id) o p.

Remark. The map [n], induces the multiplication by n on the formal R-group ¥,,.
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Definition 2.2.8. Let y: &/ — &/®@p/ be a formal group law of dimension d over R.
(1) We refer to the ideal .# := (t1,--- ,t4) in &7 as the augmentation ideal of p.
(2) We say that p is p-divisible if the homomorphism [p], : &/ — 7 is finite flat.

Remark. The ideal .# is the kernel of the counit € : &/ — R for the formal R-group ¢,,. Hence
our definition here is comparable to the definition of augmentation ideal for affine R-groups.

Example 2.2.9. Let us consider the formal group laws from Example
(1) The additive formal group law pg; is not p-divisible; indeed, [p]#@; satisfies the
identity [p] ne. (t) = pt and thus is not finite flat for inducing a zero map on &7 ®p k.
(2) The multiplicative formal group law pg— is p-divisible; indeed, [p] ng satisfies the
identity [p]u@\n (t) = (1 4+t)? — 1 and thus is finite flat.

PROPOSITION 2.2.10. Let p: @/ — &/ @pr</ be a p-divisible formal group law of dimension d
over R with augmentation ideal .#. We write A, := </ /[p"],(#) for each v > 1.

(1) Each u[p¥] := Spec (A4,) is naturally a connected finite flat R-group.

(2) The ind-scheme p[p>] := lim p[p"] is a connected p-divisible group over R.

PROOF. Let us take € and ¢ as in Lemma [2.2.5] For each v > 1, we have
Ay =[Pl (I) 2 A ]I @ [pr), = Ry pv), ¥
and thus find that p[p¥] = Spec (4,) is naturally an R-group with comultiplication 1®u, counit
1 ® €, and coinverse 1 ® ¢. If we take a basis of & over [p|,(4/) given by fi,---, fr € &,
a simple induction yields a basis of &/ over [p’],(<) for each v > 1 given by elements of
the form [p*~],.(fi, 1) [Plu(fir) fig With (ig, -+ ,iy—1) € (Z/rZ)" and consequently implies
that p[p¥] is finite flat of order ¥ over R. Moreover, since R is a local ring, both & and

A, = o /[p’]u(F) are local rings as well. We deduce that p[p"] is connected and in turn
establish statement

Let us now consider statement Lemma and Proposition |1.5.20| together imply
that p[p] has order p” for some integer h. Therefore our discussion in the previous paragraph

shows that each u[p¥] has order p*". Furthermore, the R-algebra homomorphism
Ay = [[p)u(F) — [p]() /"] (F)

induced by [p], is an isomorphism for being a surjective map between two free R-algebras of
the same rank. Hence we obtain a surjective ring homomorphism

Avi1 = [P () = [plu(@) /0" (F) = Ao,

which induces an embedding i, : p[p®] < p[p®T!]. Since it is evident by construction that
i, identifies u[p?] with the kernel of [p’] on u[p**!], we conclude that pu[p™>] := lim pu[p"] is a
connected p-divisible group of height h over R, thereby completing the proof. O

Remark. We can alternatively deduce statement from statement by the identifidcation
plp®] = 9, [p"] for each v > 1.

Definition 2.2.11. Given a p-divisible formal group law p over R, we define its associated
connected p-divisible group over R to be u[p™] as constructed in Proposition [2.2.10

Example 2.2.12. The multiplicative formal group law P is p-divisible as explained in

Example For each v > 1, we have [p],  (t) = (1 +)P" —1 and thus find piz—[p"] = e

by Example Hence we obtain a natural identification pz— [P>°] = pipee.
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Our main objective for this subsection is to prove a theorem of Serre and Tate that the
association described in Proposition [2.2.10| defines an equivalence between the category of
p-divisible formal group laws and the category of connected p-divisible groups.

LEMMA 2.2.13. Let p : &/ — &/Qp/ be a formal group law of dimension d over R with
augmentation ideal .#. For each integer n > 1, we have

[n]u(ti) ent; + 72

PROOF. Let us take d-tuples ®(T,U) := (u(t;)) and Z,(T") := ([n]u(t;)) for each n > 1.
Given an R-module M, we regard M *¢ as the set of d-tuples whose entries all lie in M. Under
the natural identification S ®. = (t1,--- ,tg, u1,- -+ ,uq), we find

O(T,U) €T+ U + (F0.9)%)*4.
by the unit section axiom for . Hence the identity [n], = ([n — 1],®id) o u yield the relation
EZn(T) = ®(Z,_1(T),T) € Ep_ i (T) + T + (F2)*4.
Since we have Z1(T) = T by definition, we proceed by induction to find =, (T) € nT + (#2)*?
for each n > 1, thereby completing the proof. ]
Remark. The proof of Theorem yields an analogous relation for finite flat R-groups.

LEMMA 2.2.14. Given a p-divisible formal group law p : & — &/ &g/ of dimension d over R
with augmentation ideal .#, there exists a natural homeomorphic R-algebra isomorphism

o = lim A,
where we write A, := o7 /[p"],(F) for each v > 1.

PROOF. Since R is a local ring, &/ and A, are also local rings for each v > 1. Moreover,
each A, is a free R-algebra of finite rank as noted in Proposition Let us write m
for the maximal ideal of R and MM := m« 4+ £ for the maximal ideal of &/. We have
[pl(F) CpI + .92 CMI by Lemmaand thus find [p¥],(.#) € MY.7 for each v > 1.
Hence for each i, v > 1 we have [p¥], (%) +mle/ C MY for some w > 1. Meanwhile, for each
i, v > 1 we find MY C [p¥],(F) +mie/ for some w' > 1 as o /([p¥],(F) +mie/) = A,/mA,
is local artinian. Now we obtain a homeomorphic R-algebra isomorphism

o = im .o/ /MY = lim o /([p*],(F) + m'e/) = lim A, /m’ A, = lim A,
w 1,0 .8 v
where the last identification comes from an observation that each A, is m-adically complete
by a general fact stated in the Stacks project [Stal Tag 031B]. O

LEMMA 2.2.15. Given p-divisible formal group laws p and v over R, there exists a natural
identification
Hom(y, v) = Hom(p[p™], v[p™]).

PROOF. Let us write d and d’ respectively for the dimensions of p and v. In addition, we
set Ay := 2/ [p"|u(A,) and By, = oy /[p*],(H,) for each v > 1, where .7, and .7, respectively
denote the augmentation ideals of i and v. Proposition shows that u[p¥] := Spec (4,)
and v[p’] := Spec (B,) are connected finite flat R-groups. Since we have ; = lim 4, and
“y = lim B, by Lemma we obtain a natural identification

Hom(y, v) = lim Homy, 4, (By, Ay) = lim Homp. g (u[p*], v[p*]) = Hom (u[p™], v[p™])

where Hom,, ,,,(By, Ay) denotes the set of R-algebra maps B, — A, compatible with the
comultiplications p, on u[p¥] and v, on v[p"]. O


https://stacks.math.columbia.edu/tag/031B
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PROPOSITION 2.2.16. Let G = lii>nGv be a connected p-divisible group over R.
(1) There exists a homeomorphic k-algebra isomorphism
im(A, ®@g k) = k[[t1,-- ,ta]] for some d >0

where A, denotes the affine ring of G,.

(2) The special fiber G := G x g k is a p-divisible group over k such that ker(pg) is a
finite flat k-group of order p®.

ProoF. It is evident by Lemma that G is a p-divisible group over k. Let us write

Gy, =Gy xpkand H, := ker(go[g) for each v > 1. Proposition [2.1.7] and Proposition [2.1.15
together imply that each H, is a closed k-subgroup of G[p’] = G,. Moreover, each G, is

connected by Lemma [1.4.3| and thus is a k-subgroup of ker(cp[g]) = H, for some w > 1

by Proposition [L.5.17, Therefore we write H, = Spec(B,) for each v > 1 and obtain a
homeomorphic k-algebra isomorphism

lim A, ®g k ~ lim B,. (2.4)

We denote the augmentation ideal of H, by J, and set J := @Jv. Since each H, is
connected, as easily seen by Proposition[I.4.14)or Proposition[I.5.17] its affine ring B, is a local
k-algebra with maximal ideal J, by Lemma In addition, we have H;y = ker(yg,) by
Lemmaand thus apply Proposition tain an isomorphism By & B,/ qup ) where
ngp ) denotes the ideal generated by the p-th powers of elements in J,. We find J; = J,/ qup )
and in turn get an identification J;/J? = J,/J2. Let us take by,--- ,bg € J whose images in
J1/J? form a basis over k. Nakayama’s lemma implies that .J, admits generators given by the
images of by, - - - , by and in turn yields a surjective k-algebra homomorphism klt1,--- ,t4] - B
which sends each ¢; to the image of b; in B,. Furthermore, as gpgfl]v vanishes by Lemma [1.5.7
this map induces a surjective k-algebra homomorphism

Aot k[tr, - tal /(- 7)) — B,
by Proposition [1.5.19] Therefore we obtain a continuous k-algebra homomorphism
A k‘[[tl, s ,td]] — @By

via the identification k[[t1,- - ,t4)] = lim k[ty, - - - tal /(- ).

In light of the isomorphism , we wish to show that A is a homeomorphism. It suffices
to prove that each A, is an isomorphism. Since each A, is surjective by construction, we only
need to verify that its source and target have equal dimensions over k; in other words, it is
enough to show that B, has dimension p™ over k, or equivalently that H, has order p™.

For v = 1, the assertion follows from Proposition [1.5.19] Let us henceforth assume v > 1
and proceed by induction. Proposition [2.1.15| shows that @(p) is a p-divisible group over k
with pgo¢g = [p]§<p). Since [p]é(p) is surjective as noted in Proposition the map ¢ is

]
G

also surjective and thus maps H, = ker(y¢—') surjectively onto ker(ap[g(;l ]) = Hﬁ)l. We deduce
that there exists a short exact sequence

(»)

0— H — I{v—>I{U_1 — 0.

Now the desired assertion follows from Theorem [1.1.17] and the fact that the order of H, Q(}’i)l is
the same as the order of H,_1. O
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LEMMA 2.2.17. Given an R-algebra B, its ideal J with J®grk = 0 is trivial if for each maximal
ideal n of B the By-module J, admits a finite set of generators.

PROOF. Let us write m for the maximal ideal of R. For each maximal ideal n of B, we
have J, = mJ, C nJ, and thus deduce from Nakayama’s lemma that J, is trivial. [l

LEMMA 2.2.18. Let G = lim G, be a p-divisible group over R with G, = Spec (Ay).
(1) G gives rise to a flat R-algebra lim A,.
(2) If an R-algebra B admits a k-algebra isomorphism
0: (Begrk)[ty, - ,tq] — lim(A, ®@g k)  for some d > 0,

there exists an R-algebra surjection ¢ : Bl[t1, -+ ,t4]] — lim A, which lifts 0.

PrROOF. Since each i, : G, — Gyu4+1 is a closed embedding by Proposition [1.1.10] the
induced map m, : Ay+1 — A, is surjective. Hence statement follows from a general fact
stated in the Stacks project [Stal Tag 0912]. It remains to establish statement

We assert that each 8, : (B ®g k)[[t1, - ,td]] = Ay ®g k lifts to an R-algebra homomor-

phism 6, : Bl[t1,- - ,tq]] — A, with a commutative diagram
6
Blt1,-+ ,tal] = Avy1 —— App1 ®rk
\ lﬂ'v lﬂ"u@ld
O

Ay — A, ®rk

We take 6; to be an arbitrary lift of §; and proceed by induction on v. Let us write m for
the maximal ideal of R and choose ay,--- ,aq € Ayyq which lift 0,41(t1),- -+, 0p41(tq). We
observe that m,(ay), - ,m(aq) lift 0,(t1), - ,0,(tq) and in turn find 0, (¢;) — 7 (a;) € mA,.
Since T, is surjective, we may choose by, - by € mA, 11 with m,(b;) = 0,(¢;) — my(a;) and
deduce that 0,1 lifts to a map 6,11 : B[[t1, - ,t4]] — Ayy1 with 0,11(¢;) = a;+b; as desired.

Now we have an R-algebra homomorphism 6 : B[t - - ,t4]] — lim A, which lifts 0. We

find coker(f) ®g k = coker(d) = 0 and also observe that coker(f) admits a generator over
@Av given by the image of 1. Therefore Lemma implies that 6 is surjective. U

LEMMA 2.2.19. Every connected p-divisible group G' = lim G, over R with G, = Spec (Ay)
yields a formal group law p : & — &/ @</ via a homeomorphic R-algebra isomorphism

o = R[[t,-- ,tg]] ~lim A,  for some d > 0.

PROOF. Proposition and Lemma[2.2.18]yield a surjective R-algebra homomorphism
0 : o/ — lim A, which lifts a homeomorphic isomorphism 0: Kk[[ty,- - ,tq]] — lim(A, @ k).
In addtion, we have ker(f) ®pg k = ker(f) = 0 by Lemma and a general fact stated in
the Stacks project [Stal Tag O0HL|. Since <7 is a notherian local ring, we find ker(6) = 0 by
Lemma, [2.2.17 and in turn deduce that 6 is an isomorphism.

The map 6 is continuous as the kernel of each 6, : &/ — A, is open by the fact that
the R-algebra A, is of finite length. Moreover, with # being a homeomorphism we observe
that every power of the ideal .# := (t1,--- ,t4) contains an open set in its image under 6 and
consequently find that 0 is open. Therefore 6 is a homeomorphic R-algebra isomorphism.

Let us denote the comultiplication of each G, by u,. Via the isomorphism 6 we may
identify lim 4, with a continuous R-algebra homomorphism p : & — &/ ®p. It is evident
by the axioms for each comultiplication u, that p is indeed a formal group law over R.  [J


https://stacks.math.columbia.edu/tag/0912
https://stacks.math.columbia.edu/tag/00HL
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THEOREM 2.2.20 (Serre-Tate). There exists an equivalence of categories

{ p-divisible formal group laws over R } — { connected p-divisible groups over R }
which maps each p-divisible formal group law p over R to u[p™].

PROOF. Since Lemma shows that the functor is fully faithful, we only need to
prove that the functor is essentially surjective. Let G = li_r)nG be an arbitrary connected

p-divisible group of height h over R with G,, = Spec (A4,). LemmaMylelds a formal group
law p1 : &/ — ' ®p</ induced by G via a homeomorphic R-algebra isomorphism

o/ = R|[t1, - ,tq]] ~1lim A, for some d > 0.
We wish to show that p is p-divisible with p[p>] ~ G
We denote the agumentation ideal of o/ by .#. For each v > 1, we have G, = ker([p"]q)

by Proposition and thus find A, ~ o/ /[p'],(.#). Let us write r := p" and choose
fi, - fred Whose images in Ay ~ &/ /[p|,(-#) form a basis over R.

For every g € &/, a simple induction yields a sequence (g; ;) for each i =1,--- ,r with

9ij € Gij—1+ i1 and g e Z gm )i + ] (ﬂ)]

r

Since we have [p],(.#) C .# by Lemma [2.2.1, we set g; := lim g, ; and find g = Z[P]u(gz)fz
e i=1

Hence we deduce that fl,- -, [r generate &/ over [p|, ().

As noted in Lemma each [p]g, factors through a surjective R-group homomorphism
Jv : Gy+1 = Gy, which in turn induces a faithfully flat R-algebra homomorphism

o+ Ay = o [[p"](I) — o [[p"u(F) = Avia
by a standard fact stated in the Stacks project [Sta, Tag 00HQ)]. Since each A, is a free local

R-algebra of rank p¥", we see that A, is free over A, of rank r = p” and in turn deduce
that the images of f1,---, f, in Ayp1 ~ &7/[p"T1],(F) form a basis over A, ~ o /[p*],. (7).

-

Let us now consider a relation Z[p]“(hi)fi = 0 with hy,--- ,h, € &/. For each v > 1,

i=1

we consider this relation in 4,11 ~ «/[p*"!],(#) and find [p],(h1),- -+ , Plu(hr) € [p*]u(F).
Since we have [p¥],(.#) C #" for each v > 1 as easily seen by Lemma we deduce that
[plu(h1), -+, [plu(hr) must all be zero. Therefore we find that fi,---, f, form a basis of &/
over [p], (<), which in particular implies that p is p-divisible. As we evidently have u[p>] ~ G
by construction, we deduce the desired assertion and complete the proof. O

Remark. Our proof yields a formal R-group isomorphism ¥, ~ lim G, with G.[p"] ~ Gy.
Definition 2.2.21. Let G be a p-divisible group over R.

(1) We define its associated formal group law to be the p-divisible formal group law ug
over R corresponding to G° under the equivalence in Theorem [2.2.20
(2) We define its dimension to be the dimension of yg.

PROPOSITION 2.2.22. Given a p-divisible group G over R of dimension d, its special fiber
G := G xp k is a p-divisible group over k such that ker(yg) is finite flat of order p?.

PROOF. Proposition|1.5.17/implies that ker(yz) lies in G° := G°x gk. Hence the assertion
follows from Proposition [2.2.16] Lemma [2.2.19] and Theorem [2.2.20 U


https://stacks.math.columbia.edu/tag/00HQ
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THEOREM 2.2.23. Let G be a p-divisible group of height h over R. If write d and d" respec-
tively for the dimensions of G and GV, we have h = d + dV.

PROOF. Lemma shows that G := G x gk is a p-divisible group of order h over k. Let
us write G = h_r)n@v where each G, is a finite flat k-group scheme. We have Yo vz = Pla
as noted in Proposition and thus find ker(¢g) € G[p]. In addition, we deduce from
Proposition that oz is surjective. Therefore we obtain a commutative diagram

0 —— ker(pg) G cs é(p) s 0
J Jmc Ve
0 > 0 G d_.,3q > 0

where the rows are evidently exact. By the snake lemma, the diagram yields an exact sequence
0 —— ker(pg) — Glp] —— ker(vg) —— 0.

Proposition [2.2.22| shows that ker(¢z) has order p?, while Proposition implies that
G[p] = G has order p". Hence we deduce from Theorem [1.1.17|that ker (1)) has order ph=e.

For the desired assertion, it suffices to show that ker(¢z) has order p®". We have
ker(1pg) = ker(i/)él) and ker(gpév) o ker(gpalv)
(p)

as easily seen by Proposition m and Proposition [2.1.15l Since the k-groups G and G
are of the same order by construction, we apply Theorem [I.1.17] with the identifications
U, (CP) =GP /ker(vg,)  and  coker(vg,) = Gy /g, (GY)
to find that ker(¢z,) and coker(yg, ) are of the same order. Moreover, Proposition [1.2.13
yields a natural isomorphism coker(¢g, ) = ker(gpélv) as we have 1z = go%v by definition.
1

Therefore ker(¢5) and ker(¢zv) have the same order. Since we have G’ =~ GV xpk by

Proposition |1.2.5, we deduce from Proposition [2.2.22f that ker(wév) has order p¢’, thereby
establishing the desired assertion. O

PROPOSITION 2.2.24. Assume that R = k is an algebraically closed field of characteristic p.
Every p-divisible group G = @Gv of height 1 over k is isomorphic to either Q,/Zj, or ipe.

PROOF. Let us first consider the case where G is étale. Each G, is a finite étale k-group
of order p¥ with G, = Gy41[p’]. Since every finite étale k-group is a constant group scheme
as noted in Proposition we find Gy, ~ Z/p"Z for each v > 1 by a simple induction and

in turn obtain an isomorphism G ~ Q,/Z,.

We now turn to the case where G is not étale. A p-divisible group over R is étale if and
only if it has dimension 0, as easily seen by Proposition [2.1.11} Since G has height 1, we
deduce from Theorem [2.2.23| that GV is étale and thus find G¥ ~ Q,/Z,. Hence we obtain

an isomorphism G =~ (Qp/Z,)" =~ py~ by Proposition and Example [2.1.10, thereby
completing the proof. O

Example 2.2.25. Let E be an ordinary elliptic curve over F,. Example [1.4.16| shows that
both E[p>]° and [p>]¢ are of height 1 with E[p]° ~ u, and E[p]* ~ Z/pZ. Therefore
Proposition [2.1.11| and Proposition [2.2.24] together yield an isomorphism

E[p™] ~ Qp/Zy X pipe.
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2.3. Dieudonné-Manin classification

Throughout this subsection, we assume that R = k is a perfect field of characteristic p.
We introduce several algebraic objects and discuss their relation to p-divisible groups over k.
We begin with a brief overview on Witt vectors where we omit some technical details.

THEOREM 2.3.1. Let A be a perfect F,-algebra.
(1) There exists a unique (up to isomorphism) ring W(A) which is p-adically complete
with W(A)/pW (A) = A.
(2) Given a p-adically complete ring B, every homomorphism f : A — B/pB uniquely
lifts to a multiplicative map f : A — B and a homomorphism f: W(A) — B.
Remark. For a proof, we refer readers to the book of Serre [Ser79, §I1.5].

Definition 2.3.2. Let A be a perfect IF,-algebra.

(1) We refer to the ring W(A) in Theorem as the ring of Witt vectors over A.

(2) For each a € A, we define its Teichmdller lift [a] € W(A) to be its image under the
unique multiplicative map A — W(A) which lifts the identity map on A.

Example 2.3.3. We present two important examples which frequently arise in practice.
(1) For ¢ = p" with an integer ~ > 1, the ring W (F,) is isomorphic to the valuation ring
of the unramified extension of degree - over Q,, as easily seen by Theorem [2.3.1]

(2) The ring W(F,) is the valuation ring of @;\n, where @g\n denotes the completion of
the maximal unramified extension of Q.

PROPOSITION 2.3.4. Let A be a perfect Fp-algebra.
(1) For every a € W(A), there exists a unique element ag € A with a — [ag] € pW (A).

o0
(2) Every a € W(A) admits a unique expression o = Z[an]p" with a,, € A.
n=0

(3) The p-th power map on A uniquely lifts to an automorphism Ow(4) On W(A) with

Pw(a) <Z[an]p”> => [aj]p".

n=0 n=0

PROOF. Statement is evident with a¢ given by the image of a under the natural
map W(A) - W(A)/pW(A) = A. Statement follows from statement by inductively
constructing a unique sequence (a,) in A with

m
a— Z[an]pn e p"W(A) for each m > 0.
n=0

Statement is straightforward to verify by Theorem and the perfectness of A. O
Definition 2.3.5. Let A be a perfect I,-algebra.

(1) For every a € W(A), we define its Teichmiiller expansion to be the unique expression
o0

a= Z[an]p” with a, € A given by Proposition [2.3.4
n=0

(2) We call the map ¢y (4) in Proposition the Frobenius automorphism of W(A).

Remark. Teichmiiller expansions for Z, = W(IF,) are not the same as p-adic expansions.
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PROPOSITION 2.3.6. Let Abea perfect [Fp-algebra. Take two arbitrary elements o, 5 € W(A)
with Teichmiiller expansions o = Z[an]p and = Z np" € W(A).
n=0

(1) The Teichmiiller expansion of a + 3 has the first two coefficients given by
co=ao+by and c¢1=a1+bi—W; (a(l)/p, b(l)/p) R

(t +u)P —tP — uP

p
(2) The Teichmiiller expansion of a3 has the first two coefficients given by

where we write Wi (t,u) := € Zlt,ul.

do = apbp and di = agbt + a1bg.

PROOF. The addition under the natural surjection W(A) — W(A)/pW(A) = A yields
the identity cg = ag + bg. Since every element of A admits a unique p-th root, we have

cé/p = a(l)/p + bo/p Hence we find [co/p] € [a (1)/;;] + [b(l)/p] + pW(A) and in turn get the relation
eo) = [eg/™)" € (lag") + 6"1)" + p*W (4).
Meanwhile, the addition under the natural map W (A) —» W (A)/p?>W (A) yields the relation
[co] + pler] = [ao] + [bo] + p([ar] + [b1]) + p* W (A).

Now we have
plea] € pllar] + [oa]) + fao) + ool — ([ag/") + "))+ p*W ()
and consequently find
[c1] € [a1] + [b1] — W1 ([aé/p}, [b(lj/p]> + pW (A).

We consider the images under the natural surjection W (A) - W (A)/pW (A) = A and obtain
the identity ¢; = a1 + by — Wy (a(l]/p, b(l)/p). Therefore we establish statement
Let us now consider statement The multiplication under the natural surjection

W(A) - W(A)/pW(A) = A yields the identity dy = apbyp. Moreover, the multiplication
under the natural map W (A) — W (A)/p*W (A) yields the relation

[do] + pldi] € [aobo] + p([aob] + [arbo]) + p* W (A).
Hence we have
pld1] € p([aoh1] + [arbo]) + P*W (A)
and consequently find
[d1] € [aob1] + [a1bo] + pW (A).
We consider the images under the natural surjection W (A) - W(A)/pW (A) = A and deduce
the identity di = agbi + a1bg, thereby completing the proof. d

Remark. We can inductively proceed to express the n-th coefficients in the Teichmiiller

expansion of a+  and a3 as polynomials in ao/p bl/p -+, Qp, by, although for n > 1 these
polynomials are too complicated for practical computatlons. We refer curious readers to the
book of Serre [Ser79, §I1.6] for details.
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Our main objective for this subsection is to discuss fundamental theorems of Dieudonné
and Manin which describe p-divisible groups over k via modules over W (k) with a semilinear
endomorphism. We won’t provide their proofs, since we will only use these theorems as
motivations for some constructions in Chapters [[I and [V} Curious readers may consult the
book of Demazure [Dem72, Chapters III and IV] for an excellent exposition of these results.

Definition 2.3.7. Let us write o for the Frobenius automorphism of W (k).

(1) Given W (k)-modules M, N and an integer r, we say that an additive map f : M — N
is 0" -semilinear if it satisfies the identity

f(em) =c"(c)f(m) for each ¢ € W(k) and m € M.

(2) A Dieudonné module over k is a free W (k)-module M with a o-semilinear endomor-
phism @y, called the Frobenius endomorphism of M, whose image contains pM.

(3) A W(k)-linear map f : My — My for Dieudonné modules M; and M; over k is a
morphism of Dieudonné modules if it satisfies the identity f o v, = o, © f.

LeEMMA 2.3.8. The ring W (k) is a complete discrete valuation ring with residue field £ and
uniformizer p.

PROOF. Since W (k) is p-adically complete with W (k)/pW (k) = k by construction, it is
a local ring with maximal ideal pW (k) and residue field k£ by some general facts stated in the
Stacks project [Sta, Tag 05GI and Tag 00E9]. Moreover, it is evident by Proposition m
that every element o € W (k) admits a unique expression o = p™u for some integer n > 0 and
unit v € W (k). Therefore we establish the desired assertion. O

LEMMA 2.3.9. Let M be a Dieudonné module over k.

(1) The Frobenius endomorphism ¢,/ is injective.

(2) There exists a unique o~ '-semilinear endomorphism 5; on M such that ¢y o Vs

and Yps o s coincide with the multiplication by p on M.

PRrROOF. Take ey,---,e, € M which form a basis over W (k). Since W (k) is a principal
ideal domain by Lemma statement follows from the rank-nullity theorem and the
fact that ¢p(M) has rank r for containing pM. Hence we only need to prove statement

We may write pe; = ¢p(e}) for a unique element e, € M and in turn obtain a unique
o~ !-semilinear endomorphism 5y on M with @ 015 being the multiplication by p on M;
indeed, 1ps maps each e; to ;. We wish to show that ¢pro0ps coincides with the multiplication
by p on M. Since we have ¢¥pr(oam(el)) = Ya(pm(Uar(es))) = Ya(pei) = pel, we observe
that ¥y o ppr and the multiplication by p agree on the W(k)-module M’ C M spanned by
€}, - ,el.. Moreover, M has rank r as €/, -, e, are linearly independent by construction.
Hence we deduce from the rank-nullity theorem that the difference between 1,7 0 ops and the

multiplication by p identically vanishes on M, thereby establishing the desired assertion. [J

-1

Definition 2.3.10. Given a Dieudonné module M over k, we refer to the o~ '-semilinear

endomorphism s in Lemma [2.3.9] as the Verschiebung endomorphism of M.

LEMMA 2.3.11. Given a Dieudonné module M over k, its dual M"Y = Homyy ) (M, W (k)) is
naturally a Dieudonné module over k with

omv (f)(m) = o(f(pr(m))) for all f € MY and m € M.

PROOF. The assertion is straightforward to verify by definition. O
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THEOREM 2.3.12 (Dieudonné [Die55]). There is an exact anti-equivalence of categories
D : { p-divisible groups over k } — { Dieudonné modules over k }
such that for every p-divisible group G over k we have the following statements:

(1) The rank of D(G) is equal to the height of G.
(2) The maps g, Ya, and [p]¢ yield ¢p(q), ¥um, and the multiplication by p.
(3) There exists a natural isomorphism D(GY) = D(G)V.

Remark. Let us briefly describe the construction of D(G) for a p-divisible group G = lim G,
over k. For each integer n > 1, we have a k-group W,, with W,,(A) = W(A)/p"W (A) for every
perfect k-algebra A. If GV is connected, D(G) := lim lim Homy, g, (G, Wy) turns out to be a

v n
Dieudonné module over k. with Frobenius endomorphism induced by ¢q. If GV is étale, it is

connected by Theorem [2.2.23| and consequently yields a Dieudonné module D(G) := D(G")"
over k. In the general case, G admits a natural decomposition

G = Gunip % Gmult
with (GUiP)Y connected and (G™UIt)V ¢tale, thereby giving rise to a Dieudonné module
D(G) := D(G™P) @ D(G™) over k.
Definition 2.3.13. We refer to the functor I in Theorem [2.3.12] as the Dieudonné functor.

Example 2.3.14. We describe the Dieudonné functor for some simple p-divisible groups.

(1) D(Qp/Zy) is isomorphic to W (k) with ¢pq,,z,) = 0 and ¥p(q,/z,) = P~

(2) D(ppee) is isomorphic to W (k) with PD(ppoe) = PO and Py o) = oL

Definition 2.3.15. Let us write Ko(k) := W (k)[1/p] for the fraction field of W (k).

(1) We define the Frobenius automorphism of K(k) to be the unique field automorphism
on Ky(k) which extends o.

(2) An isocrystal over Ky(k) is a vector space N over Ky(k) with a o-semilinear auto-
morphism ¢y called the Frobenius automorphism of N.

(3) A Koy(k)-linear map g : N; — Ny for isocrystals N1 and Na over Ko(k) is a morphism
of isocrystals if it satisfies the identity
9(en, (1)) = ¢, (9(n)) for each n € Ny.
LEMMA 2.3.16. Let o denote the Frobenius automorphism of Ky(k).

(1) Every Dieudonné module M over k yields an isocrystal M[1/p] = M Q) Ko(k)
over Ky(k) with Frobenius automorphism ¢y ® 1.
(2) Given an isocrystal N over Ko(k), its dual NV = Hom ) (N, Ko(k)) is naturally
an isocrystal over Ky(k) with
onv(f)(n) = o(f(en(n))) for all f € NY and n € N.

(3) Given two isocrystals N1 and N2 over Ko(k), their tensor product N1 ® ) Na is
naturally an isocrystal over Ko(k) with Frobenius automorphism ¢y, ® ¢n,.

PRrOOF. All statements are straightforward to verify by definition. O

Example 2.3.17. For an isocrystal N of rank r over K(k), its determinant det(N) := A"(N)
is naturally an isocrystal of rank 1 over Ky(k) as easily seen by Lemma [2.3.16
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Definition 2.3.18. We say that a homomorphism of group schemes or p-divisible groups is
an isogeny if it is surjective with finite flat kernel.

Example 2.3.19. We present some examples of isogenies between p-divisible groups.

(1) Given a p-divisible group G over k, the maps [p|g, pg, and ¥ are all isogenies by

Proposition [2.1.7] and Proposition [2.1.15]

(2) Anisogeny A — B of two abelian varieties over k induces an isogeny A[p>] — B[p].

ProPOSITION 2.3.20. A homomorphism f : G — H of p-divisible groups over k is an isogeny
if and only if it induces an isomorphism D(H)[1/p] ~ D(G)[1/p].

PROOF. Let us first assume that f is an isogeny. Its kernel lies in G, for some v > 1
and thus is a p-power torsion. Hence Theorem implies that the map D(H) — D(G)
induced by f is injective with its cokernel killed by a power of p. We deduce that f induces
an isomorphism D(H)[1/p] ~ D(G)[1/p].

For the converse, we now assume that f induces an isomorphism D(H)[1/p] ~ D(G)[1/p].
The map D(H) — D(G) is injective with D(H) and D(G) having the same rank over W (k).
Hence its cokernel is a p-power torsion by Lemma Now we deduce from Theorem
that f is an isogeny as desired. O

Definition 2.3.21. Let N be an isocrystal over Ko(k).
(1) The degree of N is the largest integer deg(IN) with pgeq(n)(1) € pleeMTW (k), where
we fix an isomorphism det(N) ~ W (k).
_ deg(N)
~ rk(N)
Example 2.3.22. Let A\ = d/r be a rational number written in lowest terms with » > 0. The
simple isocrystal of slope A over Ky(k) is an isocrystal N(A) over Ko(k) of rank r with

(2) We write rk(N) for the rank of N and define the slope of N to be u(N) :

ey (e1) = ez, ooy (er—1) = e on(y)(er) = ple,
where e1,--- , e, are basis vectors. It is evident that N()) has rank r, degree d, and slope \.

PRroPOSITION 2.3.23. Given a p-divisible group G over k of height A and dimension d, the
associated isocrystal D(G)[1/p] over Ky(k) has rank h and degree d.

PROOF. As noted in Proposition [2.2.22] and Example [2.3.19] the Frobenius g is an
isogeny with ker(¢g) having order p?. Moreover, Proposition [2.1.15 implies that ker(¢q) is
p-torsion. Hence we deduce from Theorem [2.3.12] and Lemma that ¢pg) is injective

with coker(pp(q)) =~ (W (k) /pW (k))®%. Now it is straightforward to verify that D(G)[1/p] has
degree d. Since D(G)[1/p] evidently has rank h over K(k) by Theorem [2.3.12] we establish
the desired assertion. 4

THEOREM 2.3.24 (Manin [Man63]). Every isocrystal N over Ky(k) admits a unique direct
sum decomposition of the form

l
N:@N()\i)@mi with A1 < Ao < -0 < AL
=1

Example 2.3.25. If an elliptic curve F over ﬁp is ordinary, we have
D(Ep=])[1/p] = N(0) & N(1)
as easily seen by Example [2.2.25| and Example
Remark. If E is supersingular, D(E[p>°])[1/p] turns out to be isomorphic to N(1/2).
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3. Hodge-Tate decomposition

In this section, we finally enter the realm of p-adic Hodge theory. Assuming some technical
results, we prove the Hodge-Tate decomposition for Tate modules of p-divisible groups. The
primary reference for this section is the article of Tate [Tat67].

3.1. Tate twists of p-adic representations

In this subsection, we introduce some basic notions in p-adic Hodge theory, such as p-adic
fields, p-adic representations and their Tate twists. Given a valued field L, we write Op, for
its valuation ring, my, for its maximal ideal, and &y, for its residue field.

Definition 3.1.1. A p-adic field is an extension of (@, which is discretely valued and complete
with a perfect residue field of characteristic p.

Example 3.1.2. We present some essential examples of p-adic fields.

(1) Every finite extension of Q, is a p-adic field.

(2) Every perfect field k of characteristic p gives rises to a p-adic field Ko(k) = W (k)[1/p]
as noted in Lemma [2.3.8

Remark. We will see in Chapter [[II] Proposition [2.2.18] that every p-adic field is a finite
extension of Ky(k) for some perfect field k of characteristic p.

For the rest of this section, we let K be a p-adic field with absolute Galois group I'y. We
also write m for its maximal ideal and k for its residue field.

Definition 3.1.3. A p-adic representation of I' is a finite dimensional Q,-vector space V'
together with a continuous homomorphism I'yy — GL(V).

Example 3.1.4. Below are two important examples of p-adic representations.

(1) Given a p-divisible group G over K, its rational Tate module V,(G) := T,(G) ®z, Qp
is a p-adic I'g-representation by Proposition [2.1.17

(2) For a K-variety X, the étale cohomology H (X7, Q,) is a p-adic I'x-representation.
Definition 3.1.5. Given a Z,[I'k]-module M, its n-th Tate twist is the Zy[I' k]-module

M(n) = M ®gz,, Zy(1)%" for n > 0,
T\ M ez, (Z,1)V)*T" forn <0

where we set Zp(1) := Tp(fpee ).

Example 3.1.6. The Galois group 'k acts on Zp(1) = T(ppe) = lim gy (K), via the
homomorphism x : I'x — Aut(Z,(1)) = Z,; called the p-adic cyclotomic character of K.

LEMMA 3.1.7. Given a Z,[I'k|-module M, there exist natural I'x-equivariant isomorphisms
M(n) = M ®z, Zy(n) and  M(n)" =2 MY(—n) for each n € Z.
PRrROOF. The assertion is evident by definition. O

LEMMA 3.1.8. If ' acts on a Z,-module M via a homomorphism p : I'x — Aut(M), it acts
on M(n) for each n € Z via x" - p.

ProOF. Under the identification M(n) = M ®z, Z,(n) given by Lemma the Galois
group ' acts on M(n) via p® x". O
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Definition 3.1.9. We define the completed algebraic closure of K to be Cx := K in other
words, Cg is the p-adic completion of the algebraic closure of K.

Remark. The field Cg is not a p-adic field as its valuation is not discrete.

Example 3.1.10. If K is an algebraic extension of QQ,, we often write C, = Cx and refer to
it as the field of p-adic complex numbers.

LEMMA 3.1.11. The action of 'y on K uniquely extends to a continuous action on Cg.

PROOF. The assertion is obvious as the I'g-action on K is continuous. O

Definition 3.1.12. The normalized p-adic valuation on Cg is the unique valuation v on Cg
with v(p) = 1.

ProprosITION 3.1.13. The field Cg is algebraically closed.

PrROOF. We wish to prove that every nonconstant polynomial f(¢) over Cx admits a root
in Ck. Let us take an element a € O¢,, such that af(t) is over Oc,.. If we denote the leading
coefficient and the degree of af(t) respectively by b and d, we have ab®! f(t) = g(bt) for some
monic polynomial g(t) over Oc,. of degree d. It suffices to show that g(¢) has a root in Cg.

Let us write
gty =t f et 4 ey with ¢ € Ocy..
For each integer n > 1, we choose a polynomial
gn(t) =tT+ c1 0t ot egp
with ¢;, € O and v(c; — ¢;n) > dn. Since O is integrally closed, each g,(t) admits a
factorization into linear polynomials over O; in other words, we have

d
gn(®) = [J(t = Bni)  with B, € O (3.1)

i=1
Let us construct a sequence (o) in O with gn(oy,) = 0 and v(a, — ap—1) > n—1. We
set a1 := P11 € O and proceed by induction on n. We have
d

gn(n-1) = gn(on-1) = gn-1(an-1) = Y _(Cin — Cin-1)0r
i=1

d—i
n—1
and thus find v(g,(a,—1)) > d(n — 1) as each ¢;p — ¢ipn—1 = (Cin — ¢i) + (¢; — ¢in—1) has
valuation at least d(n — 1). We deduce from the identity (3.1) that g¢,(¢) admits a root
an = Bn; € O with v(ap—1 — @) > n — 1 and in turn obtain a desired sequece (a,).
The sequence (a,) is Cauchy by construction and thus converges to an element o € Og,, .
Moreover, for each integer n > 1 we have
d
g(om) = g(am) — gn(an) = Z(Cz - Ci,n)agz_i
i=1
and consequently find v(g(ay,)) > dn. Hence we deduce that « is a root of g(t), thereby
completing the proof. O

Remark. We can alternatively derive Proposition|3.1.13|from Krasner’s lemma by modifying
our argument. Moreover, we can use Krasner’s lemma to show that K is not complete; in
particular, we have Cx # K.
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We assume the following fundamental result about the Tate twists of Cg.
THEOREM 3.1.14 (Tate [Tat67], Sen [Sen80]). For the Galois cohomology of Ck and its Tate
twists, we have the following statements:
(1) H°(T'g,Cg) admits a natural isomorphism H°(I'x,Ck) = K.
(2) H'(T'k,Cg) is an 1-dimensional vector space over K.
(3) H'(Tk,Ck(n)) and HY(T'g,Cx(n)) vanish for n # 0.

Remark. We refer curious readers to the notes of Brinon-Conrad [BC, §14] for a proof, which
involves the higher ramification theory and the local class field theory.

LEMMA 3.1.15. Every p-adic I'k-representation V' yields a natural Cg-linear map

av : @ (V @q, Cx(-n)"™ @k Cx(n) - V 8o, Cx
nez

which is I'k-equivariant and injective.

ProOF. For each n € Z, we have a I'x-equivariant injective K-linear map
. r
agf}{ : (V @, Ck(—n)) ¥ @k K(n) — V ®q, Cx(—n) @k K(n) =V @q, Ck.

Let us extend each 64%/"}( to a I'kx-equivariant Cg-linear map

aM: (V @g, Cx(—n))" ™ @k Cx(n) — V &g, Cx

and take ay = @ d&}l). We wish to show that ay is injective.
neL
Assume for contradiction that ker(ay) is not trivial. For every n € Z, we choose a
basis (vmn) of (V ®q, (CK(—n))FK ®r K(n) over K and regard each vy, , as a vector in
V ®q, Ck via the map d%}?}(. Our assumption means that there exists a nontrivial linear
relation ) ¢y pUm,n = 0 with minimum number of nonzero terms. Without loss of generality,
we may set ¢y, n, = 1 for some integer mg and ng. For every v € I'x, we find

0=7 (Z Cm,nvm,n) —x(y)™ (Z Cm,nvm,n) = Z (Y(emn)X(V)™ = x(V) ™ emn) Vmm

by Lemma and the I'g-equivariance of &y . Since the coefficient of v, in the last
expression is 0, the minimality of our linear relation implies that all coefficients in the last
expression must vanish and in turn yields the relation

Y(emmn)X(Y)" T = cmn for every v € I'k.
Now Lemma and Theorem together imply that each ¢, ,, lies in K with ¢, , =0
for n # ng. Hence we have a nontrivial K-linear relation ) ¢ noUmn, = 0 on the basis
(Umyno) of (V ®q, C K(—no))FK ®K K(no), thereby obtaining a desired contradiction. O

Definition 3.1.16. We say that a p-adic I'g-representation V is Hodge-Tute if the natural
map Gy in Lemma [3.1.15]is an isomorphism.

Remark. We will see in §3.4] that p-adic representations presented in Example are
Hodge-Tate in many cases.
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3.2. Points on p-divisible groups

For the rest of this section, we take the base ring to be R = Og. The main objective for
this section is to investigate points on p-divisible groups over Og. We let L denote the p-adic
completion of an algebraic extension of K. A primary example of such a field is Cg.

LEMMA 3.2.1. The valuation ring O, is m-adically complete; in other words, there exists a
natural isomorphism
~ i i
@ L = lﬁl @ L / m'O L-

PROOF. The ideal m contains p as the residue field k = Ok /m is of characteristic p. Since
Og is a discrete valuation ring, we deduce that the p-adic topology coincides with the m-adic
topology and consequently establish the desired assertion by observing that Oy, is p-adically
complete. O

Definition 3.2.2. Given a p-divisible group G = liL>nGU over Ok, we define its group of
Oy -valued points to be ‘
G(Orp) = LiLnli_n}Gv((’)L/mZC’)L).

K3 v

Remark. Readers should be aware that G(Op) is in general not equal to lim G,(Op). This

v
subtlety comes from the fact that we take points on G as a formal Og-group. In fact, if we
write G, = Spec (A,) for each v > 1, we argue as in Lemma [2.2.19| to naturally identify G
with a formal Og-group ¢ = Spf(lim A,) and find G(Or) = 4(Oy).
“«—
Example 3.2.3. We describe the Op-valued points for some p-divisible groups of height 1.
(1) The p-power roots of unity j,~ admits a natural isomorphism
Jhpoo (Op)=Z1+my.

In fact, since my, contains p, we identify lii>nupv (OL/mi(’)L) with the image of 1 +mp,
v

in Or,/m‘Oy, and thus obtain the desired isomorphism by Lemma
(2) The constant p-divisible group Q,/Z,, admits a natural isomorphism

Qp/Zyp(OL) = Qp/Zy.

In fact, since O, /m‘Qy, is connected, we have Z/p'Z(Or/m'Op) = Z/p'Z and thus
obtain the desired isomorphism.

PROPOSITION 3.2.4. Given a p-divisible group G = lim G, over O, the group G(Op) is
naturally a Zy-module such that its torsion part G(Op )tors admits a natural identification

G(OL)tors = hl>n th Gv(OL/mlOL)

v K3

PROOF. Proposition [2.1.7|shows that each h_r)nGv(OL/miOL) is a Zp-module and in turn

v
implies that G(Op,) is also a Z,-module. Therefore G(OF )tors consists of p-power torsions. In
addition, we observe by Proposition [2.1.7| that the p-torsion part of each liigGy((’)L /m'Or)

v

is Go(Or/miOp). Since filtered colimits are exact in the category of abelian groups as

stated in the Stacks project [Stal Tag 04B0], we deduce that the p”-torsion part of G(Op) is

lim G,,(Op/m*Or). The desired assertion is now evident. O
i
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PROPOSITION 3.2.5. Given a p-divisible group G = lim G, over O with G, = Spec (Ay),
there exists a canonical isomorphism

G(OL) = Hom(’)Kfcont(liil Ay, OL)

PROOF. For every continuous Og-algebra homomorphism f : @Av — Oy, the induced
map f; : liLDAv — 0L/ m‘Oy, for each i > 1 factors through a natural surjection liLDAv — Ay,
for some w; > 1. Hence we have a canonical map

Hom(’)K—cont(liLn Ay, OL) B @@HomoK (A’Ua OL/mZOL)
i v

which sends each f € HomoK_Cont(liLnAU, Op) to (fi) € liinli_n;Hom@K(Av,OL/mi(’)L). It is

K2 v
not hard to see that this map is an isomorphism by Lemma [3.2.1] Now we obtain the desired
isomorphism from the natural identification

G(Or) = lim lim Homp, (A,, O /m*OL),
7 v

thereby completing the proof. O

Remark. Proposition is equivalent to a canonical isomorphism G(Or) = ¢4(0Oy,) for the
formal Ok-group ¢ = Spf(lim 4,).

PROPOSITION 3.2.6. Let G be a p-divisible group over Of.

(1) If G is connected of dimension d, it admits a Z,-module isomorphism
G(Or) = Homoy —cont(Ox|[t1, -+, ta]], OL)
where the multiplication by p on the target is induced by [p],

a-

(2) If G is étale, G(Oy) is torsion with a natural isomorphism G(Op) = lim G, (O /mOy).

PROOF. Statement |(1)|is evident by Lemma [2.2.19| and Proposition Let us now

assume for statement |(2)| that G is étale. Each G, is formally étale by a general fact stated
in the Stacks project [Staz Tag 02HM]; in particular, there exists a natural isomorphism
G, (0 /m'Op) = G, (O, /m™1Op) for each integer i > 1. Hence we find

G(Or) = limlim G, (Or/m'OL) = lim G, (O /mOy,)

and in turn deduce from Proposition that G(Op,) is a torsion group. O

Remark. If L is a finite extension of K, we have mOj = mJL for some integer j > 1 and
thus find G*(Or) = lim G5 (O/mOy) = lim G3(Or/my) = lim G5 (kL) where the second
isomorphism follows from the fact that each GS' is formally étale as noted in the proof.

LEMMA 3.2.7. An Og-algebra homomorphism f : Ogl|[t1,- - ,t,]] — L is continuous if and
only if each f(t;) lies in my.

PROOF. The map f is continuous if and only if there exists an integer v with f(¢}) € my,
for each i = 1,--- ,n. Hence the assertion follows from the fact that O is reduced. O

Remark. Proposition and Lemma together show that every p-divisible group G

over Ok of dimension d gives rise to an isomorphism G°(Or) ~ m%d with group law on mdL

induced by pug. It turns out that the multiplication and the inverse on m%d

functions; in other words, G°(QOp) ~ m%d

are analytic
is a p-adic analytic group.
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PROPOSITION 3.2.8. Every p-divisible group G = lim G, over Ok yields an exact sequence

0 — G°(01) — G(OL) — G*(OL) — 0.

PRrROOF. The sequence is left exact as limits and filtered colimits are left exact in the
category of abelian groups. Hence we only need show that the map G(Or) — G(Oyp) is
surjective. For each integer v > 1, we let A,, A, and A respectively denote the affine rings
of Gy, G5, and G¢'. In addition, we write & := lim A,, &/° := lim A, and &' := lim AS.

Pa— — —
By Proposition [3.2.5] it suffices to prove the surjectivity of the map

HomOK—cont(dy OL) - HomOK—cont(vQ{éty OL) (32)

Lemma [2.2.19] yields a homeomorphic Og-algebra isomorphism
A ° ~ OK[[tl, s ,td]]

where d denotes the dimension of GG. Since k is perfect, we apply Proposition [1.4.15]to obtain
a homeomorphic k-algebra isomorphism

(@ R0, K)[[t1, -+ o ta]] = (@° @0y k) (A @0y k) = o R0, k.
By Lemma [2.2.18] this map lifts to a surjective Og-algebra homomorphism
0: [ty tq)] — .

Moreover, Lemma [2.2.18| shows that &/ is flat over Ox and in turn yields the relation
ker(f) ®p, k = 0 by a general fact stated in the Stacks project [Stal Tag 00HL]. For each
v > 1, we take an ideal _Z, of &/®[[t1, - ,t4]] with & [ty, -+, t4]]/ Zv = AS @0, AS and
obtain a short exact sequence

0 — ker(0)/ker(0) N 7y — F([t1, - ,tdl]/ Fv — A /0( ;) — 0.
We have m (ker(6)/ker(6) N _7,) = ker(#)/ker(f) N _#Z, and thus find ker(§) = ker(6) N 7,
‘

for each v > 1 by Lemma [2.2.17 as & [[t1, - ,t4]]/_Fv = A5 ®0, AS is noetherian. Since
we have (| _#, = 0, we see that ker(f) is trivial and in turn deduce that 6 is an isomorphism.

The map 6 is continuous as the kernel of each 6, : & — A, is open by the fact that
the R-algebra A, is of finite length. Moreover, with 6 being a homeomorphism after base
change to k we observe that every power of the ideal . := (t1,--- ,t4) contains an open set
in its image under # and in turn find that 6 is open. Hence 6 is a homeomorphic R-algebra
isomorphism. Now 6 yields a surjective continuous map &/ — &/t which splits the natural
map &/t — &7. We conclude that the map is surjective as desired. ]

ProproSITION 3.2.9. Let G be a p-divisible group over Ok

(1) For every g € G(Op), we have p"g € G°(Or) for each n > 0.

(2) If L is algebraically closed, G(Op) is p-divisible in the sense that the multiplication
by p on G(Op) is surjective.

sition we only need to establish statement In light of Proposition[3.2.8] it suffices to
show that the multiplication by p is surjective on each G*(Or) and G°(Op). The surjectivity
on G**(Oy) follows from Proposition and Proposition Moreover, we deduce the
surjectivity on G°(Op) from Proposition and the p-divisibility of ug. O

PROOF. Since statement |(1)|is an immediate consequence of Proposition and Propo-
3-2.
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3.3. The logarithm for p-divisible groups

We continue to let L denote the p-adic completion of an algebraic extension of K. In
this subsection, we construct and study the logarithm map for p-divisible groups over Og.
For a p-divisible group G over O of dimension d, we work with a Zj,-module isomorphism
G°(Or) ~ Homp, —cont (Ok[[t1, - -+, t4]], Or) given by Proposition [3.2.6]

Definition 3.3.1. Let G be a p-divisible group over O and M be an Og-module. We write
# for the augmentation ideal of ug.

(1) The tangent space of G with values in M is tg(M) := Homo,. mod (¥ /2, M).
(2) The cotangent space of G with values in M is t§(M) := % | 7?2 @0, M.

Remark. We may naturally identify t; and tf, respectively with the tangent space and
the cotangent space of the formal group ¢ associated to pug. Our choice of a Zj,-module
isomorphism G°(Or) ~ Homo, —cont(OK|[[t1, - ,t4]], Or) amounts to a choice of a formal
Og-group isomorphism ¥ g ~ Spf(Ox|[[t1, - ,td]])-

PROPOSITION 3.3.2. Given a p-divisible group G over Ok of dimension d, both tg(L) and
te.(L) are vector spaces over L of dimension d.

PROOF. We identify the augmentation ideal of pug with . := (¢1,--- ,tq) C Ok|[t1,- - , td]]
and obtain the assertion by observing that .#/.#2 is a free Ox-module of rank d. O

Definition 3.3.3. Given a p-divisible group G over Ok, we define the valuation filtration on
the group G°(Oy) to be the collection { Fil* G°(Oy) }A>0 with

Fil*G°(01) :== { f € G°(O1) : v(f(a)) > A for each a € .7 }
where .# denotes the augmentation ideal of ug.
Remark. We take )\ to be a real number as the valuation on I may be nondiscrete.
LEMMA 3.3.4. Given a p-divisible group G over Ok, we have
|JFi*G°(0L) =G°(01) and () Fi*G°(OL) = 0.
A>0 A>0

PROOF. The assertion is evident by Lemma [3.2.7) and the completeness of Op,. O

LEMMA 3.3.5. Let G be a p-divisible group over O and A be a positive real number. For
every f € Fil* G°(Op), we have pf € Fil® G°(Op) with k = min(\ + 1,2)).

PRrROOF. Let .# denote the augmentation ideal of u¢ and take an arbitrary element o € .#.
We may write [p],, (a) = pa+ B for some 8 € #? by Lemma[2.2.13| and in turn find

(pf)(@) = f([plue(a) = flpa+ B) = pf(a) + f(B).
Therefore we have v((pf)(a)) > min(A + 1,2\) as desired. O

LEMMA 3.3.6. Let GG be a p-divisible group over Of. If L is a finite extension of K, we have
() »"G°(0L) = 0.
n=1

PROOF. Since the valuation on L is discrete, there exists a minimum positive valuation §
on Op, given by the valuation of the uniformizer. Hence we find p"G°(OQp) C Fil™ G°(Oy) for
each n > 1 by Lemma and in turn deduce the desired assertion from Lemma [l
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LEMMA 3.3.7. Let G be a p-divisible group over Ok and write .# for the augmentation ideal
of ug. There exists a map
logg : G(Or) — ta(L)
such that for every g € G(Op) and a € .# we have
_ . (p"g)(
logs(9)(@) = Jim P9

n—o0 pr

where @ denotes the image of a in .%/.#2.

PROOF. Let us take arbitrary elements g € G(Or) and a € .#. We have p"g € G°(Oyr)
for each n > 0 as noted in Proposition Therefore Lemma implies that there exists
c € R with p"g € Fil"*¢G°(Op) for each n > 0 and in turn yields the inequality

V(W) >2(n+c)—n=n+2c foreach g c .72 (3.3)
Meanwhile, for each n > 0 we find
@P"g) (@)  ("9)(@) _ (0"9)([Pluc(@)  (@"g)(@) _ ("9)([Pluc(a) — pa)

pn-i-l pr pn+1 pr pn-l—l
pa € 2 by Lemma [2.2.13] we deduce from the inequality (3.3)) that
converges in L. Moreover, if « lies in .#? the inequality ([3.3]) shows

that the sequence converges to 0. The desired assertion is now evident. U

Definition 3.3.8. Given a p-divisible group G over O, we refer to the map log. given by
Lemma [3.3.7] as the logarithm of G.

Example 3.3.9. Let us provide an explicit description of logﬂpoo. Under the isomorphism

ppee (Or) = 14 my, noted in Example each g € ppo(Or) ~ Homo, —cont (OL[[t]], OL)
maps to 1 + g(¢). In addition, t, .. admits an identification #, .. (L) = L. Since we have

Hg [p™°] = pp as noted in Example [2.2.12] for each g € pu,(Or) we find
(")) =g (1 +8)" 1) = (1 +g(t)" 1
and thus obtain the identity

1+ —1 " .
10gupoo(1 + )= lim dra)” -1 = lim Z pn<p, )xl for each = € my.
i=1

n—oo p” n—oo 4 17
Moreover, for integers ¢ and n we have
DY DT ) i ) = (<1 1)
pr\ i i il '
We observe that the numerator is divisible by p™ and in turn find

y<pln<p:>—(_121_1) Zn—l/(i!)Zn—i;:n—pjl.

j=1

Hence we obtain the expression

00 A
-1 i—1
log,, .. (1+z) = Z ( z) x'  for each x € my,
i=1

which coincides with the p-adic logarithm.
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Let us state the following technical result about the logarithm maps without a proof.

ProproOsSITION 3.3.10. Given a p-divisible group G over O, the map logs is a local homeo-
morphism in the sense that it induces an isomorphism

Fil* G°(O1) ~ {7 € tg(L) : v(7(f)) > A for each f € #/#2}  for every A > 1.

Remark. A key fact for the proof of Proposition [3.3.10]is that the multiplication by p on the
group G°(Op) induces an isomorphism Fil* G°(Op) = Fil’M! G°(Oy) as stated in the book of
Serre [Ser92| Theorem 9.4]. It turns out that log, admits a local inverse expg on

Fil* tq(L) :== {7 € ta(L) : v(7(f)) > A for each f € ¥ /.92 }.

In fact, for every 7 € Fil* tg(L) we have exp(7)(t;) = lim g, (t;) with each g, € Fil* G°(Op)
n—oo
determined by the relation (p"g,)(t;) = p"7(t;).

PRrOPOSITION 3.3.11. Let G be a p-divisible group over Ok and denote by .# the augmentation
ideal of ug.

(1) logs is a group homomorphism.
(2) The kernel of log; is the torsion subgroup G(Op )tors of G(OL).
(3) logg induces an isomorphism G(Or) ®z, Qp ~ tg(L).

PROOF. Let us write &7° := Og|[t1, - ,t4]] where d is the dimension of G. Take arbitrary
elements g, h € G(Or) and o € .#. We have p"g, p"h € G°(Or) for each n > 0 as noted in
Proposition Since the axioms for ug yield the relation

po(@) E1@a+a® 1+ (I Ry )7,

for each n > 0 we may write

(P"(g+h))(a) = (p"g@p"h)opg(a) = (p"g)(a) + (p"h)(a) + B

with 5, € (p"g)(&) - (p"h)(F). Moreover, we deduce from Lemma that there exists
c € R with p"g, p"h € Fil""¢G°(Oyr) for each n > 0 and in turn find v(8,) > 2(n + ¢). Now
we obtain the identity

i P @) e (") (e)

n—oo pn n—00 pn n—o00 pn

and consequently establish statement

For statement we only need to show that ker(logy) lies in G(Op )tors; indeed, we
have G(Op)tors C ker(logs) by the fact that to(L) is torsion free for being a vector space
over L. Let us take an arbitrary element g € ker(log.). Proposition and Lemma m
together imply that we have p"g € Fil' G°(Op) for some n > 0. Since p"g lies in ker(log)
by statement it must vanish by Proposition We deduce that g is a torsion element
and thus obtain statement

Statement readily implies that logg induces an injective map G(Or) ®z, Q, — ta(L).
Moreover, we observe by Proposition [3.3.10| that this map is also surjective as for each 7 €
ta(L) there exists an integer n with p"r € Fil'tg(L). Hence we establish statement
thereby completing the proof. O



74 II. FOUNDATIONS OF p-ADIC HODGE THEORY
3.4. Hodge-Tate decomposition for the Tate module

In this subsection, we establish the first main result for this chapter by exploiting our
accumulated knowledge of finite flat group schemes and p-divisible groups.

LEMMA 3.4.1. Every p-divisible group G = lii>nGv over O yields canonical isomorphisms
Gy(K) 2 Gy(Ck) 2 Gy(O¢,) for each v > 1.

PROOF. Since the generic fiber of each G, is finite étale as easily seen by Corollary
the first isomorphism follows from Proposition and a standard fact stated in the Stacks
project [Stal Tag OBND]. The second isomorphism is evident by the valuative criterion. [
LEMMA 3.4.2. For every p-divisible group G over Ok, we have natural identifications

G(Oc, )'® 2 G(Ok) and tg(Cr)'x = tg(K).

PrOOF. Theorem|3.1.14|yields canonical identifications CL¥ = K and O(Eg = Ok. Hence
the desired isomorphisms follow from Proposition [3.2.5] and Definition [3.3.1 O

Definition 3.4.3. Let G = hi>nGv be a p-divisible group over Ok.
(1) The Tate module of G is T,,(G) :=T,(G xp, K) = @GU(?).
(2) The Tate comodule of G is ®,(G) := li_n)le(F).

Example 3.4.4. We have T},(pip>) = Zp(1) by definition and identify @ (pe) = lim fupe (K)
with the group of p-power torsions in K.

LEMMA 3.4.5. Given a p-divisible group G = li_n>1Gv of height h over Ok, its Tate module
T,(G) is a free Z,-module of rank h.

PROOF. We note by Corollary [1.3.11]that the generic fiber of each G, is finite étale and in
turn deduce from Proposition that G, (K) is a finite abelian group of order p**. Hence
the desired assertion follows from Proposition O

Remark. We can also show that ®,(G) is isomorphic to (Q,/Z,)®"

LEMMA 3.4.6. Every p-divisible group G = lim G, over Ok gives rise to a natural surjective
Zy-module homomorphism T,(GY) — T,((G°)Y).

Proor. For each v > 1, Proposition|l.2.13|and Lemma yield a commutative diagram
0 —— (G5 1)V(K) —— Gy 1(K) == (G5,1)Y(K) —— 0
0 —— (GHV(K) —— GY(K) —"— (G})V(K) —— 0

where both rows are exact. We wish to show that for every (w,) € @(ij)v(?) =T,((G°)Y)

there exists an element (w,) € @GX(F) = T,(GY) with m,(w,) = w,. Let us choose
w, € GY(K) with m,(w,) = w, and inductively construct (w,). If we take an element

W, € Gy (K) with my1(W),,1) = wyt1, we have my(jy (W) 1 1)) = wy = mp(Wy) and thus
find j,(w v+1) = wyw] for some w) € (G)V(K). Now we pick wll,; € (G, ,)V(K) with
Jo(wl, 1) = w} and set Wyt = W), ;(w] ;)" " to deduce the desired assertion. O]

Remark. We can alternatively deduce Lemma from Proposition [1.2.13] Lemma [2.1.6
and a general fact stated in the Stacks project [Stal Tag 0598].
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ProroOSITION 3.4.7. Given a p-divisible group G = h_H)le over Ok, there exist canonical
I k-equivariant Z,-module isomorphisms

Tp(G) = HomZp(Tp(GV),Zp(l)) and  ®,(G) = Homg, (Tp(GV), q’p(ﬂp“’)) :

ProoF. Corollary [1.3.11] implies that the generic fiber of each G, is finite étale. Hence
each G, gives rise to a canonical identification

Gy(K) = (G))"(K) = Homg ., (G, (v )z) = Hom (G (K), e (K)) (3.4)
by Theorem Lemma and Proposition We deduce that T),(G) admits a

natural I' x-equivariant isomorphism
T,(G) = lim G, (K) 2= lim Hom(G (), e (K))
— Homg, (lim GY (), lim p () = Homz, (T,(G), Z,(1)).
Moreover, under the isomorphism ®,(G) = lim G, (K) = lim Homgz, (G (K), ®p(upe<)) given
by the identification (3.4]), we have a natural I'g-equivariant map
Homg, (T,,(G"), ®p(pp)) = Homg, (lim Gy (K), ®p(pp=)) — @p(G)
which we verify to be an isomorphism using Lemma [2.1.6 g

PROPOSITION 3.4.8. Every p-divisible group G = lim G, over Ok yields a short exact sequence
1
0 —— ®,(G) — G(Oc,) —55 tg(Cx) — 0.
PRrROOF. Since G(Oc¢, ) is p-divisible by Proposition (3.1.13| and Proposition we de-

duce from Proposition [3.3.11] that log is surjective. In addition, we have
ker(logg) = G(Oc rors = lim lim Gy (O, /m'Oc,.) = lim G, (O,) 2 lim G, (K) = &,(G)

v (2 v v
by Proposition Proposition [3.2.4] Lemma [3.2.1] and Lemma [3.4.1] O

LEMMA 3.4.9. Every p-divisible group G over O yields I' x-equivariant Z,-module maps
a:G(Ocy) — HomZp(Tp(GV), 1+mg,) and da:tq(Ck)— HomZP(Tp(GV),CK)

via a natural isomorphism T),(G") = Homy, div grp (G@CK, (upoo)ocK>.

PROOF. Let us write G = lim G, where each G, is a finite flat Og-group. Lemma
. H . . . .
and Lemma together yield a canonical identification

1,(GY) = lim G () = m G(0c,)
= liLnHomOCK-grp ((GU)OCK7 (MP”)OCK>

= Homy,giv grp (GOCK? (MpW)OcK>- (3.5)

In addition, we have pye (Ocy) = 1+ mc, and t,, .. (Cx) = Ck as noted in Example W
Hence each w € T,(GV) gives rise to maps

woe,. + G(Ocy) = ppo(Ocy) =1+ me,  and  dwey : t6(Ck) — ty, (Cr) = Ck.
Now we obtain the desired maps a and da by setting
a(g)(w) :=wo., (9) and  do(r)(w) := dwcy (1)
for each g € G(Ocy ), T € ta(Ck), and w € T,(GY). O
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PROPOSITION 3.4.10. Every p-divisible group G over Ok gives rise to a commutative diagram

00— 3,(G) s G(Oc,) loge s 16(Cx) ——— 0

| ; fo

0 — Homg, (T,(G"), ®p(pp=)) — Homgz, (T,(GY),1+ m¢,) — Homg, (T,(G"),Cx) — 0
with exact rows and I'k-equivariant vertical arrows.

PROOF. Let us first describe the maps in the diagram. The top row comes from Propo-
sition and is evidently exact. In addition, since we have pp~(Oc,) = 1+ mg, and
Epipoo (Ck) = Ck as noted in Example we obtain the bottom row by Proposition W
and deduce its exactness as T,(G") is free over Z,, by Proposition [2.1.17] The vertical arrows
are the natural I'g-equivariant maps given by Proposition |3.4.7| and Lemma [3.4.9,

It is straightforward to verify that the diagram is commutative. Hence it remains to prove
that a and da are injective. Since we have ker(a) ~ ker(da)) by the snake lemma, it suffices
to show that da is injective.

We assert that « is injective on G(Of). Suppose for contradiction that there exists a
nonzero element g € ker(a). The Z,-linear map do is indeed Qp-linear as both t¢(Ck) and
Homy, (T,(G"),Ck) are vector spaces over Q,. We deduce that ker(a) ~ ker(da) is also a
vector space over QQ, and thus is torsion free. Now we may assume by Proposition that
g lies in G°(Of). Lemma yields a commutative diagram

GO(OCK) € G(OCK)

iao J’a

Homyg, (Tp((G°)"), 1 + me,) = Homyg, (Tp(GY), 1 + mcy)

where the injectivity of the horizontal maps follow from Proposition [3.2.8] and Lemma [3.4.6
Therefore we have g € ker(a®) N G°(Ok) and also find ker(a®) N G°(O) = ker(a®) % by
Lemma Since ker(a®)'¥ is a vector space over Qp, for every integer n > 0 there exists
an element g,, € ker(a®) NG°(Ok) with g = p"gn. We deduce from Lemma [3.3.6] that g must

be zero and in turn obtain a desired contradiction.

Now we show that da is injective on ¢t (K). It is enough to establish the injectivity on
log(G(Ok)) as we have log(G(Ok)) ®z, Qp = tq(K) by Proposition Let us take an
arbitrary element h € G(Ok) with logs(h) € ker(da). Since logg induces the isomorphism
ker(a) ~ ker(da) by the snake lemma, we find logg(h) = logg(h') for some h' € ker(a).
Proposition implies that A — A is torsion, which means that there exists n > 0 with
p"(h — h') = 0 or equivalently p™h = p™h’/. Hence we have p"h € ker(a) N G(Ok) and in
turn find p™h = 0 by the injectivity of a on G(Ok). We deduce from Proposition that
log(h) is zero, which implies that do is injective on log,(G(Ok)).

Our discussion in the previous paragraph shows that da factors through an injective map
ta(Ck) 2 tq(K) @k Cx — Homg, (T,(GY), Cx)'* @k Ck.
In addition, Lemma [3.1.15] yields an injective map
Homg, (T,(GY),Cx)'* @k Cx — Homy, (T,(GY), K) ®k Cx =2 Homy, (T,(G"),Ck)

where the isomorphism comes from the fact that 7,(G") is free over Z, by Lemma m
Now we identify da with the composition of these maps and in turn establish its injectivity,
thereby completing the proof. O
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THEOREM 3.4.11 (Tate [Tat67]). Let G be a p-divisible group over Og.
(1) There exist natural isomorphisms
G(Ok) = Homgz, (T,(G¥),1+mg,)'%  and  te(K) = Homg, (T,(GY), Cx) .

(2) The tangent spaces t¢(Cg) and tgv(Cg) are orthogonal complements with respect
to a Cg-linear I'g-equivariant perfect pairing

HomZP(Tp(G),CK) X Homzp(Tp(Gv), (CK) — CK(—l).
PROOF. Proposition [3.4.10[ and the snake lemma together yield a commutative diagram

0 —— G(O¢,) —— Homg, (T,(GY),1+ m¢, ) — coker(a) —— 0

[ | Jz

0 — tq(Cx) —%— Homg, (T)(G"),Cr) —— coker(da) — 0

where both rows are exact. We apply Lemma to obtain a commutative diagram

0 —— G(Og) =5 Homg, (T,(GY),1 4 mg, )'5 ——— coker(a)t®

| | [

0 —— tg(K) _dox Homg, (T,(GV), Ck)'s ——— coker(da)'%

where both rows are exact. We observe that the middle vertical map induces an injective map
coker(ag) — coker(dag). (3.6)
In addition, we switch the roles of G and G to get an injective map
day; : tgv(K) — Homg, (T,(G),Ck)"'<.
Let us denote the height of G by h. Proposition and Lemma together show

that V' := Homg, (T,,(G),Ck) and W := Homg, (1,(G"),Ck) are vector spaces over Cg of
dimension h. Moreover, Proposition [3.4.7 yields a T -equivariant Z,-linear perfect pairing

T,(G) x T,(GY) — Zp(1),
which in turn gives rise to a I'k-equivariant Cg-linear perfect pairing
VXW — Cg(-1). (3.7)

This pairing maps V% x W' into Cg(—1)'%, which is zero by Theorem [3.1.14, We deduce
that VI« @ Cx and WK @ Cg are orthogonal and consequently find

dimg (VIE) + dimg (W) < dime, (V) = h.
Meanwhile, the injectivity of dak and day, yields the inequality
dimg (VEE) + dimg (W) > dimg (tq(K)) 4 dimg (tgv (K)) = h

where the equality follows from Theorem and Proposition Therefore all inequal-
ities are in fact equalities. We deduce that the injective map dag is an isomorphism and
in turn find by the injective map that ok is also an isomorphism. Now we establish
statement which in particular yields natural identifications

tg((CK) ~ s QK Cx and tg\/((CK> ~ Tk QK Ck.

Our discussion readily shows that these spaces are orthogonal under the pairing (3.7]) with
dimc, (t¢(Ck)) + dime, (tgv(Ck)) = dimc, (V'), thereby implying statement O
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PROPOSITION 3.4.12. Given a p-divisible group G of dimension d over Ok, we have
d = dimg (Homg, (T,(GY),Ck)"'*) = dim (Tp(G) ®z, Cx(—1))'<.
PrOOF. The first equality is evident by Proposition and Theorem [3.4.11] The second
equality follows from the identification
T, (@) 9z, Cre(~1) = Homg, (T,(G"), Zy(1)) ©z, Cxe(~1) = Homz, (T,(G"), Cx)
given by Lemma and Proposition O

Remark. Lemma and Proposition [3.4.12 together show that we can compute the height
and the dimension of G from T,,(G).

THEOREM 3.4.13 (Tate [Tat67]). Every p-divisible group G over O gives rise to a canonical
Ck|[I'k]-module isomorphism

Homz, (T,(G),Ck) = tqv(Ck) @ t5(Ck)(—1).
Proor. We identify ¢,(Cx) with the Cg-dual tg(Ck) and find
Homc, (t¢(Ck),Cr(—1)) = tH(Cr)(—1).
Since Theorem yields a Cg-linear I' g-equivariant perfect pairing
HomZP(Tp(G),CK) X Homzp(Tp(Gv),CK) — Cg(-1)
under which t¢(Cg) and tgv(Cg) are orthogonal complements, we get a short exact sequence
0 — tqv(Cx) — Homg, (Tp(G),Ck) — t&(Cx)(—1) — 0 (3.8)

where all maps are Cg-linear and I'k-equivariant. Let us write d := dimc, (t¢(Ck)) and
d" := dimc, (tgv(Ck)). We have isomorphisms

Exte, i, ((6(Cr) (—1), tav (Ck)) = ExtéK[rK](CK(—l)@dv,C??d) ~ H'(Ig, Cr(1))®4",
Homg, 1, (t&(Cr ) (—1), tev (Cr)) ~ Home ) (Cr (—1)®4", CPY) ~ HO(Dg, Cie (1))

Theorem [3.1.14|shows that both H(T'x, Cx (1)) and H'(I'g, Cx (1)) vanish. Hence we deduce
that the exact sequence (3.8]) canonically splits, thereby establishing the desired assertion. [

Definition 3.4.14. Given a p-divisible group G over O, we refer to the isomorphism in
Theorem [3.4.13| as the Hodge-Tate decomposition for G.

COROLLARY 3.4.15. For every p-divisible group G over O, the rational Tate-module
Vo(G) = TH(G) ®z, Qp

is a Hodge-Tate p-adic representation of I'k.

PROOF. Let us identify the Cr-duals of tgv(Cg) and tf,(Cg) respectively with ¢, (Cx)
and tg(Cg). Theorem [3.4.13|yields a natural decomposition

Vu(G) ®q, Ck = tgv(Ck) ® ta(Cr)(1).
Therefore we apply Theorem [3.1.14] to find
ten (K)  forn =0,
(Vo(G) ®q, CK(—n))FK = Jtq(K)  forn=1,
0 for n # 0, 1.

The desired assertion is now evident. O

Remark. Our proof of Corollary |3.4.15| shows that we can find t¢(K) from T,(G).
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PROPOSITION 3.4.16. Let A be an abelian variety over K.
(1) There exists a canonical isomorphism
Hé}t(AFv Qp) = Homg, (T,(A[p™)), Zp) ®z, Qp.
(2) If A has good reduction, its integral model A over Ok yields natural isomorphisms
H(A, Q) g) = ey (K)  and  H'(A, 04) =t gvppee) (K).
(3) Given integers i, j > 0 and n > 0, we have natural identifications
HE (A, Q) = \' H(Ax, Q).
HI(A,Q, )= N\ HY(A,00) @ N HOA,QY) ).
ProOOF. All assertions are standard facts about abelian varieties stated in the notes of
Milne [Mil, §7, §12] and the book of Mumford [Mum?0, §4]. O

THEOREM 3.4.17. Given an abelian variety A over K with good reduction, there exists have
a canonical I'g-equivariant isomorphism

Hg (A, Qp) ®q, Cx = @ Hi(A,Qi‘/K) ®K Cx(—j) for each n > 1.
i+j=n

PROOF. Since A has good reduction, it admits an integeral model A over O. We have
T,(A[p*>]) = T,(A[p™]) by definition and find A" [p>] = A[p>°]" by Example [2.1.10, Hence
Theorem and Proposition together yield a canonical I' g-equivariant isomorphism

Hy(Az, Q) ®g, Cr = (H'(A,04) @k Cr) ® (H (A, Q) @1 Cre(=1).
Now we deduce the desired assertion from Proposition [3.4.16] O

Remark. Theorem is a special case of the Hodge-Tate decomposition theorem that
we have introduced in Chapter [, Theorem The proof of the Hodge-Tate decomposition
theorem for the general case requires ideas that are beyond the scope of our discussion. We
refer curious readers to the notes of Bhatt [Bhal for a wonderful exposition of the proof by
Scholze [Sch13] using perfectoid spaces.

COROLLARY 3.4.18. For every abelian variety A over K with good reduction, the étale coho-
mology H}\(Az,Qp) for each n > 1 is a Hodge-Tate p-adic representation of I'k.

PROOF. Let us take an arbitary integer m. If we have 0 < m < n, Theorem and
Theorem together yield a natural isomorphism

n 'k ~ pyn—m m
(Hi (A, Qp) ®g, Cx(m)) ™ = H" (A, Q).

Otherwise, Theorem [3.1.14| and Theorem [3.4.17 imply that (H% (A%, Q,) ®q, (CK(m))FK is
trivial. Now the desired assertion is straightforward to verify. O

Remark. In fact, given a proper smooth variety X over K, the Hodge-Tate decomposition
theorem implies that the étale cohomology H}} (X4, Q,) for each integer n > 1 is a Hodge-Tate
p-adic representation of I'g.
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Exercises

1. In this exercise, we study homomorphisms between the R-groups G, and G,,.
(1) Show that every homomorphism from G, to G, is trivial.
(2) If R is reduced, show that every homomorphism from G, to Gy, is trivial.

(3) If R contains a nonzero element o with o = 0, construct a nonzero homomorphism
from G, to G,,.

2. Assume that R = k is a field of characteristic p.

(1) Show that the k-algebra homomorphism k[t] — k[t] which sends ¢ to t¥ — t induces
a k-group homomorphism f: G, — G,.

(2) Show that ker(f) is isomorphic to Z/pZ.

3. Prove that an R-group is separated if and only if its unit section is a closed embedding.

Hint. One can identify the unit section as a base change of the diagonal morphism and
conversely identify the diagonal morphism as a base change of the unit section.

4. Assume that R = k is a field of characteristic p.
(1) Verify that the k-group a2 := Spec (k[t]/ #7”) with the natural additive group struc-

ture on a2 (B) = { beB: b =0 } for each k-algebra B is finite flat of order p?.

] . . ~ ’ v, i
(2) Show that ozz admits an isomorphism oz;J/Q = Spec (k[t,u]/(t?,uP)) with the multi
plication on a', (B) = { (b1,b2) € B*: b = b5 =0} for each k-algebra B given by

(b1, ba) - (b, by) = (b1 + by, ba + by — Wi (b1, b2))
(t+u)P —tP — uP
p
Hint. One can show that a B-algebra homomorphism B[t,t~!] — B[t]/(t”") induces
a B-group homomorphism «a,2 — G,, if and only if the image of ¢ is of the form

p—1
F(t) = BE(bit)E(bst?) with B, = b = 0, where we write E(t) = > %
i=0

where we write Wi (t,u) := € Zlt,ul.

p

3) For k = F,, show that a,2 fits into a nonsplit short exact sequence
D> D p q

00— ap — ay — ap — 0.

P
Remark. For k = Fp, there exists a natural identification

Ext%p_grp(ocp, ap) = (Z/2L)°

with elements of Ext% _grp(ap, ap) given by ag, Qp2, azg, and the p-torsion part of a super-

singular elliptic curve. In particular, one can identify the p-torsion part of a supersingular
elliptic curve over I, with the Baer sum of ag and a2 as self-extensions of ay.
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5. Assume that R = k is a perfect field.
(1) Given a finite abelian group M with a continuous I'y-action, show that the scheme
M"* .= Spec (A) for A := ( H E) e is naturally a finite étale k-group.
€M

Hint. Since M is finite, the I'y-action should factor through a finite quotient.

(2) Prove that the inverse functor for the equivalence in Proposition 1.3.4 maps each
finite abelian group M with a continuous I'j-action to M *.

(3) Prove that a finite étale group scheme G over a field k is a constant group scheme if
and only if the I'y-action on G(k) is trivial.

6. In this exercise, we follow the notes of Pink [Pin| §15] to present a counterexample for
Proposition 1.4.15 when k& is not perfect. Let us choose ¢ € k which is not a p-th power and

-1
set G := p]_[ G; with G; := Spec (k[t]/(tF — ¢*)).
i=0
(1) Given a k-algebra B, verify a natural identification
Gi(B)%{bEB:bp:ci} for eachi=0,---,p—1
and show that G(B) is a group with multiplication given by the following maps:
e m;j : Gi(B) x Gj(B) — Gi4;(B) for i+ j < p which sends each (g, ¢’) to g¢',
e m;j : Gi(B) x Gj(B) — Gitj—p(B) for i +j > p which sends each (g,¢’) to
99'/c.
(2) Show that G yields a nonsplit connected-étale sequence
00— pp —G— M — 0.

Hint. To show that the sequence does not split, compare Gy with G; for i # 0.

7. Assume that R = k is a field.
(1) If k has characteristic 0, establish a natural identification Endy_grp(G4) = k.

(2) If k has characteristic p, show that Endj_g,(G,) is isomorphic to the (possibly non-
commutative) polynomial ring k(p) with ¢c = Py for any c € k.

8. Assume that R = k is a field.
(1) Give a proof of Theorem [1.3.10| when R = k is a field without using Theorem [1.1.16

Hint. If £ has characteristic 0, one can adjust the proof of Proposition [1.5.20] to
obtain an isomorphism G° ~ Spec (k[t1,- - ,t4]) for some integer d > 0 and in turn
find d = 0 by the fact that G° is finite flat.

(2) Prove Theorem [1.1.16| when R = k is a field.

Hint. If k£ has characteristic 0, one can deduce the assertion from the corresponding
theorem for finite groups by observing that G is étale. If k has characteristic p, one
can reduce to the case where G is simple with k algebraically closed.
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9. Use the self-duality of elliptic curves to prove that every elliptic curve over F, is either
ordinary or supersingular.

10. Assume that R = k is a perfect field.
(1) Show that the dual of every étale p-divisible group over k is connected.
(2) Show that every p-divisible G over k admits a natural decomposition
G Gll % Gmult % Gét
with the following properties:
(i) G" is connected with (G)Y connected.

(ii) G™" is connected with (G™*)V étale.

(iii) G is étale with (G*)Y connected.

11. Assume that R = k is a field of characteristic 0. Establish an isomorphism between the
formal group laws pz and pg— over k defined as in Example

o tn
Hint. Consider the map k[[t]] — k[[t]] sending ¢ to exp(t) — 1 = Z ok
n=1 "

12. Let K be a finite extension of @, with uniformizer 7 and residue field F,,.

(1) Show that there exists a unique formal group law p, over O of dimension 1 with
an endomorphism [r] : Ok|[t]] — Ok][[t]] sending ¢ to 7t + t.

(2) Show that p, is p-divisible.

Remark. The formal group law p, is a Lubin-Tate formal group law, introduced by the work
of Lubin-Tate [LT65] as a means to construct the totally ramified abelian extensions of K.

13. For a supersingular elliptic curve E over F,, show that ker(y E[p]) is isomorphic to a,.

oo

14. Recall that every o € Z,, admits a unique p-adic expansion o = Z a,p" where each a,,
n=0

is an integer with 0 < a, < p.

(1) Show that the 2-adic expansion agrees with the Teichmiiler expansion on Zs.

(2) Show that the p-adic expansion does not agree with the Teichmiiler expansion on Z,
for p > 2.

(3) Find the 3-adic expansion for [2] € Zs.
(4) Find the first four coefficients of the 5-adic expansion for [2] € Zs.

Hint. The Teichmiiler lift of an element a € F, is the unique lift [a] € Z, with [a]P’ = [a].
One can inductively find its image in Z,/p"Z, = Z/p"Z for each n > 1 by Hensel’s lemma.
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15. Assume that R = k is a perfect field of characteristic p. For each A € QQ, show that there
exists a natural isomorphism N(A\)Y = N(—)).

16. Let A be an abelian variety over F,, of dimension g.

(1) Show that the isocrystal D(A[p>])[1/p] is self-dual by using the fact that A is isoge-
nous to its dual.

(2) If A is ordinary in the sense that A[p](F,) is isomorphic to (Z/pZ)®9, show that
there exists an isomorphism

Ap™] = (Qp/Zyp)? < (ppe=)?.

Hint. Show that A[p>]° has étale dual, possibly by establishing an isomorphism
D(A[p>])[1/p] =~ N(0)%9 & N(1)®9.

17. Let K be a p-adic field.
(1) Prove that its algebraic closure K is not p-adically complete.

Hint. There are at least two ways to proceed as follows:

(a) One can observe that K is a countable union of nowhere dense subspaces and
apply the Baire category theorem to conclude.

(b) Alternatively, one can use Krasner’s lemma to produce a Cauchy sequence in K
whose limit is not algebraic over K.

(2) Prove that Ck is not discretely valued.
18. Give a proof of Proposition |3.3.10] for G' = fij.

19. Let K be a p-adic field and F be an elliptic curve over Ok.
(1) Prove that E gives rise to a I'g-equivariant Z,-linear perfect pairing
Tp(E[p™]) x Tp(E[p™]) — Zy(1). (3.9)

(2) Deduce that the determinant character of the I' x-representation 7),(E[p™]) coincides
with the p-adic cyclotomic character.

Remark. The perfect pairing (3.9)) coincides with the Weil pairing on E.

20. Describe the canonical identification
Exte, ry) (Cx (—1), Cx) = H' (T, Cre (1))
used in the proof of Theorem [3.4.13
Hint. Given a I'g-representation V over Cx with a I'i-equivariant short exact sequence
00— Cxg —V —Cg(-1) — 0,
the action of 'k on V(1) admits a matrix representation
(1)
0 1

for some map ¢ : I'x — Cg(1). Show that ¢ is a 1-cocycle on I'c in Cg (1) with its class in
H'(T'k,Ck(1)) uniquely determined by the isomorphism class of V.






CHAPTER III

Period rings and functors

1. Fontaine’s formalism on period rings

The main goal of this section is to discuss the formalism developed by Fontaine [Fon94]
for p-adic period rings and their associated functors. Our primary references for this section
are the notes of Brinon-Conrad [BC| §5] and the notes of Fontaine-Oiyang [FOl §2.1].

Throughout this chapter, we let K be a p-adic field with absolute Galois group ', inertia
group Ig, and residue field k. In addition, we write Repg, (') for the category of p-adic
I'x-representations and x for the p-adic cyclotomic character of K.

1.1. Basic definitions and examples

In this subsection, we define some key notions for our formalism and relate them to
Hodge-Tate representations.

Definition 1.1.1. An integral domain B over Q, with an action of I' is (Qp, I'r)-regular if
it satisfies the following conditions:

(i) We have B'x = C'x  where C denotes the fraction field of B endowed with a natural
I'k-action extending the I'i-action on B.

(ii) Anelement b € Bisaunitif Q,-b:={c-b:c € Q,} is stable under the I'g-action.

Remark. For any field F' and any group G, we can similarly define (F, G)-regular rings. The
formalism that we develop in this section readily extends to (F, G)-regular rings.

Example 1.1.2. Every field extension of @, with an action of ' is (Qp, I'x)-regular.

Definition 1.1.3. Let B be a (Q,, ['x)-regular ring with E := B'x.

(1) We define the functor associated to B to be Dp : Repg, (I'x) — Vectp with

Dg(V) = (V ®q, B)'® for every V€ Repg, (T'k),
where Vectp denotes the category of vector spaces over E.
(2) We say that V' € Repg, (I'r) is B-admissible if it satisfies the identity
dimg Dp(V) = dimg, V.

Remark. We can show that the B-admissibility for V' € Repg, (Tk) is equivalent to the
triviality of the I'k-action on V ®q, B.

Example 1.1.4. We record some examples of admissible representations.
(1) For every (Qp, ' )-regular ring B, trivial I' g-representations over Q, are B-admissible.

(2) Essentially by Hilbert’s Theorem 90, a p-adic representation V of I' is K-admissible
if and only if the action of ' on V factors through a finite quotient.

(3) By a deep result of Sen [Sen80|, a p-adic representation V of I'k is Cx-admissible
if and only if the action of Ix on V factors through a finite quotient.

85
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Definition 1.1.5. Given a character 7 : I'x — Q, and a Qp[I'k]-module M, we define the
twist of M by n to be the Q,[I'k]-module

M(n) :== M ®q, Qp(n)
where Qp(n) denotes the I'i-representation on Q, given by 7.

Example 1.1.6. Given a Q,[I'x]-module M, we have an identification M (n) = M (x™) for
every n € Z by Lemma in Chapter

LEMMA 1.1.7. The group x(Ix) is infinite.

PROOF. We have ker(x) = ﬂ Gal(K (pyr (K))/K) as x encodes the action of I'x on
v>1

Zp(1) = lim pipe (K). Let us write e, for the ramification degree of K(py(K)) over K and e

for the ramification degree of K over Q,. We find e,e > p*~*(p — 1) by noting that e,e and

p'"1(p — 1) are respectively equal to the ramification degrees of K (v (K)) and Qp(ppe (K))

over Q,. We deduce that e, grows arbitrarily large and thus obtain the desired assertion. [J

THEOREM 1.1.8 (Tate [Tat67], Sen [Sen80]). Let n: I'x — Z,; be a continuous character.

(1) If n(Ix) is finite, both HY(T'x, Cx(n)) and H(T' g, C(n)) are 1-dimensional vector
spaces over K.

(2) If n(I) is infinite, both H°(T'x, Cx (1)) and H(T' i, Cx(n)) vanish.

Remark. Since we have Cg(n) = Cg(x™) for each n € Z as noted in Example we can
deduce Theorem in Chapter E from Lemma [1.1.7|and Theorem [1.1.8

Definition 1.1.9. The Hodge-Tate period ring is Byt := @(CK(n)
neEZ
PropOSITION 1.1.10. The Hodge-Tate period ring Byt is (Qp, 'k )-regular.

PROOF. Let us first show the identity BEIT‘ = C’{IIT‘ for the fraction field Cyt of ByT. We
consider a natural action of I'x on Cg ((¢)) with v(t) = x(7)t. Lemma[3.1.8in Chapterields
[ g-equivariant isomorphisms Byt ~ Cg[t,t!] and Cyr ~ Ck(t). Since we have Byt = K
by Theorem in Chapter [[1} it suffices to establish the identity Cx((¢))'* = K. The
group 'k acts on each f(t) =) cnt"” € Cg((t)) via the relation

~ (Z cnt"> = Z v(en)x ()" t" for every v € I'k.

Hence f(t) = > cat™ € Cg((t)) is I'k-invariant if and only if we have ¢, = y(c,)x(y)" for
each n € Z and v € ', or equivalently ¢, € Cx(n)'% for every n € Z by Lemma & in
Chapter [[IL The desired identity Cr ((t))'% = K follows from Theorem in Chapter E

It remains to verify that every b € Byt with Q, - b stable under I'¢ is a unit. Under the
isomorphism Byt ~ Ck[t,t!], we identify b with a function f(t) = > c,t" € Ck[t,t!]. Let
us take m € Z with ¢, # 0. It suffices to show the identity ¢, = 0 for each n # m.

Let n: 'k — Q, be the character that encodes the I'x-action on Q) - f(t). We note that
7 is continuous as the I'g-action on each Cx(n) is continuous; in particular, we may regard n
as a character with values in Z;;. For each n € Z and v € ', we find 1(y)en = y(en)x(7)" or
equivalently ¢, = (n7'x™)(v)7(d,). Hence we have ¢, € Cx(n~'x")'¥ for every n € Z and
in turn deduce from Theorem that (n~1x™)(I) is finite for every n € Z with ¢, # 0.

Suppose for contradiction that we have ¢, # 0 for some n # m. Since both (77 1x")(I)
and (n~'x™)(Ix) are finite, I;c has a finite image under x»™ = (n~'x™) - (n~'x™)~!. Hence
we obtain a desired contradiction by Lemma thereby completing the proof. O
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ProrosiTION 1.1.11. A p-adic representation V of 'k is Hodge-Tate if and only if it is
Byr-admissible.

PROOF. Since we have

Dy (V) = (V @g, Bur)"™™ = @V @g, Cx(n)'¥, (1.1)
nez
the desired assertion follows from Lemma [3.1.15] in Chapter [} O

Example 1.1.12. Given a p-adic I'g-representation V' which fits into an exact sequence
0 — Qy(m) — V — Qy(n) — 0
with m # n, we assert that V is Hodge-Tate. For every i € Z, we have an exact sequence
0 — Cg(i+m) — V®q, Cx(i) — Ck(i+n) — 0
by the flatness of Cg (i) over Q, and consequently obtain a long exact sequence
0 — Cr(i+m)'* — (V ®q, Cx (i)' — Ck(i+n)'* — H'(Tk,Cx(i +m)).
Therefore Theorem [3.1.14) in Chapter [[I] yields an identification

K fori=-—m,—n,

(V ®q, Ck (i)' % = {

0 fori#—m,—n.
Now we find
dimg Dy (V) =) dimg (V @g, Cx (1))"% = 2 = dimg, V/
€L
and in turn establish the desired assertion.

Remark. On the other hand, a self extension of Q, is not necessarily Hodge-Tate. For
example, by a difficult result of Sen [Sen80], the two-dimensional vector space over Q, where

log,,(x(7))
g im)

1
each v € 'k acts via the matrix <0 is not Hodge-Tate.

PROPOSITION 1.1.13. Given a continuous character 7 : I'x — Z, the I'k-representation
Qp(n) is Hodge-Tate if and only if there exists some n € Z with (nx")(Ik) finite.

PRrROOF. By Lemma [3.1.15| in Chapter |II, the 1-dimensional I'x-representation Q,(n) is
Hodge-Tate if and only if there exists some n € Z with (Q,(n) ®g, Cx (n))'* # 0, or equiva-
lently Cx (nx™)'% # 0 by Example Hence the assertion follows from Theorem g

Definition 1.1.14. Given a Hodge-Tate representation V', an integer n € Z is a Hodge-Tate
weight of V' with multiplicity m if we have

dimg (V ®q, Cx(n)'x =m > 0.
Remark. Readers should be aware that many authors use the opposite sign convention for
Hodge-Tate weights. We will explain the reason for our choice in
Example 1.1.15. We record the Hodge-Tate weights for some Hodge-Tate representations.

(1) For every n € Z, the Tate twist Q,(n) of Q, has Hodge-Tate weight —n.

(2) For every p-divisible group G over Ok, the rational Tate module V,,(G) has Hodge-
Tate weights 0 or —1 (possibly both) by Theorem [3.4.13|in Chapter

(3) For an abelian variety A over K with good reduction, the étale cohomology HZ (A%, Qp)
has Hodge-Tate weights 0,1, -+ ,n as easily seen by Theorem in Chapter [[I]
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1.2. Formal properties of admissible representations

Throughout this subsection, we fix a (Q,, 'k )-regular ring B and write £ := B'%. In
addition, we denote by Rep& (T'k) the category of B-admissible p-adic I'i-representations.

THEOREM 1.2.1. Let V be a p-adic ['g-representation.
(1) There exists a natural map
ay :Dp(V)®@g B — V ®q, B

which is B-linear, I' x-equivariant, and injective.

(2) V satisfies the inequality
dimg Dp(V) < dimg, V (1.2)

with equality precisely when ayys is an isomorphism.

PROOF. Let us first consider statement We have the natural map
ay : Dp(V)®@p B — (V®q, B) e B=V ®q, (B®g B) — V ®q, B,

which is clearly B-linear and I x-equivariant. We wish to show that ay is injective. Since the
fraction field C' of B is (Qp, 'k )-regular as noted in Example we obtain a natural map

By : De(V) ®@p C — V ®q, C

which fits into a commutative diagram

Dp(V)®p B "> V ®q, B

l l

De(V) 05 C -2 Vg, C

with injective vertical maps. It suffices to prove that By is injective. Suppose for contradiction
that ker(By) is not trivial. Let us take an E-basis (e;) of Do(V) = (V ®g, C)'* and regard
each e; as a vector in V ®q, C. By our assumption, there exists a nontrivial C-linear relation
> cie; = 0 with minimal number of nonzero terms. Without loss of generality, we may set
¢;j = 1 for some j. For every v € ' we find

0=~ (Z ciei) — Zciei = Z(’y(c,) —¢)é;.

Since the coefficient of e; is zero, the minimality of our relation yields the identity ¢; = v(¢;)
for each ¢; and in turn implies that ¢; lies in CT'% = E. Hence we have a nontrivial E-linear
relation Y c;e; = 0 for the E-basis (e;) of Dc(V), thereby obtaining a desired contradiction.

It remains to verify statement Since the inequality is evident by statement we
only need to consider the equality condition. If iy is an isomorphism, the inequality becomes
an equality. For the converse, we henceforth assume the identity dimg Dp(V) = dimg, V.
Let us choose a basis (u;) of Dg(V) = (V ®g, B)'¥ over E and a basis (v;) of V over Q,. We
may represent ay by a d x d matrix My with d := dimg Dp(V) = dimg, V. We wish to show
that det(My ) is a unit in B. We have det(My) # 0 as the map Dp(V) @ C — V ®q, C
induced by ay is an isomorphism for being an injective map between vector spaces of equal
dimension. Let us consider the identity (Aay)(ui A --- Aug) = det(My)(vy A--- Avg). The
group I'g acts trivially on u; A --- A ug and by some Qp-valued character n on vy A --- A vg.
Since ay is T'g-equivariant, we deduce that ' acts on det(My) by n~!. Hence we find
det(My) € B* as B is (Qp, 'k)-regular, thereby completing the proof. O
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PROPOSITION 1.2.2. The functor Dp is exact and faithful on Rep(gp (Tk).
ProOF. Let V and W be arbitrary B-admissible representations. Theorem yields
natural I'x-equivariant B-linear isomorphisms
DB(V) ®EB§V®QPB and DB(W) ®EB§I/V®Qp B.

Given f € Homg, r,)(V, W) with the associated map Dp(f): Dp(V) — Dp(W) being zero,
we observe that the map V ®q, B — W ®q, B induced by f is zero and in turn deduce that
f must be zero. Therefore the functor Dp is faithful on Repgp (T'k).

It remains to verify that Dp is exact on Rep(gp (k). Let us consider an arbitrary short
exact sequence of B-admissible representations

0—U—V —W —0.

Since every algebra over a field is faithfully flat, B is faithfully flat over both Q, and E.
Therefore we obtain a short exact sequence

0—U®q, B—V®&qg, B— W®q,B—0,
which we naturally identify with a short exact sequence
0— Dp(U)®g B — Dp(V)®r B — Dp(W)®g B — 0
by Theorem The desired assertion is now evident as B is faithfully flat over F. O

Remark. The functor Dpg is not fully faithful on Repgp (T'x) with values in the category

of vector spaces over E; indeed, the isomorphism class of Dgp(V) for every V € Repgp (Tk)
depends only on the dimension of V. In practice, however, we enhance Dp to a functor that
takes values in a category of vector spaces over E with some additional structures, as briefly
described in Chapter [I We will see in §3] that such an enhanced functor is fully faithful
for the crystaline period ring B = Beis-

ProposiTiON 1.2.3. The category Repgp (T'k) is closed under taking subquotients.

ProoF. Consider a short exact sequence of p-adic representations
0—U—V-—W-—70 (1.3)

with V' € Rep(gp (T'x). We wish to show that both U and W are B-admissible. Since the
functor Dp is left exact on Rep@p(l1 k) by construction, we have an exact sequence

0 — Dp(U) — Dp(V) — Dp(W). (1.4)
In addition, by Theorem [1.2.1| we have
dimg Dp(U) <dimg, U and  dimg Dp(W) < dimg, W. (1.5)
Now the exact sequences and together yield inequalities
dimg Dp(V) < dimg D(U) + dimg Dp(W) < dimg, U + dimg, W = dimg, V.

Since V is B-admissible, all inequalities are in fact equalities. Therefore we deduce that both
U and W are B-admissible as desired. O

Remark. In general, the category Repgp(FK) is not closed under taking extensions. For

example, the category of Hodge-Tate representations is not closed under taking extensions by
the remark following Example [1.1.12
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PROPOSITION 1.2.4. Given V, W € Repg (I'k), we have V ®g, W € Repg (I'x) with a
natural isomorphism
Dp(V) ®p Dp(W) = Dp(V ®q, W).
PROOF. Theorem yields natural I"g-equivariant B-linear isomorphisms
ay : Dp(V)®g B — V®g,B and aw:Dp(W)®gB RSN 7 74 ®q, B.

Let us consider the natural map

Dp(V) @g Dp(W) — (V ®q, B) ®5 (W ®q, B) — (V ©q, W) ®g, B (1.6)
with the first arrow given by the identifications

Dg(V)=(V &g, B)'* and Dp(W)= (W ®q, B)'~.
Since the second arrow is evidently I'x-equivariant, we obtain a natural E-linear map
Dp(V)®g Dp(W) — ((V ©g, W) ©g, B)' X = Dp(V g, W). (1.7)
This map is injective since the map extends to a B-linear map
(Dp(V) @p Dp(W)) @ B — ((V ®q, B) @k (W ®q, B)) ®& B — (V ®g, W) ®q, B
which coincides with the isomorphism ay ® apy under the identifications
(Dp(V)®@g Dp(W)) @ B = (Dp(V) @ B) @ (Dp(W) ®g B),
((V ®q, B) ®p (W ®q, B)) ®¢ B = (V ®g, B®g B) ®p (W ®q, B ®g B),
(V ®qg, W) &g, B=(V &g, B)@p (W ®q, B).

Therefore we find

dimg Dp(V ®q, W) > (dimg Dp(V)) - (dimg Dp(W)) = dimg, V ®q, W

where the equality follows from the B-admissibility of V and W. We see by Theorem [1.2.7]
that this inequality is indeed an equality and in turn deduce that V ®gq, W is a B-admissible
representation with the natural isomorphism (1.7)). O

PROPOSITION 1.2.5. For every V € Repgp (T'k), we have A"(V), Sym™V € Repgp (T'x) with
natural isomorphisms

A" (Dp(V)) = Dp(A"(V))  and Sym"(Dp(V)) = Dp(Sym"(V)).

PROOF. Let us only consider exterior powers here, as the same argument works with
symmetric powers. Proposition implies that V®" is B-admissible with a natural isomor-
phism Dg(V®") = Dp(V)®". We find A"(V) € Repgp (T'x) by Proposition and in turn
obtain a natural surjective E-linear map

~

Dp(V)®" — Dp(V®") = Dp(A"(V))

by Proposition [T.2.2] It is straightforward to check that this map factors through the natural
surjection Dg(V)®" — A"(Dp(V')). Hence we have a natural surjective E-linear map

N (Dp(V)) = Dp(A"(V)),
which turns out to be an isomorphism since we have
dimg A" (Dp(V)) = dimg Dg(A"(V))
by the B-admissibility of V and A™(V). O
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PROPOSITION 1.2.6. For every V € Repgp(FK), we have V'V € Repgp (T'x) with the natural
E-linear map

Dp(V)@p Dp(VY) = Dp(V @q, V') — Dp(Q,) = E (1.8)
being a perfect pairing.
PROOF. Let us first consider the case where V' has dimension 1 over Q,. We fix a nonzero

vector v € V and take f € V¥ = Homg, (V,Q,) with f(v) = 1. We represent the I'-action
on V by a continuous character n : I'x — Q, and obtain the relations

Y(w) =n(y)v and (f)=n(y)"'f for every y € T'k.
Since Dp(V) = (V ®q, B)''¥ is 1-dimensional over E by the B-admissibility of V, it admits
a basis given by a vector v ® b for some b € B. Now we find
v@b=7(v®b) =7(v)®y(b) =n(y)v @) =v@n(y)y(b) for every v € I'g
or equivalently
b=n(y)y(b) for every v € I'k.
Moreover, we have b € B* as v ® b yields a B-basis for V ®q, B via the natural isomorphism
Dp(V)®g B =V ®Qq, B given by Theorem Hence Dp(VY) = (VY ®q, B)'¥ contains
a nonzero vector f ® b~'. We deduce that the inequality
dimg Dp(V") < dimg, V¥ =1

given by Theorem must be an equality, which means that V'V is B-admissible. We also
observe that f ® b~! yields an E-basis for Dg(V"V) and in turn find that the map (1.8) is a
perfect pairing.

We now establish the B-admissibility of V'V in the general case. Let us write d := dimg, V
for notational convenience. We have a natural I'x-equivariant isomorphism

A det(VY) ®g, ANV S VY
given by the relation
A((fin-Af)@@Wa A Avg)) (v1) =det(fi(vj)) forall f; € VY and v; € V.

Proposition implies that both det(V) = AYV and A9~V are B-admissible. Moreover,
our discussion in the preceding paragraph shows that det(V") 2 det(V)" is also B-admissible
as det(V') has dimension 1 over Q,. Therefore V" is B-admissible by Proposition

It remains to prove that the map (|1.8]) is a perfect pairing in the general case. Since both
V and V'V are B-admissible, we find

Upon choosing E-bases for Dg(V) and Dg(V'"), we can represent the pairing (1.8)) by a d x d
matrix M. It suffices to show that det(M) is not zero or equivalently that the induced pairing

det(Dp(V)) ®g det(Dp(VY)) — E
is perfect. Since we have natural identifications
det(Dp(V)) = Dp(det(V)) and det(Dp(V")) = Dg(det(V"))

given by Proposition the desired assertion is evident by our discussion in the first
paragraph. O
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2. de Rham representations

In this section, we define and study the de Rham period ring and de Rham representations.
The primary references for this section are the notes of Brinon-Conrad [BC| §4 and §6] and
the article of Scholze [Sch12].

2.1. Perfectoid fields and their tilts

Let us begin with the notion of perfectoid fields, which provides a modern perspective of
Fontaine’s original work.

Definition 2.1.1. A perfectoid field is a complete nonarchimedean field C' of residue charac-
teristic p with the following properties:

(i) The valuation on C' is nondiscrete.
(ii) The p-th power map on O¢/pO¢ is surjective.

Remark. By convention, we assume that the valuation on a nonarchimedean field is not
trivial. On the other hand, the valuation on a valued field may be trivial.

LEMMA 2.1.2. Let C be a complete nonarchimedean field of residue characteristic p. If the
p-th power map on C' is surjective, the field C' is a perfectoid field.

PROOF. Let us denote by v the valuation on C and take an arbitrary element z € C.
Since the p-th power map on C' is surjective by our assumption, there exists an element y € C
with x = yP. If x has positive valuation, we find

0<v(y)=v(z)/p <v(z). (2.1)
We deduce that C' does not have an element with minimum positive valuation, which in
particular implies that the valuation v is not discrete. In addition, we observe that the p-th
power map on Q¢ is surjective; indeed, if x lies in O¢ we have x = yP with y € O¢ by the
relation . Hence the p-th power map on O¢/pO¢ is also surjective. The desired assertion
is now evident. 0

Remark. The converse of Lemma does not hold; in other words, the p-th power map
on a perfectoid field is not neccessarily surjective.

Example 2.1.3. Since C is algebraically closed as noted in Chapter [, Proposition [3.1.13
it is a perfectoid field by Lemma [2.1.2

Remark. In fact, Lemma shows that every complete nonarchimedean algebraically
closed field of residue characteristic p is a perfectoid field.

PROPOSITION 2.1.4. A nonarchimedean field of characteristic p is perfectoid if and only if it
is complete and perfect.

PROOF. By definition, every perfectoid field of characteristic p is complete and perfect.
Conversely, every complete nonarchimedean perfect field of characteristic p is perfectoid by

Lemma 2.1.2 O
Definition 2.1.5. Let C be a perfectoid field.
(1) The tilt of C'is C” := lim C endowed with the natural multiplication.

x—xP

(2) The sharp map associated to C' is the map C” — C which sends each ¢ = (¢,) € C°
to the first component ¢ := ¢;.
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For the rest of this subsection, we fix a perfectoid field C' with the valuation v. Its tilt C”
is a priori a multiplicative monoid. We aim to show that C” is naturally a perfectoid field of
characteristic p.

PROPOSITION 2.1.6. Fix an element w € C* with 0 < v(w) < v(p).
(1) Given arbitrary elements =,y € O¢ with  —y € wO¢ we have
2" —y?" € " O for each integer n > 0.

(2) The natural projection O¢ — O¢/wO¢ induces a multiplicative bijection

lim O¢ = lim O¢/@wOc. (2.2)
r—xP r—xP

(3) The monoid lim Oc is naturally a ring of characteristic p via the map (2.2).

T—xP

PROOF. The inequality v(w) < v(p) implies that p is divisible by @ in O¢. In addition,
for elements z,y € O¢ and an integer n > 1 we find

Pt yp" — (yp

Hence we obtain statement by a simple induction.
Let us now consider statement We wish to construct an inverse map

n—1 n—1

T — p 7
+ (2P =P 1)) —y?  for eachn > 1.

f: lin Oc/@@c—) h£1 Oc.

r—xP r—xP

Take an arbitrary element ¢ = (¢,) € lim Oc/wO¢ and choose a lift ¢, € O¢ of each ¢,.

z—xP
We have
1
Chimats = Cnym € wOc  for all I, m,n >0,
and consequently find
m+1 m
A il = Cham € @™ Oe  for alln,m >0

m

by statement Hence for each n > 0 the sequence (),
Cauchy. In addition, statement m implies that the limit of the sequence (cf) “m
n > 0 does not depend on the choice of ¢,. Now we write

fn(€) := lim &

n-+—m
m—0o0 +

)m>0 converges in O¢ for being

)m>0 for each

for each n >0

and obtain the desired inverse by setting

@ = (f20) € lim Oc.

x—xP

It remains to verify statement Since w divides p in O¢ as already noted in the first
paragraph, the ring Oc/wO¢ is of characteristic p and thus induces a natural ring structure
on lin Oc = 1&1 Oc/wO¢c. Moreover, this ring structure does not depend on w; indeed,

TP TP
for arbitrary elements a = (a,) and b= (b,) in lim Oc¢ we find
TP

b= (anby) and a4 b= ( lim (@mn + bm+n)pm) .

TP

Now we establish statement as lim O¢ is evidently of characteristic p. O
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PROPOSITION 2.1.7. The tilt C” of C is naturally a field of characteristic p which is complete
with respect to the valuation 1” given by 1°(c) = v(cf) for every ¢ € C” with O, = lim Oc.

xr—xP

PROOF. Let us fix an element @ € C* with 0 < v(w) < v(p). Proposition [2.1.6] shows

that O := lim Oc is naturally a ring of characteristic p with a canonical identification
r—axP
0= lin Oc/wOC. (2.3)
TP

We may identify C” with the fraction field of @, which is evidently perfect of characteristic p.

We assert that the function ©* on C” with 1°(c) = v(cf) for every ¢ € C” is indeed a
valuation. It is clear by construction that »” is a multiplicative homomorphism. Let us take
arbitrary elements a = (a,) and b = (b,) in C°. Without loss of generality, we may assume
1’ (a) > 1°(b) or equivalently v(ag) > v(b). Since we have

1 1
v(ay) = ﬁy(a()) > ﬁy(bo) =wv(b,) foreachn >0,

we may write a = bu for some u € O and find
P(a+b) =1 ((u+1)b) =’ (u+1) +°(b) > 1°(b) = min(v(a), " (b))

where the inequality follows from the observation that u + 1 is an element of . Therefore
we deduce that ©” is a valuation.

Let us now take an arbitrary element ¢ = (¢,) € C”. We find

1 1
v(cn) = —v(co) = Evb(c) for each n >0

112
and in turn verify that O is indeed the valuation ring of C?. Moreover, given an arbitrary
integer m > 0 we have v(c,) > v(w) for each n < m if and only if ¢ satisfies the in-
equality 1”(¢) > p™v(w). Hence the isomorphism (2.3) is a homeomorphism with © and
lim Oc¢ /wO¢ respectively endowed with the v’-adic topology and the inverse limit topology.
r—axP
It is not hard to see that @1 Oc¢/wO¢ is complete, which consequently implies that both
x—xP

Oc» = O and C" are complete. O

Remark. Proposition|[2.1.6|and Proposition [2.1.7|remain valid if we replace C' by an arbitrary
complete nonarchimedean field L with its “tilt” L= m L. However, if L is not perfectoid

c—cP
the valuation on L’ may be trivial. For example, if L is a p-adic field L” is isomorphic to its
residue field with the trivial valuation.

i

LEMMA 2.1.8. For every ¢ € O¢ there exists an element ¢ € O with ¢ — ()" € pOc.

PROOF. Proposition and Proposition together yield a natural isormohpsim
Oc» = lin Oc/pO¢
r—xP

Let ¢ denote the image of ¢ in O¢/pO¢. Since the p-th power map on O¢/pO¢ is surjective,
we obtain the desired assertion by taking ¢’ = (c}) € lim O¢/pOc = O with &=c 0O

r—xP

Remark. Such an clement ¢ € Oc» is not unique unless C' is of characteristic p.
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PROPOSITION 2.1.9. The map Op, — Oc¢/pO¢ which sends each ¢ € Oy to the image of ct
in O¢/pO¢ is a surjective ring homomorphism.

PROOF. Since we have Op, = @1 O¢ as noted in Proposition [2.1.7, the assertion is
x—axP
straightforward to verify by Proposition and Lemma [2.1.8 O

Remark. The sharp map associated to C' is a multiplicative map but is not a ring homomor-
phism unless C' is of characteristic p.

PROPOSITION 2.1.10. The valued fields C' and C” have the same value groups.

PROOF Let v* denote the valuation on C”. Since we have v ((C’b *) C v(C*) by Propo-
sition we only need to show the relation v(C*) ( Cb)x). Let us consider an
arbitrary element ¢ € C*. We wish to find an element ¢ € (C*)* with v ( ) = v(c). Since
v is nondiscrete, we can choose an element w € (’)C with 0 < w) < v(p). Let us Write
¢ = w"u for some n € Z and u € O¢ with v(u ) < v(w). Lemma ylelds elements w” and

W’ in Oy with w — (w")Ii € pO¢c and u — (u ) € p(’)c By Prop051t10n we find

V(@) = r(@)) = v (= — (@ - (=))) = (=),
V() = (@) = v (u= (= ())) =
Hence we obtain the desired assertion by taking ¢ = (w”)"’. O

PROPOSITION 2.1.11. The field C” is a perfectoid field of characteristic p.

PROOF. Proposition [2.1.10| implies that the value group of C” is not trivial. Since C” is
perfect by construction, the assertion follows from Proposition [2.1.4and Proposition[2.1.7, O
Remark. Scholze [Sch12] shows that C' and C" satisfy the following additional properties:

(i) Every finite extension of C' is perfectoid.
(ii) There exists a canonical bijection

{ Finite extensions of C'} — { Finite extensions of C” }

which sends each finite extension L of C to its tilt L’.
(iii) The residue fields of C' and C” are naturally isomorphic.

Example 2.1.12. Since Cg is a perfectoid field as noted in Example its tilt F := (C'}<
is a perfectoid field of characteristic p by Proposition [2.1.11

Remark. Since Cg is algebraically closed as noted in Chapter [[I, Proposition [3.1.13] the
remark after Proposition [2.1.11] shows that F' is algebraically closed. We will present a proof
of this fact in Chapter If K is a finite extension of Q,, we can naturally identify F' = (C'}(

with the t-adic completion of F,((%)).

PROPOSITION 2.1.13. If C is of characteristic p, there exists a natural identification C” = C.

PROOF. The assertion is evident as C' is perfect by Proposition O
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2.2. The de Rham period ring Bggr

For the rest of this chapter, we write v for the normalized p-adic valuation on Cgx and VP
for the valuation on F = C; with 1°(c) = v(c?) for every ¢ € F.

LEMMA 2.2.1. The ring OF is a perfect [Fj-algebra.

PRroOOF. The assertion is evident by Proposition and Proposition [2.1.11 O
Definition 2.2.2. The infinitesimal period ring is Ajns := W(OF).

Remark. Our definition of Aj,s relies on Lemma [2.2.1] It is worthwhile to mention that the
ring Ainf is not (Qp, I )-regular in any meaningful way.

PROPOSITION 2.2.3. There exists a surjective ring homomorphism 6 : Ajps - Oc,. with

6 (Z[cn]pn> = Z Apt forall ¢, € Op. (2.4)
n=0

n=0

PRrROOF. Proposition yvields a surjective ring homomorphism 0 : Op — Oc,. /pOc,.
with (c) = cf for each ¢ € Op, where ¢f denotes the image of ¢f in Oc,. /pOc, . Moreover,
by construction 8 lifts to a multiplicative map 0:0p — Oc, with é(c) = ¢! for each ¢ € Op.
Hence we obtain a ring homomorphism 6 : Aj,y — Oc, which satisfies the identity by
Theorem in Chapter [T}

It remains to establish the surjectivity of 6. Let x be an arbitrary element in Oc,.. Since
Oc is p-adically complete, it suffices to find a sequence (c,) in O with

m
T — Z p" € p"t1 O, for each m > 0.
n=0
In fact, we can use Lemma to inductively construct such a sequence by setting each c,,
to be an element in Op with

1 m—1
— (m - Z cglp"> — cfn € pOcy,
p n=0

thereby completing the proof. O

Remark. Our proof remains valid if we replace Cx by an arbitrary perfectoid field C; in other
words, every perfectoid field C yields a surjective ring homomorphism 6c : W (O ) = Oc.

Definition 2.2.4. We refer to the map 6 in Proposition [2.2.3] as the Fontaine map and let
0[1/p] : Aine[1/p] — Cx denote the ring homomorphism induced by 6.

Remark. As explained by Brinon-Conrad [BC| Lemma 4.4.1], we can construct the Fontaine
map 6 without using Theorem [2.3.1] from Chapter [} In this approach, we first define 0 as a
set theoretic map given by the identity and show that 0 is indeed a ring homomorphism
using descriptions of the ring operations on Ay, = W(Op).

PROPOSITION 2.2.5. The ring homomorphism 6[1/p] : Aine[1/p] — Ck is surjective.

Proor. For every ¢ € Cg, there exists an integer n > 0 with p"c € Oc¢,. Hence the
assertion immediately follows from Proposition O
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Definition 2.2.6. We define the de Rham local ring to be

By =l Au[1/p]/ ker(6[1/p])’

7

and let 01 : Biz — Aine[1/p]/ ker(6[1/p]) denote the natural projection.

Remark. We will soon define the de Rham period ring Bgr to be the fraction field of B:{R
after verifying that B(;FR is a discrete valuation ring. At this point, it is instructive to explain
Fontaine’s insight behind the construction of Bgr. As briefly discussed in Chapter [, Fontaine
introduced the rings Byt and Bgr respectively to formulate the Hodge-Tate decomposition
and the de Rham comparison isomorphism. Since the de Rham cohomology admits the Hodge
filtration with the Hodge cohomology as its graded vector space, Fontaine aimed to construct
Bgr as a ring which admits a canonical filtration with Byt as its graded ring. He sought
Bgr as the fraction field of a complete discrete valuation ring BJR with residue field Cg
so that it admits a filtration { Fil"(Bar) },ez = {"Big nez for a uniformizer ¢ € Bix
with its graded ring isomorphic to Bygr. For a perfect field k of characteristic p, the theory
of Witt vectors naturally yields a complete discrete valuation ring with residue field & as
noted in Chapter [[I, Lemma [2.3.8] Fontaine judiciously adjusted the construction of Witt
vectors for the field Cx of characteristic 0 by passing to characteristic p, or by tilting the
perfectoid field Cx in modern language. He began by taking the ring Oc, /pOc, which is
evidently of characteristic p. As Oc, /pOc, turns out to be not perfect, Fontaine considered
its perfection lim Oc /POc, = OF by adding all p-power roots of elements in Oc,. /pOc, -

TP
Fontaine then discovered that A,y = W(Op) gives rise to a surjective ring homomorphism

0[1/p] : Aine[1/p] = Cx. Moreover, as we will soon see, ker(6[1/p]) turned out to be a principal
ideal. Therefore Fontaine obtained the desired ring B(TR as the completion of Ajn¢[1/p] with
respect to ker(0[1/p]).

LEMMA 2.2.7. For each integer n > 0 we have ker(6) N p™ Ains = p" ker ().

PROOF. Since we evidently have p™ ker() C ker(6) N p™Aine, we only need to show that
every a € ker(0) Np"Ajyr is an element of p™ ker(f). Let us write a = p™b for some b € Ajys.
From the identity

0=0(a) =0(p"b) = p"0(b)
we find 0(b) = 0 as Oc,, is torsion free. Therefore we deduce that a = p"b lies in p" ker(6) as
desired. O

LEMMA 2.2.8. The sharp map associated to Cg is surjective.

PROOF. The assertion follows from the fact that Cg is algebraically closed as noted in
Chapter [[I} Proposition [3.1.13 O

Remark. It is worthwhile to mention that Lemma [2.2.8] is not essential for our discussion.
In fact, we use Lemma only to give a simple description of an element generating ker(#).
For an arbitrary perfectoid field C, we can still show that the kernel of the surjective ring
homomorphism ¢ : W(Oc») — Oc is principal by explicitly presenting a generator.
Definition 2.2.9. A distinguished element of A;ys is an element of the form £ = [pb] —p € At
for some p’ € Op with (pb)jj =p.

Remark. The existence of p° follows from Lemma We may regard p’ as a system of
p-power roots of p in Cg.
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For the rest of this chapter, we fix a distinguished element £ = [pb] —p € Ajnt.

LEMMA 2.2.10. Every element a € ker(#) is an Ajy¢-linear combination of £ and p.

ProoF. We wish to show that a lies in the ideal generated by £ and p, or equivalently by
[p°] and p. Let us write

a= Z[cn]pn = [co] +p2[cn}p”*1 with ¢, € Op.

n>0 n>1
It suffices to show that [cg] is divisible by [p’]. Since we have 0 = 6(a) = Z ¢ p™, we deduce
n>0
that cg is divisible by p and consequently find
i
V(o) = v(ch) = vip) = (")) =" ().
Hence there exists an element u € Op with ¢y = p’u or equivalently [co] = [p°][u]. O

PROPOSITION 2.2.11. The element £ € Aj¢ generates the ideal ker(f) in Ajys.

PROOF. The ideal ker(#) contains £ as we have

f
0(¢) =0(P’)—p) = (") —p=p—p=0.
Hence we only need to show that every a € ker(0) lies in the ideal £ Aj¢. Since Ajys is p-adically
complete by construction, it suffices to present a sequence (¢,) in Ay, with

m
a— Z cnlp™ € P Ay for each m > 0.
n=0
We take ¢y € Ajns with a — cp€ € pAjns given by Lemma [2.2.10] and inductively construct ¢,
for each m > 1. In fact, by Lemma we have
m—1
a— Z cn&p™ € ker(0) Np™ Aing = p"" ker ()
n=0
and thus find by, ¢y € Ajps with

m—1

a—"Y calp” =" (Pbm + k)

n=0

or equivalently
m
a — Z cnfpn = pm+1bm
n=0
as desired. O

Remark. Proposition yields a natural isomorphism Ajn¢/EAins = Oc,, which turns
out to be a homeomorphism. Since the construction of A;,s depends only on the field F', the
principal deal £A;r € A contains all necessary information for recovering the perfectoid
field Cx from its tilt F. In fact, as we will see in Chapter [[V] every perfectoid field C' with
C” ~ F arises as the fraction field of Aj.¢ /I for a unique principal ideal I C Ajys.

PROPOSITION 2.2.12. The element & € Ajyr generates the ideal ker(6[1/p]) in Aine[1/p].

PRrROOF. For every a € ker(0[1/p]), we have p"a € ker(6) for some n > 0. Hence the
assertion follows from Proposition [2.2.11 O
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LEMMA 2.2.13. Every a € Ajy¢[1/p] with £a € Ajyr is an element in Ajys.

PRrROOF. We have 0(£a) = 0[1/p](€a) = 0 by Proposition [2.2.12|and in turn find £a € £ Ajns
or equivalently a € Ajnr as Ajnr is an integral domain. O

LEMMA 2.2.14. For each integer i > 1, we have Aj,¢ Nker(0[1/p])" = ker(9)".

PROOF. Since we clearly have ker()® C A N ker(6]1/p])?, we only need to show that
every a € Apys Nker(0[1/p])? lies in ker(#)?. Proposition yields an element b € Ajne[1/p]
with a = &b. Hence we find b € Ay by Lemma and consequently deduce the desired
assertion from Proposition [2.2.11 O

ProPOSITION 2.2.15. We have ﬂ ker(0)" = m ker(0[1/p])" =
i=1 =

PROOF. By Lemma we have

ﬂker [1/p])° (ﬂker ) [1/p].

Hence it suffices to establish the identity ﬂ ker(f)" = 0. Let us take an arbitrary element
i=1

c € m ker(f)" and write ¢ = > [c,]p" with ¢, € Op. Proposition [2.2.11] shows that ¢ is

divisible by every power of £ = [pb] — p in A;ur, which in particular implies that ¢y is divisible

by every power of p’ in Op. Since we have °(p’) = V((pb)ﬁ) =v(p)=1>0, we find ¢g =0
and in turn write ¢ = pc for some ¢’ € A;r. Moreover, Lemma [2.2.14] yields the relation

d € AN (ﬁ ker(@)i) [1/p] = Ains N (ﬂ ker(6[1/p]) ) ﬂker

i=1 i=1
Now a simple induction shows that c¢ is infinitely divisible by p and thus is zero. O

PROPOSITION 2.2.16. The ring B:R is a complete discrete valuation ring with ker(GIR) as the
maximal ideal, Cx as the residue field, and £ as a uniformizer.

PROOF. Since we have B, /ker(61;) = Cx by Proposition lm, we deduce from ssome
general facts stated in the Stackb project [Stal Tag 05GI and Tag 07BH] that BGJ{R is a local
ring with ker(#1;) as the maximal ideal and Cf as the residue field. Let us now consider an
arbitrary nonzero element b € BSFR. For each integer ¢ > 0, we write b; and &; respectively
for the images of b and £ under the projection Bj — Ain[1/p]/ ker(0[1/p])*. In addition, we
take the largest integer j > 0 with b; = 0. Proposition implies that for each i > j we
may write b; = §fuz with u; ¢ ker(0[1/p])/ker(0[1/p])". For each i > j we let u} denote the
image of u; in Ajy¢[1/p]/ ker(0[1/p])' 7. We observe that the sequence (u});>; depends only on
b and gives rise to a unique unit v € B(TR with b = &/u. Therefore B;{R is a discrete valuation
ring with £ as a uniformizer. Now we deduce from Proposition and Proposition [2.2.15
that B;R is complete, thereby establishing the desired assertion. O

Remark. Our argument so far in this subsection remains valid if we replace Cx by an
arbitrary algebraically closed perfectoid field of characteristic 0.

Definition 2.2.17. The de Rham period ring Bgr is the fraction field of B(;FR.
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PROPOSITION 2.2.18. Let K denote the fraction field of W (k).
(1) The field K is a finite totally ramified extension of Kj.

(2) There exists a natural commutative diagram

Ko —— Aint[1/p]

| /

K——— B
\ iaarR
Ck

where the diagonal map is the natural inclusion.

PROOF. Let us take a uniformizer m of Ok . There exists an integer e > 0 with p = n°u
for some unit u € Ox. Hence we obtain a natural ring homomorphism

k=0k/mO0r — Ok /7°Ox = Ok /pOk (2.5)

which identifies Of /pOj; as a k-algebra with a basis given by 1,7, --- ,7¢~!. The map (2.5))
induces a ring homomorphism W (k) — Ok by Theorem in Chapter

We assert that 1,7, --- , 7! generate Ok over W (k). Take an arbitrary element ¢ € Of.
Since O is p-adically complete, it suffices to find sequences (ag ), -+ , (@de—1,,) in W (k) with
e—1 m
c— Z Z ajnp"'m € p" Ok for each m > 0.
=0 n=0

In fact, we use the map (2.5)) to inductively obtain ag ., - ,@e—1.m € W(k) with

1 e—1m—1 e—1

=1 G 9 S B oY
p i=0 n=0 i=0

and consequently obtain the desired assertion.

Our discussion in the previous paragraph shows that K is a finite extension of Ky and
in turn yields statement as both Ky and K have residue field k. Hence it remains to
establish statement The map (2.5) induces a ring homomorphism k& — Oc, /pOcy -
Since k is perfect, this map gives rise to a natural homomorphism

k — lim Oc, /pOc) = Or

r—xP
with the isomorphism given by Proposition and in turn yields the top horizontal map
by Theorem in Chapter [[IL Moreover, we get the left vertical map from statement
and take the right vertical map to be the natural map
Aing[1/p] — lim Aine[1/p]/ ker(6[1/p])" = Bz

)

which is injective by Proposit We may now identify Ky as a subring of B:{R'
Statement and Proposition together show that K is a separable algebraic extension
of Ko which lies in the residue field Cg of the complete discrete valuation ring BSFR' Therefore
Hensel’s lemma implies that K admits a unique embedding into BCTR which fits in the desired
diagram. O
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In order to study some additional properties of Byr, we invoke the following technical
result without a proof.

PRrROPOSITION 2.2.19. There exists a refinement of the discrete valuation topology on B(TR
with the following properties:

(i) The natural map Aj,s — B;R identifies Ajyr as a closed subring of B;'R.
(ii) The map 0[1/p] is continuous and open with respect to the p-adic topology on Ck.
(iii) There exists a continuous map log : Z,(1) — Bjg with

oo 1 n
log(c) = Z(—l)”*’li([c] —1 for every ¢ € Z,(1)
n=1 n
under the natural identification Z,(1) = lim v (K)={ceOp:cf=1}.
(iv) The multiplication by every uniformizer yields a closed embedding on B;R.
(v) The ring Bjy is complete.

Remark. We will eventually prove Proposition [2.2.19] in Chapter [[V] after constructing the
Fargues-Fontaine curve. There will be no circular reasoning as the construction of the Fargues-
Fontaine curve relies only on results that we have discussed prior to Proposition Read-
ers can find a sketch of the proof in the notes of Brinon-Conrad [BC| Exercise 4.5.3].

Let us briefly explain why Proposition [2.2.19]is essential for our discussion. The discrete
valuation topology on B:R has a major defect of not carrying much information about the
p-adic topology on Cg. In fact, if we only consider the discrete valuation topology on B;{ the
map 6[1/p] is not continuous with respect to the p-adic topology on Cg. Proposition
allows us to incoorporates the p-adic topology on Cg in our discussion, which is essential for
studying continuous I' i -representations.

Definition 2.2.20. We refer to the map log : Zy(1) — Bc—lFR given by Proposition [2.2.19] as
the logarithm map on Zy(1).

Remark. In Chapter [[V] we will describe the relationship between this logarithm map and
the p-adic logarithm log,, .

LEMMA 2.2.21. Let € be a basis element of Z;(1) = lim 1 (K)={ceOp:c =1} over Z,.

(1) The element ¢ divides [e] — 1 in Ajpg.
p
2) We have 1°(e — 1) = ——.
(2) We have (e — 1) p—
PROOF. We have §([¢] — 1) = ¢! —1 =1 —1 = 0 and thus deduce statement follows
from Proposition [2.2.11} Let us now write ¢ = ({») where each (,» is a primitive p"-th root

of unity in K. We use Proposition and the continuity of v to find
Ve—1)=v ((5 — 1)ﬁ) =v ( lim ({pn — 1)pn) = lim p"v({m —1).
n—oo n—oo

p—1
The irreducible polynomial of (,» — 1 over Q, is f(x) = Z(ZE + 1)217’%1 of degree p"~!(p — 1)
i=0
with constant term p. Hence we have
v(p) 1

Vo =)= e o T i o)

and consequently establish statement O
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PROPOSITION 2.2.22. Let £ be a basis element of Z,(1) = { ¢ € Op : ¢! =1} over Z,.

(1) The element ¢ := log(e) € Bjy is a uniformizer.
(2) For every m € Z, we have log(¢™) = mlog(e).

PROOF. Let us first consider statement |[(1)] By Proposition [2.2.18 and Lemma [2.2.21] we
_ 1)
have [e] — 1 € £Ajnr and M S sz:{R for each n > 2. Hence we find
n

[e.9] n

=3 e 1y ey,
n=1

Since £ is a uniformizer of Bj; as noted in Proposition it suffices to show that [¢] — 1
is not divisible by &2 in Bjg,

Suppose for contradiction that [] — 1 lies in £ BJ;. Proposition shows that [¢] — 1
maps to 0 under the projection Bjy — Ain[1/p]/ ker(6[1/p])?. Hence Proposition and
Lemma together imply that [¢] — 1 is an element of ker(0[1/p])? N Ajng = €2 Ajng, which
means that [¢] — 1 is divisible by &2 in Aj,¢. Since the first terms in the Teichmiiller expansions
for [¢] — 1 and &2 are respectively [¢ — 1] and [(p”)?]

Ve —1) = (1)) = 2°(0) = 2((0)°) = w(p) = 2.

If p is odd, we find I/b(E —1) < 2 by Lemma and in turn obtain a desired contradiction.
For p = 2, we write [¢] — 1 = ¢2a for some a € Aj,; and compare the coefficients of p in
the Teichmiiller expansions using Proposition from Chapter [[] to obtain the relation
e —1=c}(p")* where ¢; denotes the coefficient of p in the Teichmiiller expansion of a. Hence

for p = 2 we have

, we have

#
V(e—1)2((")") =4/ (") = w((p")) = 4v(p) = 4
and in turn obtain a desired contradiction by Lemma [2.2.21]
It remains to establish statement If m is an integer, we have

log((1+x)™) =mlog(l + x)

as formal power series and thus set x = € — 1 to find log(e") = mlog(e). For the general case,
let us choose a sequence (m;) of integers with each m; —m divisible by p’. Since t = log(e) is
a uniformizer of BCTR, we find

lim m; log(e) = mlog(e)

1—00

by Proposition 2.2.19] In addition, it is straightforward to verify the identity
lim ™ =™
71— 00

with respect to the valuation topology on F'. Hence we have

1—00 1—00 1—00

log(¢™) = log <lim 5mi> = lim log(¢"") = lim m;log(e) = mlog(e)

where the second identity follows from the continuity of the logarithm map as noted in Propo-
sition 2.2.19 O
Remark. Statement shows that log is a Z,-linear homomorphism.

Definition 2.2.23. A cyclotomic uniformizer of B:{R is an element of the form ¢ = log(¢e) for
some basis element € of Zy(1).



2. DE RHAM REPRESENTATIONS 103

THEOREM 2.2.24 (Fontaine [Fon82]). The ring Bgr admits a natural action of I'x with the
following properties:

(i) The logarithm map and 67 are I'x-equivariant.
(ii) Given a cyclotomic uniformizer ¢ € BJ;, we have v(t) = x()t for every v € I'k.
(iii) Every cyclotomic uniformizer ¢ € B:{R yields a natural I"k-equivariant isomorphism

"B/t Bl = @ Ck(n) = Bur.
neZ nez

(iv) Bgr is (Qp,I')-regular with a canonical identification ng =K.

PROOF. Let us first describe the natural action of I'iy on Bgqr. The action of 'y on Cg
naturally induces an action on F' = lln Cg as the p-th power map on Cg is I'x-equivariant.

x—xP

In fact, given an arbitrary element z = (x,) € F we have v(z) = (vy(x,,)) for every v € I'k.
Since Op is stable under the action of ', we apply Theorem in Chapter [[I to obtain a
natural action of ' on Aju¢[1/p] with

v (Z[cn]pn> = Z[’y(cn)]pn for each v € ' and ¢, € Op.

Now we find that 6 and 6[1/p] are both I'k-equivariant by construction, whicn in particular
implies that both ker(6) and ker(0[1/p]) are stable under the action of I'. Hence I' naturally
acts on Bl = lim_ Aine[1/p]/ ker(A[1/p])* and its fraction field Byg.

With our discussion in the preceding paragraph, property ((i)|is straightforward to verify.
Moreover, property and Proposition [2.2.22| togther show that every v € 'k acts on a
cyclotomic uniformizer ¢ = log(e) € Bj; by the relation

7(t) = ~(log(e)) = log(1(e)) = log(eXV)) = x(7) log(e) = x(7)t
and thus yield property Now we note by property |(i)| that the natural isomorphism
BSFR/tB(TR = B(;FR/ ker(@j{R) =~ Cg
is I'k-equivariant and in turn obtain a I'-equivariant isomorphism
t"Biz /"' B ~ Cg(n) for every n € Z

by property and Lemma in Chapter Since Proposition [2.2.22| implies that a

cyclotomic uniformizer of B(J{R is unique up to Z,-multiple, we deduce that this isomorphism
is canonical and consequently establish property

It remains to verify property Example shows that Bgg is (Qp, 'x)-regular for
being a field extension of Q,. In addition, property implies that the natural injective

homomorphism K < BCTR given by Proposition [2.2.18]is I' x-equivariant and in turn induces
an injective homomorphism
7a r r
K=K " — (BRR)"® — B. (2.6)
Now by property we get an injective K-algebra homomorphism
r r 1 r
(B Nt"BiR)/(Byk Nt"'Bly) — By
nez

Since we have Bgﬁi > K by Theorem |3.1.14] in Chapter [[I, the K-algebra on the source has

dimension at most 1. Hence we find dimg B;f < 1 and in turn deduce that the map (2.6) is
an isomorphism, thereby completing the proof. O
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2.3. Filtered vector spaces

In this subsection we set up a categorical framework for our discussion of Bgr-admissible
representations in the next subsection.

Definition 2.3.1. Let L be an arbitrary field.

(1) A filtered vector space over L is a vector space V over L along with a collection of
subspaces { Fil"(V') },, <, that satisfies the following properties:
(i) Fil"(V) D Fil""Y(V) for every n € Z.
(i) () Fil"(V) =0and | JFil*(V)=V.

nez nez

(2) A graded vector space over L is a vector space V over L along with a direct sum

decomposition V = @ Va.
nez

(3) A L-linear map between two filtered vector spaces V and W over L is called a

morphism of filtered vector spaces if it maps each Fil"(V') into Fil"(W).

(4) A L-linear map between two graded vector spaces V = @ Viand W = @ W,, over

nez nez
L is called a morphism of graded vector spaces if it maps each V,, into W,.

(5) For a filtered vector space V over L, we define its associated graded vector space by
gr(V) == @ Fi(v)/Fil (V)
neZ
and write gr™(V) := Fil"(V)/Fil"* (V) for every n € Z.
(6) We denote by Fily the category of finite dimensional filtered vector spaces over L.

Example 2.3.2. We present some motivating examples for our discussion.

(1) Theorem [2.2.24) shows that By is a filtered K-algebra with Fil"(Bgg) := t"Bj; and
gr(Bgr) = But where t is a cyclotomic uniformizer of B:{R.

(2) For a proper smooth variety X over K, the de Rham cohomology Hp (X/K) with
the Hodge filtration is a filtered vector space over K whose associated graded vector
space recovers the Hodge cohomology.

(3) For every V € Repg, (I'x), we may regard Dp,, (V) = (V ®q, Bgr)"'® as a filtered
vector space over K with

Fil"(Dpyy (V) := (V ®q, t"Big)"~.

Remark. For an arbitrary proper smooth variety X over K, we have a canonical I'g-
equivariant isomorphism of filtered vector spaces

DBdR(ch(X?v @p)) = H(?R(X/K)

by Theorem in Chapter In particular, we can recover the Hodge filtration on Hf (X/K)
from the I'g-action on H} (X7, Qp).

LEMMA 2.3.3. Let V be a finite dimensional filtered vector space over a field L. There exists

a basis (v; ;) for V such that for every n € Z the vectors v;; with ¢ > n form a basis for
Fil" (V).

PROOF. Since V is finite dimensional, we have Fil" (V') = 0 for all sufficiently large n and
Fil"(V)) = 0 for all sufficiently small n. Hence we can construct such a basis by inductively
extending a basis for Fil"(V) to a basis for Fil"~}(V). O
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Definition 2.3.4. Let L be an arbitrary field.

(1) Given two filtered vector spaces V and W over L, we define the convolution filtration
onV ®r W by

Fil"(V @, W)= Y Fil'(V) @, Fil/ (W).
i+j=n
(2) For every filtered vector space V over L, we define the dual filtration on the dual
space V¥ = Homp (V, L) by
Fil"(VY):={ f e V¥V Fil' "™(V) C ker(f) }.
(3) We define the unit object L[0] in Fil;, to be the vector space L with the filtration

{L if n <0,

e P

Remark. The use of Fil'!7"(V) rather than Fil~™ (V) in is to ensure that L[0] is self-dual.

ProprosITION 2.3.5. Let V be a filtered vector space over a field L. Then we have canonical
isomorphisms of filtered vector spaces

VeLL0=L0e, V=V and (VY =2V

PrOOF. For every n € Z we find
Fil"(V @ L[0]) = Y Fil'(V) @ FiV (L[0]) = ) Fil'(V) = Fil*(V),
i+j=n >n
and consequently obtain an identification of filtered vector spaces
Ver L0 2 L0,V =V

Moreover, the natural evaluation isomorphism e : V' 2 (V) yields an isomorphism of filtered
vector spaces since for every n € Z we have

Fil" (VY)Y) 2 {v eV :Fil' (V") C ker(e(v)) }
={veV:fv)=0foral feFil'"™(V")}
={veV:f(v)=0forall fe V" with Fil"(V) C ker(f) }
= Fil" (V).
Therefore we complete the proof. O

PROPOSITION 2.3.6. Let V and W be finite dimensional filtered vector spaces over a field L.
Then we have a natural identification of filtered vector spaces

(VeorW)2vYe,WY.

PROOF. By Lemma we can choose bases (v; ) and (w;;) for V and W such that
for every n € Z the vectors (v; ;)i>n and (wj;)j>n respectively form bases for Fil" (V) and
Fil"(W). Let (f; %) and (gj;) be the dual bases for V¥ and WV. Then the vectors (f; x ® g;;)
form a basis for the vector space (V @ W)Y = VV @ WV. Moreover, for every n € Z the
vectors (fix)i<—n and (g;1)j<—n respectively form bases for Fil"(V") and Fil"(W"). Hence
we find that for every n € Z both Fil" ((V @, W)V) and Fil"(VY @, W) are spanned by the
vectors (fir ® gj.1)i+j<—n, thereby deducing the desired assertion. O
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LEMMA 2.3.7. Let V = @ V, and W = @ W, be graded vector spaces over a field L. A

nez nez
morphism f : V — W of graded vector spaces is an isomorphism if and only if it is bijective.

PROOF. The assertion immediately follows by observing that f is the direct sum of the
induced morphisms f,, : V,, — W,,. Il

PrOPOSITION 2.3.8. Let L be an arbitrary field. A bijective morphism f : V — W in Fily,
is an isomorphism in Fily, if and only if the induced map gr(f) : gr(V) — gr(W) is bijective.

PROOF. If f is an isomorphism of filtered vector spaces, then gr(f) is clearly an isomor-
phism. Let us now assume that gr(f) is an isomorphism. We wish to show that for every
n € Z the induced map Fil"(f) : Fil"(V) — Fil"(W) is an isomorphism. Since each Fil"(f)
is injective by the bijectivity of f, it suffices to show

dimy, Fil"(V') = dimg, Fil" (W) for every n € Z.

The map gr(f) is an isomorphism of graded vector spaces by Lemma [2.3.7] and consequently
induces an isomorphism

gr’ (V) o~ gr"™(W) for every n € Z.
Hence for every n € Z we find
dimy, Fil" (V) =) dimg gr'(V) = Y _ dimy, gr'(W) = dim, Fil*(W)
>n >n
as desired. g

Example 2.3.9. Let us define L[1] to be the vector space L with the filtration

Fil*(L[1]) := {

L ifn<I1,
0 ifn>1.

The bijective morphism L[0] — L[1] given by the identity map on L is not an isomorphism
in Fily, since Fil'(L[0]) = 0 and Fil}(L[1]) = L are not isomorphic. Moreover, the induced
map gr(L[0]) — gr(L[1]) is a zero map.

ProprosITION 2.3.10. Let L be an arbitrary field. For any V, W € Filp, there exists a natural
isomorphism of graded vector spaces
gr(Ver W) =Zer(V)®r gr(W).

PROOF. Since we have a direct sum decomposition

g(V)ergW) =P | P «'(V)eLs/(W) |,
n€Z \i+j=n

it suffices to find a natural isomorphism

gr" (Ve W) = @ gr'(V) @p gr! (W) for every n € Z. (2.7)
i+j=n

By Lemma we can choose bases (v;}) and (wj;) for V and W such that for every
n € Z the vectors (v;)i>n and (wj;);j>n respectively span Fil"(V) and Fil"(W). Let T,y
denote the image of v;  under the map Fil'(V) — gr’(V), and let w;; denote the image of
w;,; under the map Fil/ (W) — gr/(W). Since each Fil*(V @ W) is spanned by the vectors
(Vi ks ® Wj1)itj>n, We obtain the identification by observing that both sides are spanned
by the vectors (U; ; @ Wj1)itj—n- O
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2.4. Properties of de Rham representations

Definition 2.4.1. We say that V' € Repg, (I'k) is de Rham if it is Byr-admissible. We
write RepfiQP;(F K) = Repgsr‘(r k) for the category of de Rham p-adic I'x-representations. In
addition, we write Dyt and Dggr respectively for the functors Dp,. and Dpg,g.
Example 2.4.2. Below are some important examples of de Rham representations.
(1) For every n € Z the Tate twist Q,(n) of Q, is de Rham; indeed, the inequality
dimg Dgr(Qp(n)) < dimg, Qp(n) =1
given by Theorem is an equality, as Dar(Qp(n)) = (Qp(n) ®g, Bar)"'* contains
a nonzero element 1 ® t~" by Theorem
(2) Every Ck-admissible representation is de Rham by a result of Sen.

(3) For every proper smooth variety X over K, the étale cohomology HZ (X3, Qp) is de
Rham by a theorem of Faltings as briefly discussed in Chapter [, Theorem

The general formalism discussed in §I| readily yields a number of nice properties for de
Rham representations and the functor Dggr. Our main goal in this subsection is to extend
these properties in order to incorporate the additional structures induced by the filtration
{ tnB(_i'_R on BdR~

LEMMA 2.4.3. Given any n € Z, every V € Repg, (I'x) is de Rham if and only if V/(n) is de
Rham.

nez

PROOF. Since we have identifications
V(n) =V ®Qp Qp(n) and = V(’I’L) ®Qp Qp(in)a

the assertion follows from Proposition [T.2.4] and the fact that every Tate twist of Q, is de
Rham as noted in Example 2.4.2] O

PROPOSITION 2.4.4. Let V be a de Rham representation of I'ic. Then V is Hodge-Tate with
a natural K-linear isomorphism of graded vector spaces

gr(Dar(V)) = Dur(V).
ProoOF. For every n € Z we have a short exact sequence
0 —— "B, —— t"Bjy —— "B /t""'B; —— 0,
which induces an exact sequence
r r r
0 — (Vag, "' Big) * — (Vag, t"Bjg) © —— (V &g, (" Bir/t""' Bip)) "
and consequently yields an injective K-linear map
. . r
gr"(Dar(V)) = Fil"(Dar (V))/ Fil" ™ (Dar (V) < (V @q, (1" Bi/t""' Big)) .

Therefore we obtain an injective K-linear map of graded vector spaces

n n r ~
gr(Dar(V)) — @ (V @q, (t"Bi/t" "' Bip)) ™ = (V @q, Bur)'* = Dur(V)
nez
where the middle isomorphism follows from Theorem [2.2.24, We then find

dimK DdR(V) = dimK gl"(DdR(V)) < dimK DHT(V) < dim(@p \%

where the last inequality follows from Theorem Since V' is de Rham, both inequalities
should be in fact equalities, thereby yielding the desired assertion. O
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Example 2.4.5. Let V' be an extension of Q,(m) by Q,(n) with m < n. We assert that V
is de Rham. By Lemma we may assume m = 0. Then we have a short exact sequence

0 —— Qu(n) 1% Q, — 0. (2.8)

Since the functor Dgg is left exact by construction, we obtain a left exact sequence
0 —— Dar(Qp(n)) —— Dgr(V) —— Dar(Qp).
We wish to show dimg Dgr(V') = dimg, V = 2. Since we have
dimg Dar (Qp(n)) = dimgx Dar(Qp) =1
by Example it suffices to show the surjectivity of the map Dyr(V) — Dgr(Qp) = K.
As B:R is faithfully flat over Q,, the sequence yields a short exact sequence
0 —— Qu(n) ®qg, Bijr —— V ®q, Bjg — @ ®q, Bjg —— 0.
In addition, by Theorem and Proposition [2.2.18 we have identifications
(Qp(n) @q, Bip) ™ = (1" Bip)"* =0,
(Qp ®q, Bip)' ™ = (Bjp)'* = K.

We thus obtain a long exact sequence

0 —— 0 —— (V®q, BR)'* —— K —— HY(I'g,t"BJ).
Since we have (V ®q, Biz)'* € (V ®q, Bar)'* = Dar(V), it suffices to prove
H'(Tk,t"Bjz) = 0. (2.9)
By Theorem we have a short exact sequence
0 —— t""Bf, —— t"Bj; —— Cx(n) —— 0,
which in turn yields a long exact sequence
Cr(n)'s —— H' Tk, t""'Bjy) —— H'Y(Tk,t"Biz) —— H'(T'x,Ck(n)).
Then by Theorem in Chapter [[ we obtain an identification
H' T g, t""'Biy) 2 H' (T g, t"Bip). (2.10)

Hence by induction we only need to prove (2.9) for n = 1.

Take an arbitrary element oy € H 1(F K, tBIR). We wish to show a; = 0. Regarding o as
a cocycle, we use (2.10)) to inductively construct sequences (o) and (y.,) with the following
properties:

(i) am € H'(Tk,t™Bjy) and yp, € "B for all m > 1,
(i) amt1(y) = am(¥) +v(ym) — ym for all v € 'k and m > 1.

Now, since t is a uniformizer in B(TR as noted in Proposition [2.2.22] we may take an element
Y = Ym € Blz. Then we have

a1(7) +7(y) —y € H' Tk, t™Big) for all vy € 'k and m > 0,
and consequently find a1 () +7(y) —y = 0 for all v € I'x. We thus deduce a; = 0 as desired.
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Remark. It is a highly nontrivial fact that every non-splitting extension of Q,(1) by Q, in
Repg, (T'k) is Hodge-Tate but not de Rham. The existence of such an extension follows from
the identification
EXt(bp[FK] (Q@p(1),Qp) = Hl(FIOQp(_l)) =K

where the second isomorphism is a consequence of the Tate local duality for p-adic represen-
tations. Moreover, such an extension is Hodge-Tate as noted in Example The difficult
part is to prove that such an extension is not de Rham. For this part we need a very deep
result that every de Rham representation is potentially semistable.

PROPOSITION 2.4.6. Let V be a de Rham representation of I'y. For every n € Z we have
gr'"(Dar(V)) # 0 if and only if n is a Hodge-Tate weight of V.

PROOF. This is an immediate consequence of Proposition [2.4.4] and Definition O

Remark. Proposition 2:4.6] provides the main reason for our choice of the sign convention in
the definition of Hodge-Tate weights. In fact, under our convention the Hodge-Tate weights of
a de Rham representation V' indicate where the filtration of Dgg(V') has a jump. In particular,
for a proper smooth variety X over K, the Hodge-Tate weights of the étale cohomology
H}, (X4, Qp) give the positions of “jumps” for the Hodge filtration on the de Rham cohomology
H: (X/K) by the isomorphism of filtered vector spaces

Dar(Hg (X5, Qp)) = Hig (X/K).

Example 2.4.7. The Tate twist Q,(m) of Q, is a 1-dimensional de Rham representation
with the Hodge-Tate weight —m as noted in Example [1.1.15 and Example Hence by
Proposition [2.4.6| we find

K forn<-m,
0 for n > —m.

Fil" (Dar (Qp(m))) = {

In particular, for m = 0 we obtain an identification Dqar(Q,) = K/0].
ProrosiTIiON 2.4.8. For every V € Repgp{(l“ k), we have a natural I'g-equivariant isomor-
phism of filtered vector spaces
Dar(V) ®Kx Bar =V ®q, Bar.
PROOF. Since V is de Rham, Theorem [1.2.1| implies that the natural map
Dar(V) ®x Bar — (V ®q, Bar) ®Kx Bar =V ®q, (Bar ®K Bar) — V ®q, Bar

is a I' g-equivariant isomorphism of vector spaces over Bygr. Moreover, this map is a morphism
of filtered vector spaces as each arrow above is easily seen to be a morphism of filtered vector
spaces. Hence by Proposition [2.3.8|it suffices to show that the induced map

gr(Dar(V) @ Bar) — gr(V ®q, Bar) (2.11)

is an isomorphism. By Proposition [2.3.10] Proposition and Theorem we obtain
identifications

gr(Dar(V) @k Bar) = gr(Dar(V)) @k gr(Bar) = Dut(V) @Kk By,
gr(V ®q, Bar) =V ®q, gr(Bdr) =V ®q, Bur-
We thus identify the map with the natural map
Dyut(V) ®k Bur — V ®q, But
given by Theorem [1.2.1] The desired assertion now follows by Proposition O
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PROPOSITION 2.4.9. The functor Dygg with values in Filg is faithful and exact on Rep%f:(l“;().
PRrROOF. Let Vectx denote the category of finite dimensional vector spaces over K. The

faithfulness of Dggr on Rep&i‘(F k) is an immediate consequence of Proposition since the

forgetful functor Filxy — Vectg is faithful. Hence it remains to verify the exactness of Dgr
on Rep&lz(F k). Consider an exact sequence of de Rham representations

0 U 1% W —— 0. (2.12)

The functor Dggr with values in Filg is left exact by construction. In other words, for every
n € Z we have a left exact sequence

We wish to show that this sequence extends to a short exact sequence. By Proposition [1.2.2
the sequence (2.12)) induces a short exact sequence of vector spaces

0 —— Dut(U) — Dur(V) —— Dur(W) —— 0.

Moreover, by the definition of Dy we find that this sequence is indeed a short exact sequence
of graded vector spaces. Then by Proposition we may rewrite this sequence as

0 —— gr(Dar(U)) — gr(Dar(V)) —— gr(Dar(W)) —— 0.
by Proposition Hence for every n € Z we have
dimg Fil"(Dar(V)) = > _ dimg gr'(Dar (V)

>n
=Y dimg gr'(Dar(U)) + Y dimg gr'(Dag (W)
i>n >n

thereby deducing that the sequence (2.13)) extends to a short exact sequence as desired. [

COROLLARY 2.4.10. Let V be a de Rham representation. Every subquotient W of V is a de
Rham representation with Dqgg (W) naturally identified as a subquotient of Dggr (V') in Filg.

PRroOOF. This is an immediate consequence of Proposition and Proposition|2.4.9l [

PROPOSITION 2.4.11. Given any V,W € Repg:(FK), we have V ®@q, W € RepﬁiQP;(FK) with a
natural isomorphism of filtered vector spaces

Dar(V) @k Dar(W) = Dgr(V ®Q, w). (2.14)

PRrROOF. By Proposition we find V ®q, W € Rep%ﬁ(FK) and obtain the desired
isomorphism as a map of vector spaces. Moreover, since the construction of the map
(2.14)) rests on the multiplicative structure of Bqr as shown in the proof of Proposition it
is straightforward to verify that the map is a morphism in Filx. Hence by Proposition
2:3:8 it suffices to show that the induced map

gr(Dar(V) @k Dar(W)) — gr(Dar(V ®q, W)) (2.15)

is an isomorphism. Since both V and W are Hodge-Tate by Proposition we have a
natural isomorphism

Dyt (V) @ x Dyt (W) = Dpp(V ®qQ, W) (2.16)

by Proposition [1.2.4, Therefore we complete the proof by identifying the maps and

(2.16)) using Proposition [2.3.10| and Proposition m O
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PROPOSITION 2.4.12. For every de Rham representation V', we have A" (V') € RepleI;(FK) and
Sym™(V) € Repfin:(F &) with natural isomorphisms of filtered vector spaces

AN*(Dar(V)) = Dar(A*(V)) and Sym"(Dar(V)) = Dar(Sym" (V).

PROOF. Proposition implies that both A"(V) and Sym"™ (V') are de Rham for every
n > 1. In addition, Proposition [I.2.5] yields the desired isomorphisms as maps of vector
spaces. Then Corollary and Proposition together imply that these maps are

isomorphisms in Filg. O

PROPOSITION 2.4.13. For every de Rham representation V', the dual representation V"V is de
Rham with a natural perfect paring of filtered vector spaces

DdR(V) (=476 DdR(VV) = DdR(V ®QP Vv) — DdR(Qp) = K[O] (217)
PRrOOF. By Proposition we find VV € Repﬁin;(FK) and obtain the desired perfect

pairing as a map of vector spaces. Moreover, Proposition [2.4.11] implies that this pairing is a
morphism in Filg. We thus obtain a bijective morphism of filtered vector spaces

Dar (V)" — Dar(V").
Therefore by Proposition [2.3.8] it suffices to show that the induced map
gr(Dar(V)) — gr(Dar(V")) (2.18)
is an isomorphism. Since V' is Hodge-Tate by Proposition[2.4.4] we have a natural isomorphism
Dur(V)Y = Dyt (V) (2.19)
by Proposition [1.2.6, We thus deduce the desired assertion by identifying the maps (2.18)
and ({2.19) using Proposition m O

Let us now discuss some additional facts about de Rham representations and the functor
DdR-

PROPOSITION 2.4.14. Let V be a p-adic representation of I'r. Let L be a finite extension of
K with absolute Galois group I'y.

(1) There exists a natural isomorphism of filtered vector spaces
Dyr,x (V) ®k L = Dgr, (V)
where we set DdR,K(V) = (V ®Q, BdR)FK and DdR,L(V) = (V ®Q, BdR>FL.
(2) V is de Rham if and only if it is de Rham as a representation of I'f.
PrOOF. We only need to prove the first statement, as the second statement immediately

follows from the first statement. Let L’ be the Galois closure of L over K with the absolute
Galois group I'zy and set Dar, 1/ (V) := (V ®g, Bar)' ™. Then we have identifications

DdR,K(V) ®K L = (DdR,K(V) ®K L/)Gal(Ll/L) and DdR,L(V) = DdR’L/(V)GaI(L//L).

Hence we may replace L by L' to assume that L is Galois over K. Moreover, since the
construction of Bgr depends only on Cg, we get a natural L-linear map

Dar,x (V) ®x L — Dgr,.(V).

It is evident that this map induces a morphism of filtered vector spaces over L where the
filtrations on the source and the target are given as in Example We then have

Fil"(Dyr 1 (V) = Fil*(Dgg, 1, (V)) G2 E/5) for all n € Z,

thereby deducing the desired assertion by the Galois descent for vector spaces. U
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Remark. Proposition extends to any complete discrete-valued extension L of K inside
Ck, based on the “completed unramified descent argument” as explained in [BC, Proposition
6.3.8]. This fact has the following immediate consequences:

(1) Every potentially unramified p-adic representation is de Rham; indeed, we have
already mentioned this in Example [2.4.2] since being Cg-admissible is the same as
being potentially unramified as noted in Example

(2) For one-dimensional p-adic representations, being de Rham is the same as being
Hodge-Tate by Proposition [1.1.13| and Lemma [2.4.3

Example 2.4.15. Let n : 'x — Z; be a continuous character with finite image. Then
there exists a finite extension L of K with absolute Galois group I'z, such that Q,(n) is trivial

as a representation of I'y,. Hence by Example and Proposition [2.4.14 we find that Q,(n)

is de Rham with an isomorphism of filtered vector spaces

Dar(Qp(n)) ®x L = L[0],

and consequently obtain an identification
Dar(Qp(n)) = K[0] = Dar(Qp).
In particular, we deduce that the functor Dgr on RepﬁiQPp”(I‘ k) with values in Filg is not full.

We close this section by introducing a very important conjecture, known as the Fontaine-
Mazur conjecture, which predicts a criterion for the “geometricity” of global p-adic represen-
tations.

CONJECTURE 2.4.16 (Fontaine-Mazur [FM95]). Fix a number field E, and denote by Op the
ring of integers in E. Let V' be a finite dimensional representation of Gal(Q/E) over Q, with
the following properties:

(i) For all but finitely many prime ideals p of O, the representation V' is unramified at
p in the sense that the action of the inertia group at p is trivial.

(ii) For all prime ideals of Op lying over p, the restriction of V to Gal(Q,/E,) is de
Rham.

Then there exist a proper smooth variety X over E such that V appears as a subquotient of
the étale cohomology H (Xg, Qp(m)) for some m,n € Z.

Remark. If V is one-dimensional, then Conjecture follows essentially by the class field
theory. For two-dimensional representations, Conjecture has been verified in many
cases by the work of Kisin and Emerton. However, Conjecture remains wide open for
higher dimensional representations.

The local version of Conjecture is known to be false. More precisely, there exists a
de Rham representation of I'r which does not arises as a subquotient of H}} (X7, Q,)(m) for
any proper smooth variety X over K and integers n, m.
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3. Crystalline representations

In this section we define and study the crystalline period ring and crystalline representa-
tions. Our primary reference for this section is Brinon and Conrad’s notes [BC| §9].

3.1. The crystalline period ring B

Throughout this section, we write W (k) for the ring of Witt vectors over k, and Ky for
its fraction field. Recall that we have fixed an element p’ € Op with (pb)Tj = p and set
§=1[p") —p € A
Definition 3.1.1. We define the integral crystalline period ring by

> n
Agris 1= { Zoann! € B(TR D ap € Ay with 7115130 an =0 } ,
n—

and write Bl 1= Aqis[1/p).

Remark. In the definition of A5 above, it is vital to consider the refinement of the discrete
valuation topology on B(TR as described in Proposition [2.2.19] While the convergence of
n

the infinite sum Z an relies on the discrete valuation topology on BCTR, the limit of the
n!
n>0
coefficients a, should be taken with respect to the p-adic topology on Ajys.

We warn the readers that the terminology given in Definition [3.1.1| is not standard at
all. In fact, most authors do not give a separate name for the ring Agis. Our choice of the
terminology comes from the fact that Ac.s plays the role of the crystalline period ring in the
integral p-adic Hodge theory.

PROPOSITION 3.1.2. We have t € Auis and P71 € pAeris.

PrROOF. By Lemma [2.2.21| we may write [¢] — 1 = &c for some ¢ € Ajye. Then we obtain

an expression

o0 [e.9]

t= Z(—l)”“([e];l)n =Y (=" -1 % (3.1)
n=1 n=1

We thus find ¢ € Aqyis as we have lim (n — 1)!Ic¢" = 0 in Ajy¢ relative to the p-adic topology.
n—oo

It remains to show P71 € pAeis. Let us set

= zp:(—mnﬂw. (3.2)

n

Since (n — 1)! is divisible by p for all n > p, we find t — £ € pAuis by . Hence it suffices
to prove P! € pAcs.

The terms for n < p in are all divisible by [e] — 1 in Ag;is, whereas the term for n = p
in can be written as

(—1)PH! (] ; P (—1)pH ([] —pl)pl (] = 1).
In other words, we may write

i=(-1) (a N 1),,_1)

p
for some a € Agis. It is therefore enough to show ([g] — 1)P~! € pAeis.
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Since we have ([g]—1)—[e — 1] € pAjnt C pAais, we only need to prove [(e — 1)P71] € pAcyis.
In addition, by Lemma [2.2.21] we have

V(=1 ) == (")),

and consequently find that [(¢ — 1)P~1] is divisible by [p’]? = (€ + p)P. We thus deduce the
desired assertion by observing that &P =p - (p — 1)!- (§P/p!) is divisible by p in Acis. O

Remark. As a consequence, we find

Pl t

— = — ———— € Aqis-

pbop (1)
In fact, it is not hard to prove that for every a € A5 with HIR(a) = 0 we have a"/n! € Agyis
for all n > 1.

COROLLARY 3.1.3. We have an identification B, [1/t] = Aeyis[1/].

PROOF. Proposition implies that p is a unit in Aqis[1/t], thereby yielding
B [1/t] = Acris[1/p, 1/1] = Aciis[1/1]
as desired. ]

Definition 3.1.4. We define the crystalline period ring by
Beyis i= Bctis[l/t] = Acris[l/t]-

Remark. Let us briefly explain Fontaine’s insight behind the construction of B;s. The main
motivation for constructing the crystalline period ring Be,is is to obtain the Grothendieck mys-
terious functor as described in Chapter [ Recall that, for a proper smooth variety X over K
with a proper smooth integral model X over Ok, the crystalline cohomology H.. (X, W (k))
admits a natural Frobenius action and refines the de Rham cohomology Hy (X/K) via a
canonical isomorphism

exis (X, W () [1/p] @1, K = Hig (X/K).

Cris

In addition, since Ajyr is by construction the ring of Witt vectors over a perfect [F)-algebra
Op, it admits the Frobenius automorphism ¢i,s as noted in Chapter [[I, Proposition
Fontaine sought to construct Beis as a sufficiently large subring of Bgg on which ;¢ naturally
extends. For Bggr there is no natural extension of ¢ since ker(f[1/p]) is not stable under
¢mf- Fontaine’s key observation is that by adjoining to Aj,s the elements of the form £"/n!
for n > 1 we obtain a subring of A;,¢[1/p] such that the image of ker(6[1/p]) is stable under
©int- This observation led Fontaine to consider the ring Aeis defined in Definition The
only issue with Agis is that it is not (Qp, 'k )-regular, which turns out to be resolved by
considering the ring Beyis = Aeris[1/1]-

PROPOSITION 3.1.5. The ring Bg,is is naturally a filtered subalgebra of Bgqr over K which is
stable under the action of I'k.

PRrROOF. By construction we have
Ainf[l/p] - Acris[l/p] = B(J;«is C Beais © BdR-

In addition, the proof of Proposition yields a unique homomorphism K — Bgg which
extends a natural homomorphism Ky — Aj¢[1/p]. Hence by Example we naturally
identify Beyis as a filtered subalgebra of Bgr over Ky with Fil"(Beyis) := Beris N t"B;R.

It remains to show that Beris = Aeris[1/t] is stable under the action of I'k. Since 'y acts
on t by the cyclotomic character as noted in Theorem we only need to show that Acis
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is stable under the action of I'x. Consider an arbitrary element v € 'y and an arbitrary
sequence (a,) in Ajy¢ with lim a,, = 0. Since ker(f) is stable under the I'-action as noted
n—oo

in Theorem [2.2.24] we may write v(§) = ¢, for some ¢, € Ay by Proposition 2.2.11 We
then have lim ’y(an)c:; = 0 as the I'-action on Aj,¢ is evidently continuous with respect to
n—oo

the p-adic topology. Hence we find

[o¢] {n o0 gn
v Z an | = Zy(an)cza € Acris
n=0 n=0
as desired. 0

Remark. We provide a functorial perspective for the I' x-actions on Bs and Bqr which can
be useful in many occasions. Since the definitions of Bs and Bgr only depend on the valued
field Cg, we may regard Bc;is and Bggr as functors which associate topological rings to each
complete and algebraically closed valued field. Then by functoriality the action of ' on Cg
induces the actions of ' on Bis and Bgr. In particular, since By is a subfunctor of Bgr
we deduce that the I'g-action on Bjs is given by the restriction of the I'ix-action on Bggr as
asserted in Proposition [3.1.5

We also warn that FilO(BcriS) = Beris ﬂB:{R is not equal to B;is. For example, the element
/7" — 1
el -1

lies in Beris N B but not in B

cris®
In order to study the I'x-action on Bgis we invoke the following crucial (and surprisingly
technical) result without proof.
PROPOSITION 3.1.6. The natural I'g-equivariant map Beis ® i, KX — Bgr is injective.

Remark. The original proof by Fontaine in [Fon94] is incorrect. A complete proof involving
the semistable period ring can be found in Fontaine and Ouyang’s notes [FOl Theorem 6.14].
Note however that the assertion is obvious if we have K = K, which amounts to the condition
that K is unramified over Q.

ProprosITION 3.1.7. There exists a natural isomorphism of graded K-algebras
g1 (Beris @1, K) = gr(Bar) = Bur.

PrROOF. We only need to establish the first identification as the second identification
immediately follows from Theorem as noted in Example By Proposition [3.1.6
the natural map Beris ®x, K — Bgr induces an injective morphism of graded K-algebras

gr(Bcris ®Ko K) - gr(BdR)- (33)
In particular, we have an injective map
g1’ (Bais ®k, K) — gr(Bar) = Cx
where the isomorphism is induced by HIR. Moreover, this map is surjective since the image
of Beis ®k, K in Bgr contains Ajn¢[1/p] and consequently maps onto Cx by HXR. Therefore
we obtain an isomorphism
g1° (Baris @, K) = g1’ (Bar) = Cr.

This implies that each gr™(Beris® i, K ) is a vector space over Cx. Moreover, each gr'(BeisQ k,
K) contains a nonzero element given by ¢" ® 1. Hence the injective map (3.3) must be an
isomorphism since each gr”(Bgr) has dimension 1 over Cg. O



116 III. PERIOD RINGS AND FUNCTORS

THEOREM 3.1.8 (Fontaine [Fon94]). The ring Beis is (Qp, Ik )-regular with Bgri = K.

PRroOOF. Let C.s denote the fraction field of Bs. Proposition implies that Ccs is
a subfield of Bgr which is stable under the action of I'x,. Hence we have Ky C Bcrr’fs C C’gﬁ
Then Proposition and Theorem together yield injective maps

BlE@g, K~ By =K  and  CLE®k, K — B 2K,

cris cris

thereby implying Ko = B'r — ol

Cris cris’

It remains to check the condition in Definition Consider an arbitrary nonzero
element b € B on which 'k acts via a character n : 'y — Q;. We wish to show that b
is a unit in Beyig.

By Proposition we may write b = t°b’ for some V' € (Bjz)* and i € Z. Since ¢ is a
unit in B by construction, the element b is a unit in Beyis if and only if &’ is a unit in Beys.
Moreover, Theorem implies that I'x acts on ¥’ = b-t~* via the character ny~*. Hence
we may replace b by b to assume that b is a unit in B(J{R.

Since 65 is I' x-equivariant as noted in Theorem [2.2.24] the action of I'sc on 61, (b) € Cx
is given by the character n. Then by the continuity of the I'x-action on Cx we find that
n is continuous. Therefore we may consider 7 as a character with values in ZX. Moreover,

we have G(TR(b) # 0 as b is assumed to be a unit in BIR. Hence Theorem implies that
n~1(Ik) is finite.

Let us denote by K" the maximal unramified extension of K in K, and by Kun the p-adic
completion of K. By definition K" is a p-adic field with Ix as the absolute Galois group.
Therefore by our discussion in the preceding paragraph there exists a finite extension L of

KW with the absolute Galois group I'y, such that 77_1 becomes trivial on I'y, C I . Since '
acts on 015 (b) via n, we find 615 (b) € chr = (CEL = L by Theorem [3.1.14] in Chapter

Let us write W (k) for the ring of Witt vectors over k, and KU for the fraction field of
W (k). Proposition [2.2.18| yields a commutative diagram

K5 ——— Aing[1/p]

/ I

+
L — B

\ PIR

Ck
where all maps are I'g-equivariant. I\E(Eeover, both horizontal maps are injective as @1 and
L are fields. We henceforth identify Kj" and L with their images in Bqr. Then we have
K§™ C Awe[1/p] € Beris. (3.5)
We assert that b lies in (the image of) L. Let us write b := 01 (). If suffices to show

b = b. Suppose for contradiction that b and b are distinct. Since we have GCTR(?)) =b= 01:(b)

by the commutativity of the diagram (3.4]), we may write b — b = t/u for some j > 0 and
u € (BJg)*. Moreover, we find

(b= b) = (8) —(B) =n(1)(b—b)  for every v € T,
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Then under the I'ix-equivariant isomorphism
j j+1 ~ .
t! BI /U Bl = Ck(4)

given by Theorem the element b — b € By yields a nonzero element in Cr(j) on
which I'x acts via the character . Therefore Theoremimplies that (x/n~1)(Ix) is finite.
Since n~!(Ik) is also finite as noted above, we deduce that x?(Ix) is finite as well, thereby
obtaining a desired contradiction by Lemma |1.1.7

Let us now regard b as an element in L. Proposition [2.2.18] implies that L is a finite
extension of @. Hence we can choose a minimal polynomial equation

b+ ab o fag b+ ag=0 with a,, € @1.
Since the minimality of the equation implies ag # 0, we obtain an expression
I —agl(bd*1 +ab? 4.4 ag—1).
We then find b~! € B by , thereby completing the proof. O

Our final goal in this subsection is to construct the Frobenius endomorphism on Beis. To
this end we state another technical result without proof.

PROPOSITION 3.1.9. Let A2, be the Aje-subalgebra in Aiy¢[1/p] generated by the elements

of the form £"/n! with n > 0.
0

cris”

(1) The ring Ais is naturally identified with the p-adic completion of A
(2) The action of ' on Agis is continuous.

Remark. In fact, Fontaine originally defined the ring A5 as the p-adic completion of Agris,

and obtained an identification with our definition of A.ss. The proof requires yet another
description of the ring A.is as a p-adically completed tensor product. The readers can find a
sketch of the proof in [BC, Proposition 9.1.1 and Proposition 9.1.2].

LEMMA 3.1.10. The Frobenius automorphism of A;,¢ uniquely extends to a I'g-equivariant
continuous endomorphism ¢ on B[, .

PrOOF. The Frobenius automorphism of Ajys uniquely extends to an automorphism on
Aing[1/p], which we denote by ¢ins. By construction we have

ont(€) = (@) —p =1 —p=(+pP —p (3.6)
Hence we may write @ins(€) = P + pc for some ¢ € Ajy.
Let us define AY.  as in Proposition Then we have

omt(§) =p-(c+ (p— 1! (£/ph),

and consequently find

(€7 /nl) = (" /nd) - (c+ (p— 1! (€7/pN))" € Adys  foralln >1

by observing that p"/n! is an element of Z,. Hence AY._ is stable under i,¢. Moreover, by

construction @i,¢ is I'g-equivariant and continuous on Ajn¢[1/p] with respect to the p-adic
topology. We thus deduce by Proposition that the endomorphism i, on Agris uniquely
extends to a continuous I'x-equivariant endomorphism ¢+ on B;is = Aais[1/p)]. O
Remark. The identity shows that ¢ine(€) is not divisible by &, which implies that ker(9)
is not stable under ¢;,;. Hence the endomorphism ¢+ on Bjris (or the Frobenius endomorphism
on Bgs that we are about to construct) is not compatible with the filtration on Bgg.
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PROPOSITION 3.1.11. The Frobenius automorphism of A;,¢f naturally extends to a I g-equivariant
endomorphism ¢ on Beis with ¢(t) = pt.

PROOF. As noted in Lemma the Frobenius automorphism of Aj,¢ uniquely ex-
tends to a I'g-equivariant continuous endomorphism ¢+ on B;is. In addition, the proof of
Proposition shows that the power series expression

o
(le] —1)"
t = Z (_1)n+17
n=1 "
converges with respect to the p-adic topology in Agis. Hence we use Proposition [2.2.22] and
the continuity of ¢+ on A to find

oo n o0

ot =3 -1y P DT s gy DT g o) = ploge) = .
n=1 n=1

Since I'ic acts on t via Y, it follows that ¢ uniquely extends to a I'x-equivariant endomor-
phism ¢ on Beis = B [1/1]. O

cris

Remark. The endomorphism ¢ is not continuous on Bgjs, even though it is a unique ex-
tension of the continuous endomorphism ¢+ on B;is. The issue is that, as pointed out by
Colmez in [Col98], the natural topology on B induced by the p-adic topology on A;s does

cris
not agree with the subspace topology inherited from Byis.

Definition 3.1.12. We refer to the endomorphism ¢ in Proposition [3.1.11] as the Frobenius
endomorphism of Bgis. We also write

Be:={b€ Bgis: (b)) =0}
for the ring of Frobenius-invariant elements in Byis.

Remark. In Chapter [[V] we will use the Fargues-Fontaine curve to prove a surprising fact
that B, is a principal ideal domain.

We close this subsection by stating two fundamental results about ¢ without proof.
THEOREM 3.1.13. The Frobenius endomorphism ¢ of Bs is injective.

THEOREM 3.1.14. The natural sequence

0 > Q,p B. » Bar/Biz —— 0

is exact.

Remark. We will prove both Theorem [3.1.13] and Theorem in Chapter [[V] using the
Fargues-Fontaine curve. There will be no circular reasoning; the construction of the Fargues-
Fontaine curve does not rely on anything that we haven’t discussed so far in this section. The
readers can also find a proof of Theorem in [FOl Theorem 6.26]. We also remark that,
as mentioned in [BC, Theorem 9.1.8], there was no published proof of Theorem prior
to the work of Fargues-Fontaine [FF18].

Definition 3.1.15. We refer to the exact sequence in Theorem as the fundamental
exact sequence of p-adic Hodge theory.
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3.2. Properties of crystalline representations

Definition 3.2.1. We say that V € Repr (Tk) is crystalline if it is Bers-admissible. We
write Reprf;S(F K) = Repggris(f‘ k) for the category of crystalline p-adic I'g-representations.
In addition, we write D.;s the functors Dpg

Example 3.2.2. We record some essential examples of crystalline representations.
(1) Every Tate twist Qp(n) of @, is crystalline; indeed, the inequality
dimg Deris(Qp(n)) < dimg, Qp(n) =1

given by Theorem is an equality, as Deris(Qp(n)) = (Qp(n)®g, Beris)'* contains
a nonzero element 1 ® ¢t~ by Theorem [2.2.24

(2) For every proper smooth variety X over K with with a proper smooth integral
model & over O, the étale cohomology HZ (X5, Qp) is crystalline by a theorem of
Faltings as discussed in Chapter [, Theorem moreover, there exists a canonical
isomorphism

Deris(Hg (X7, Qp)) = Heris (X /Ko) = Hi(X/W (K))[1/p]
where His(Xyx/W (k)) denotes the crystalline cohomology of Xj.

(3) For every p-divisible group G over O, the rational Tate module V,,(G) is crystalline
as proved by Fontaine; indeed, there exists a natural identification

DcriS(%(G)) = D(é) [1/17]

where D(G) denotes the Dieudonné module associated to G := G x o, k as described

in Chapter [[I, Theorem [2.3.12

We aim to promote D5 to a functor that incorporates both the Frobenius endomorphism
and the filtration on Bis. Let us denote by o the Frobenius automorphism of K. The readers
may wish to review the definition and basic properties of isocrystals as discussed in Chapter

M Definition [2.3.15] and Lemma [2.3.16

Definition 3.2.3. A filtered isocrystal over K is an isocrystal N over K together with a
collection of K-spaces { Fil"(Nx) } which yields a structure of a filtered vector space over K
on Ni := N ®g, K. We denote by MF%. the category of filtered isocrystals over K with the
natural notions of morphisms, tensor products, and duals inherited from the corresponding
notions for Filx and the category of isocrystals over Kj.

Remark. Many authors use an alternative terminology filtered w-modules.

Example 3.2.4. Let X be a proper smooth variety over K with a proper smooth integral
model X over Ok. The crystalline cohomology Heris( X/ Ko) = H (X /W (k))[1/p] is natu-
rally a filtered isocrystal over K with the Frobenius automorphism ¢%, induced by the relative
Frobenius of Xk and the filtration on H, (X}/Ko) ®k, K given by the Hodge filtration on
the de Rham cohomology Hl; (X/K) via the canonical comparison isomorphism

eris (X / Ko) @K K = Hip (X/K).

cris
LEMMA 3.2.5. The automorphism ¢ on Ky extends to the endomorphism ¢ on Bqyis.
PROOF. By the proof of Proposition [2.2.18] the natural injective map Ky —— Ajn¢[1/p] is

a unique lift of the natural map k¥ — Op. Hence o extends to pi,r on Aje[1/p| by definition,
and consequently extends to ¢ by Proposition [3.1.12 U
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LEMMA 3.2.6. Let N be a finite dimensional vector space over Ky. Every injective o-semilinear
additive map f: N — N is bijective.

PROOF. The additivity of f implies that f(IN) is closed under addition. Moreover, for all
c € Ky and n € N we have

cf(n) = o(0™}(e)f(n) = f(o~ (c)n) € F(N).
Therefore f(N) is a subspace of N over Ky. We wish to show f(IN) = N. Let us choose a
basis (n;) for N over Kj. It suffices to prove that the vectors f(n;) are linearly independent
over Ky. Assume for contradiction that there exists a nontrivial a relation ) ¢; f(n;) = 0 with
¢; € Ky. Then we find f (D> o(¢;)n;) = 0 by the o-semilinearity of f, and consequently obtain
a relation > o(¢;)n; = 0 by the injectivity of f. Hence we have a nontrivial relation among
the vectors n; as o is an automorphism on Ky, thereby obtaining contradiction as desired. [

PROPOSITION 3.2.7. Let V be a p-adic representation of I'x.. Then Deis(V) = (V®q, Beis)' %
is naturally a filtered isocrystal over K with the Frobenius automorphism 1 ® ¢ and the
filtration on Deyis(V)k = Deris(V') @k, K given by

Fil"*(Deris (V) i) := (V ®q, Fil"(Beris @1, K))TE.

PROOF. Since 'k acts trivially on K, we have a natural identification
Dcris(V)K - (V ®Qp Bcris)rK ®K0 K = (V ®Qp (Bcris ®K0 K))FK-

Then Proposition implies that Deis(V)x is a filtered vector space over K with the
filtration Fil"(Dcs(V) k) as defined above. Therefore it remains to verify that the map 1 ® ¢
is o-semilinear and bijective on Deis(V'). For arbitrary v € V,b € Bes, and ¢ € Ky we have

(1@ @) (clvab) = 1) (vabe)=veeb)e(c)=¢() (10e)(veb).

Hence by Lemma we find that the additive map 1 ® ¢ is o-semilinear. Moreover, the
map 1 ® ¢ is injective on Deis(K) by Theorem [3.1.13] and the left exactness of the functor
D¢yis. Thus we deduce the desired assertion by Lemma |3.2.6 O

PRrROPOSITION 3.2.8. Let V be a crystalline representation of I'xr. Then V is de Rham with a
natural isomorphism of filtered vector spaces

Deris(V) ik = Deris(V) ® Ky K = Dgr(V).
PROOF. Proposition and Proposition together imply that the natural map

Buis @k, K — Bgr identifies Beis ®k, K as a filtered subspace of Bqr over K; in other
words, we have an identification

Fil"(Beris @Ky K) = (Beris @k, K) N Fil"(Bar) for every n € Z.
Therefore Proposition yields a natural injective morphism of filtered vector spaces
Deis(V) i = (V ®q, (Bexis @k K))'* — (V ®g, Bar)'* = Dar(V)
with an identification
Fil"(Deis(V) @y K) = (Deris(V') @k, K) NFil"(Dar(V)) for every n € Z.
We then find
dimg, Deris(V) = dimg Deris(V)x < dimg Dgr(V) < dimg, V

where the last inequality follows from Theorem Since V is crystalline, both inequalities
should be in fact equalities, thereby yielding the desired assertion. O
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Example 3.2.9. Let n : I'r — Q) be a nontrivial continuous character which factors
through Gal(L/K) for some totally ramified finite extension L of K. Then Q,(n) is de
Rham by Proposition [2.4.14] We assert that Q,(n) is not crystalline. Let us write I'y, for

the absolute Galois group of L. Since L is totally ramified over K, we have Bt ~ g by

cris
Theorem and the fact that the construction of B depends only on Cg. Moreover, we
have Q,(n)'* = Q,(n) and Q, (1) /K) = 0 by construction. Hence we find an identification

Gal(L/K

Dcris(@p(n)) = (Qp(n) ®QP Bcris)FK - ((@p(n) ®Qp Bcris)FL) (L/K)
Gal(L/K)

= (@) 2o, BLY) > (Q(n) ®q, Ko)**/")
— @p(n)Gal(L/K) ®Qp KO _ O,

thereby deducing the desired assertion.
We now adapt the argument in to verify that the general formalism discussed in

extends to the category of crystalline representations with the enhanced functor D;s that
takes values in MF?}.

PropoOsSITION 3.2.10. Every V € Reprf;S(F k) induces a natural I"g-equivariant isomorphism
Dcris(V) ®K0 Bcris =V ®Qp Bcris

which is compatible with the natural Frobenius endomorphisms on both sides and induces a
K-linear isomorphism of filtered vector spaces

Dcris(V)K ®K (Bcris ®K0 K) =2V ®Qp (Bcris ®K0 K)
PROOF. Since V is crystalline, Theorem implies that the natural map
Dcris(v) ®K0 cris 7 (V ®Qp Bcris) ®K0 Bcris =V ®Qp (Bcris ®K@ Bcris) —V ®Qp Bcris
is a I'k-equivariant B.yis-linear isomorphism. Moreover, this map is visibly compatible with
the natural Frobenius endomorphisms on Deris(V) ® Baris = (V ®q, Beris)'% ® K¢y Beris and
V ®q, Beris respectively given by 1 ® ¢ ® ¢ and 1 ® . Let us now consider the induced
K-linear bijective map
(Dcris(v)K QK (Bcris ®K0 K) —V ®Qp (Bcris ®K0 K)

It is straightforward to check that this map is a morphism of filtered vector spaces. Therefore
by Proposition [2.3.8] it suffices to show that the induced map

gr (Dcris(v)K ®K (Bcris ®K0 K)) — gr (V ®Qp (Bcris ®K0 K)) (37)
is an isomorphism. As V is crystalline, it is also Hodge-Tate with the natural isomorphism of
graded vector spaces

gr(Dcris(V)K) = gr(DdR(V)) = DHT(V)
by Proposition and Proposition [2.4.4] Hence Proposition [2.3.10] and Proposition [3.1.7
together yield identifications
8t (Deris(V) ik @k (Beris @1y K)) = gr(Deris (V) k) @k g1(Beris @k, K) = Dur(V) ®k Bur,
gr (V ®Q, (Bais ®k, K)) =V ®q, gr(Bais ®k, K) =V @q, Bur.
We thus identify the map (3.7) with the natural map
Dur(V) ®x Bur — V ®q, Bur

given by Theorem thereby deducing the desired assertion by the fact that V' is Hodge-
Tate. U
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PROPOSITION 3.2.11. The functor Dyyis with values in MF¥.- is faithful and exact on Reprf;S(F K)-
PROOF. Let Vectg, denote the category of finite dimensional vector spaces over Ky. The

faithfulness of Dc.is on Repf’Qf;S (T'k) follows immediately from Proposition since the for-

getful functor MF?} — Vectg, is faithful. Hence it remains to verify the exactness of D s
on Rep?Qf;S (T'k). Consider an arbitrary exact sequence of crystalline representations

0 U \%4 W » 0.
We wish to show that the sequence
0 —— Deis(U) —— Deais(V) —— Dgis(W) —— 0 (3.8)

is exact in MF%.. This sequence is exact in Vectg, by Proposition and thus is also
exact in the category of isocrystals over Ky. Moreover, Proposition [3.2.8 and Proposition
together imply that we can identify the induced sequence of filtered vector spaces

0 —— Duis(U)gk —— Deis(V)k —— Deris(W)g —— 0
with the exact sequence of filtered vector spaces
0 —— Dgr(U) —— D4r(V) —— Dgr(W) —— 0
induced by . We thus deduce that the sequence is exact in MFY. as desired. O
COROLLARY 3.2.12. Let V be a crystalline representation. Every subquotient W of V is a
crystalline representation with Dcs(W) naturally identified as a subquotient of Dgg(V).
PROOF. This is an immediate consequence of Proposition[I.2.3|and Proposition[3.2.11] O

PROPOSITION 3.2.13. Given any V,W € Reprf;S(FK), we have V ®q, W € Rep%;S(FK) with
a natural isomorphism of filtered isocrystals

Dcris(v) ®K0 Dcris(W) = Dcris(v ®@p W) (39)

Proor. By Proposition we find V ®q, W € Rep&i)s(I‘ k) and obtain the desired
isomorphism as a map of vector spaces. Moreover, since the construction of the map
(3.9) rests on the multiplicative structure of Bes as shown in the proof of Proposition
it is straightforward to verify that the map is a morphism of isocrystals over K. In
addition, Proposition [3.2.8 implies that we can identify the induced bijective K-linear map

Deris(V) K @K Deris(W)kx — Deris(V ®q, W)k
with the natural isomorphism of filtered vector spaces
Dar(V) @k Dar(W)x = Dar(V ®@q, W)
given by Proposition [2.4.11} Therefore we deduce that the map (3.9) is an isomorphism in
MF%. as desired. O

PROPOSITION 3.2.14. For every crystalline representation V, we have A"(V) € Reprf;S(FK)
and Sym"(V) € Rep&if(F k) with natural isomorphisms of filtered isocrystals

A" (Deris(V')) = Deris (A" (V) and Sym" (Deris(V)) = Deris(Sym™ (V).

PROOF. Proposition implies that both A"(V) and Sym™ (V) are crystalline for every
n > 1. In addition, Proposition yields the desired isomorphisms as maps of vector
spaces. Then Corollary and Proposition together imply that these maps are
isomorphisms in MF¥.. O
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PROPOSITION 3.2.15. For every crystalline representation V, the dual representation V'V is
crystalline with a natural perfect pairing of filtered isocrystals

Dcris(V) ®K0 Dcris(vv) = Dcris(V ®Qp Vv) — Dcris(Qp)-
ProOF. By Proposition we find VV € Rep&s(FK) and obtain the desired perfect

pairing as a map of vector spaces. Moreover, Proposition [3.2.13] implies that this pairing is a
morphism in MF%.. We thus obtain a bijective morphism of filtered isocrystals

Deris(V)Y — Deris(VY). (3.10)

Furthermore, by Proposition [3.2.8 we identify the induced morphism of filtered vector spaces
Deris(V) i — Dexis(VY )k

with the natural isomorphism Dag (V) & Dgr (V") in Filk given by Proposition[2.4.13] Hence

we deduce that the map is an isomorphism in MF%, thereby completing the proof. [

Finally, we discuss some additional key properties of crystalline representations and the

functor D¢.is which resolve the main defects of de Rham representations and the functor Dyg.

Definition 3.2.16. Let M be a module over a ring R with an additive endomorphism f. For
every r € R, we refer to the subgroup

M= ={meM: f(m)=rm}
as the eigenspace of f with eigenvalue r.
LEMMA 3.2.17. We have an identification
BY NFil’(Beis ®x, K) = B N Bii = Q.

cris cris

PROOF. By Proposition and Theorem we find
BYL N Fil°(Beis ®K, K) € BZL NFil’(Bar) = BYL' N Big = Qp,
and thus obtain the desired identification as both Bfrizsl and Fil®(Beis ® Ko i) contain Q,. O
PROPOSITION 3.2.18. Every V € Rep&s(F k) admits canonical isomorphisms
V 2 (Deris(V) @y Beris)?~" NFIL (Deris (V) i @ (Beris @k K))
> (Deris(V') ® Ky Bexis) ¥~ NFil® (Deris (V) k @k Bar) -
PROOF. Proposition yields a natural I' g-equivariant isomorphism
Dais(V) @K Beris =V ®q, Beris

which is compatible with the natural Frobenius endomorphisms on both sides and induces an
isomorphism of filtered vector spaces

Deiis(V) k @k (Beris @k K) 2V ®q, (Beris @k, K).
In addition, there exists a canonical isomorphism of filtered vector spaces

Deris(V) ik @k Bar = Dar(V) @k Bar =V ®q, Bar
given by Proposition [3.2.8] and Proposition [2.4.8] Therefore we have identifications

(Deris(V) ®xo Beris) 7~ 2V ®q, BEL,
Fil® (Dexis (V) i @1 (Beris @10 K)) 2V ®q, Fil’(Beris @, K),
Fil® (Devis(V) k ®K Bar) =V ®q, Bix.

The desired assertion now follows by Lemma [l
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THEOREM 3.2.19 (Fontaine [Fon94]). The functor Deys with values in MF%. is exact and
fully faithful on Repg*(I'x).

PROOF. By Proposition|3.2.11{we only need to establish the fullness of D on Reprf;S(F K)-
Let V and W be arbitrary crystalline representations. Consider an arbitrary morphism
[ Deris(V') — Deris(W) in MFY.. Then f gives rise to a I'g-equivariant map

®1
\% ®Qp Bcris = Dcris(v) ®K0 Bcris fi) Dcris(W) ®K0 Bcris =W ®Qp Bcris (311)

where the isomorphisms are given by Proposition [3.2.10} Moreover, Proposition implies
that this map restricts to a linear map ¢ : V. — W. In other words, we may identify the
map (3.11)) as ¢ ® 1. In particular, since the isomorphisms in are I'g-equivariant, we
recover f as the restriction of ¢ ® 1 on (V ®q, Beris)' 2 (Deis(V) @y Beris)'® 22 Deyis (V).
This precisely means that f is induced by ¢ via the functor Dcyis. U

PROPOSITION 3.2.20. Let V be a p-adic representation of I'ic. Let L be a finite unramified
extension of K with the residue field extension [ of k. Denote by I';, the absolute Galois group
of L and by Lg the fraction field of the ring of Witt vectors over .

(1) There exists a natural isomorphism of filtered isocrystals
Deris,k (V) ® Ky Lo = Deris,.(V')
where we set Deris i (V) := (V ®q, Beris)' ® and Deis, (V) := (V ®q, Beis)'

(2) V is crystalline if and only if it is crystalline as a representation of I'f.

PrOOF. We only need to prove the first statement, as the second statement immediately
follows from the first statement. By definition L and Lg are respectively unramified extensions
of K and Ky with the residue field extension [ of k. Hence L and Lg are respectively Galois
over K and Ky with Gal(L/K) = Gal(Lo/Kp). Furthermore, since the construction of Beis
depends only on Cg, we have an identification

Dcris,K(V) - Dcris,L(V)Gal(L/K) - Dcris,L(V)Gal(LO/KO)-
Then by the Galois descent for vector spaces we obtain a natural bijective Lg-linear map
Dcris,K(V) ®K0 LO B Dcris,L(V)- (312)

This map is evidently compatible with the natural Frobenius automorphisms on both sides
induced by ¢ as explained in Lemma [3.2.5 and Proposition [3.2.7 Moreover, Proposition

2.4.14 and Proposition together imply that the map (3.12) induces a natural L-linear
isomorphism of filtered vector spaces

(Dcris,K(V) ®K0 K) K L= Dcris,L(V) ®L0 L.
We thus deduce that the map (3.12) is an isomorphism of filtered isocrystals over L. O

Remark. Proposition [3.2.20] also holds when L is the completion of the maximal unramified
extension of K. As a consequence, we have the following facts:

(1) Every unramified p-adic representation is crystalline.
cris

(2) For a continuous character n: I'x — Z, we have Q,(n) € Repg”(I'k) if and only
if there exists some n € Z such that nx™ is trivial on Ik.
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On the other hand, Example shows that Proposition fails when L is a ramified
extension of K. Fontaine interpreted this “failure” as a good feature of the crystalline con-
dition, and conjectured that the crystalline condition should provide a p-adic analogue of the
Néron-Ogg-Shafarevich criterion introduced in Theorem of Chapter [} more precisely,
Fontaine conjectured that an abelian variety A over K has good reduction if and only if the
rational Tate module V,,(A[p>]) is crystalline. Fontaine’s conjecture is now known to be true
by the work of Coleman-lovita and Breuil.

We conclude this section with a discussion of a classical example which is enlightening in
many ways. We assume the following technical result without proof.

PROPOSITION 3.2.21. The continuous map log : Z,(1) — Bjy extends to a I'x-equivariant

homomorphism log : Ai¢[1/p]* — Bl such that log([p’]) is transcendental over the fraction
field of Beyis.

Example 3.2.22. The Tate curve E, is an elliptic curve over K with E,(K) = K /p* where
we set pZ .= {p" : n € Z }. We assert that the rational Tate module V,(E,[p*]) is de Rham
but not crystalline. Tt is evident by construction that e and p’ form a basis of V,(E,[p™])
over Q,. Moreover, for every v € I'x we have

v(e) = eX) and v(p’) = p’e) (3.13)
for some c(v) € Z,. Hence V,(Ep[p™]) is an extension of @, by Q,(1) in Repg, (I'x), and
thus is de Rham by Example

We aim to present a basis for Dar (V,(Ep[p™])) = (Vp(Ep[p™]) ®qg, Bar)'%. By (8.13) we
find e®@t! € Dar(V,(E,[p™])). Let us now consider the homomorphism log : Aj¢[1/p]* —

By as in Proposition and set u := log([p"]). Then for v € T'g we find
Y(u) = (log([p’]) = log([y(¥")]) = log([p’e"™]) = log([p’]) + ¢(7) log([e]) = u + c(v)t
by and Proposition and consequently obtain
Y—e@ut™ +p ®@1) = —XV @ (u+c(Nt)x(7) Tt +p e @1
=@t +c()+e(y) (@) +p 1
=—cu l+p el

by (3.13) and Theorem [2.2.24 In particular, we have —e @ ut ' +p’ @1 € Dar (Vp(Ep[p™])).
Since the elements e ® t—! and —e @ ut~' 4+ p® ® 1 are linearly independent over Byg, they

form a basis for Dar(V,(Ep[p™])) = (Vp(Ep[p™]) @g, Bar)" .
Let us now consider an arbitrary element x € Deis(Vp(Ep[p™])) = (Vu(EL[p™]) ®q,

Bcris)F K. We may uniquely write t = e ® ¢ + P’ ® d for some ¢, d € Beis. Moreover, since we
have Deyis(Vp(Ep[p™])) € Dar(Vp(Ep[p™])) there exist some 7, s € K with

z=r-(E@t ) +s (—e@u T +pP @) =@ (r—su)t " +p’ @s.

Then we find ¢ = (r —su)t !, and consequently obtain s = 0 by Proposition Therefore
we deduce that every element in Deis(V,(Ep[p™])) ®k, K is a K-multiple of e @ t71. In
particular, we find dimg, Deris(Vp(Ep[p™])) < 1, thereby concluding that V,(E,[p*]) is not
crystalline.

Remark. Fontaine constructed the semistable period ring Byt as the B.s-subalgebra of Byr
generated by log([p’]).






CHAPTER IV

The Fargues-Fontaine curve

1. Construction

Our main objective in this section is to discuss the construction of the Fargues-Fontaine
curve. The primary references are Fargues and Fontaine’s survey paper [FF12| and Lurie’s
notes [Lur].

1.1. Untilts of a perfectoid field

Throughout this chapter, we let F' be an algebraically closed perfectoid field F' of charac-
teristic p with the valuation vp, and write mp for the maximal ideal of Or. We also denote
by Apns = W(Op) the ring of Witt vectors over O, and by W (F') the ring of Witt vectors
over F. In addition, for every ¢ € F' we write [c] for its Teichmiiller lift in W (F).

Definition 1.1.1. An untilt of F' is a perfectoid field C' together with a continuous isomor-
phism ¢ : F ~ C”.

Example 1.1.2. The trivial untilt of F is the field F' with the natural isomorphism F = F°
given by Proposition [2.1.13]in Chapter

Definition 1.1.3. Let C be an untilt of F with a continuous isomorphism ¢ : F' ~ C”.

(1) We define the sharp map associated to C' as the composition of the maps

F—"5(C"=lmC—C
—

x—xP
where the last arrow is the projection to the first component.
(2) For every ¢ € F, we denote its image under the sharp map by ¢, or often by cf.

(3) We define the normalized valuation on C' to be the unique valuation v¢ with vp(c) =
ve(ch) for all ¢ € F as given by Proposition from Chapter m

Our first goal in this subsection is to prove that every untilt of F' is algebraically closed.

LEMMA 1.1.4. Let L be a complete nonarchimedean field, and let f(x) be an irreducible monic
polynomial over L with f(0) € Or. Then f(z) is a polynomial over Op.

PROOF. Let us choose a valuation vy, on L. Take a finite Galois extension L’ of L such

that f(z) factors as
d

f(z) = H(x — 1) with 7; € L'.
i=1
The valuation vy, uniquely extends to a Gal(L'/L)-equivariant valuation vz, on L'. In par-
ticular, the roots r; all have the same valuation as they belong to the same Gal(L’/L)-orbit.
Since we have f(0) = (—1)%riry---ry € O, we find that each 7; has a nonnegative valuation.
Hence each coefficient of f(z) has a nonnegative valuation as well. g

127
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PROPOSITION 1.1.5. Let C' be an untilt of F', and let f(x) be an irreducible monic polynomial
of degree d over C. For every y € C, there exists an element z € C' with

voly —z) 2ve(f(y))/d  and  ve(f(2) 2 velp) +vo(f(y)).

PrROOF. We may replace f(z) by f(x + y) to assume y = 0. Our assertion is that there
exists an element z € C' with

ve(z) 2 ve(f(0))/d  and  ve(f(2)) 2 velp) +vo(f(0)). (1.1)

If we have f(0) = 0, the assertion is trivial as we can simply take z = 0. We henceforth
assume f(0) # 0. Since F' is algebraically closed, the multiplication by d is surjective on the
value group of F'. Hence Proposition in Chapter [T implies that the multiplication by
d is also surjective on the value group of C'. In particular, there exists an element a € C with
dve(a) = vo(f(0)). Then we can rewrite the inequalities in as

ve(z/a) >0 and Ve (f(a . (z/a))/ad) > ve(p).

Therefore we may replace f(z) by the monic polynomial f(a - x)/a to assume v (f(0)) = 0.
Then our assertion amounts to the existence of an element z € O¢ with f(z) € pO¢.

Lemma implies that f(x) is a polynomial over O¢. In other words, we may write
f(z) = 2% + a1297 ' + - .- + ag with a; € Og. Then by Lemma in Chapter m we
find elements ¢; € O with a; — cg € pO¢. Since F' is algebraically closed, the polynomial
g(x) == 2%+ izl 4 .. 4 ¢4 over O has a root a in Op. Now we find

(o) = (@) + (o) 4 -+ ag
= (o) + cji(ozﬁ)d_1 +--- 4 cg mod pOc¢

=+t 44 cd)u mod pO¢

= g(a)* =0
where the third identity follows from Proposition in Chapter [[TI} Hence we complete the
proof by taking z = af. 0

ProposITION 1.1.6. Every untilt of F' is algebraically closed.

PROOF. Let C be an untilt of F', and let f(x) an arbitrary monic irreducible polynomial
of degree d over C. We wish to show that f(x) has a root in C. We may replace f(x) by
p"f(x/p™) for sufficiently large n to assume that f(z) is a polynomial over O¢. Let us set
yo := 0 so that we have vo(f(yo)) = vo(f(0)) > 0. By Proposition we can inductively
construct a sequence (y,) in C' with

ve(Yn—1—=yn) = (n—=Dvep)/d  and  vo(f(yn)) Znve(p)  for each n > 1.

Then the sequence (y,,) is Cauchy by construction, and thus converges to an element y € C.
Hence we find

fly) =1 <nlgrgo yn) = lim f(yn) =0,
thereby deducing the desired assertion. O

Remark. In order to avoid a circular reasoning, we should not deduce Proposition as
a special case of the tilting equivalence for perfectoid fields. In fact, the only known proof of
the tilting equivalence (due to Scholze) is based on Proposition m

COROLLARY 1.1.7. For every untilt C' of F, the associated sharp map is surjective.
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We now aim to parametrize all untilts of F' by certain principal ideals of Ajys.

Definition 1.1.8. Let Cy and C5 be untilts of F' with continuous isomorphisms ¢q : F' >~ Ck{
and 1o : F' >~ Cg. We say that C1 and C5 are equivalent if there exists a continuous isomorphism
Oy ~ Cy such that the induced isomorphism C} ~ C3 fits into the commutative diagram

~ Cg
L1 L2
F

Example 1.1.9. Proposition [2.1.13] in Chapter [ITI] implies that the trivial untilt of F' repre-
sents a unique equivalence class of characteristic p untilts of F'.

PrRoOPOSITION 1.1.10. Let C be a perfectoid field.

e

(1) Every continuous isomorphism F' ~ C” induces an isomorphism O /wOr ~ Oc /pO¢
for some w € mp.

(2) Every isomorphism Op/wQOp ~ O¢/pO¢ for some w € mp uniquely lifts to a
continuous isomorphism F ~ C”.

PROOF. Let us first consider the statement We regard C' as an untilt of F' with the
given continuous isomorphism F ~ C”. Then Proposition in Chapter yields an
element w € F with vp(w) = ve(p) > 0. Moreover, the continuous isomorphism F ~ C”
restricts to an isomorphism of valuation rings O ~ O . Let us now consider the map

Or % Oc ——% Oc/pOc

where the second arrow is the natural projection. This map is a ring homomorphism as
noted in Chapter [[TI, Proposition [2.1.9] and is surjective by Lemma in Chapter [[IT}
In addition, the kernel consists precisely of the elements ¢ € Op with vo(cf) > vo(p), or
equivalently vp(c) > vp(w). Hence we have an induced isomorphism O /@wOp ~ Oc/pOc
as asserted.

It remains to prove the statement Since F' is isomorphic to its tilt as noted in
Example [1.1.9, we have an identification O = Opy, = 1&1 Opr. Hence every isomorphism
x—xP
Or/wOfp ~ O¢/pO¢ for some w € mp uniquely gives rise to an isomorphism

Op = lim Op/wOp ~ lim O¢/pOc = Oy

x—xP x—xP

where the first and the third isomorphisms are given by Proposition in Chapter and
in turn lifts to a continuous isomorphism F ~ C”. U

Definition 1.1.11. We say that an element & € Ajys is primitive (of degree 1) if it has the
form & = [w] — up for some w € mp and v € A, We say that a primitive element of Aj,f is
nondegenerate if it is not divisible by p.

PropPOSITION 1.1.12. Let £ be an element in Aj,s with the Teichmiiller expansion £ =

Z[Cn]pn-

(1) The element & is primitive if and only if we have vp(cg) > 0 and vp(c;) = 0.
(2) If ¢ is primitive, every unit multiple of £ in Ajy¢ is primitive.

PROOF. The first statement is straightforward to verify by writing £ = [co]+p Z[c}ﬁl] p".
Il

The second statement then follows by the explicit multiplication rule for Ajys.
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PROPOSITION 1.1.13. Let £ be a nondegenerate primitive element in Aj,¢. The ring Ajns/€ Aing
is p-torsion free and p-adically complete.

ProOF. We first verify that Aj,¢/EAins is p-torsion free. Consider an element a € Ajyf
such that pa is divisible by £&. We wish to show that a is divisible by £. Let us write pa = £b
for some b € Ajys. Then we have b € pAjys since € has a nonzero image in Aj,s/pAing = OF.
Therefore we may write b = pb’ for some b’ € A;,r and obtain an identity pa = p€b’, which in
turn yields a = &0 as desired.

Let us now prove that Ajns/Ains is p-adically complete. Denote by Ajns/€ Aine the p-adic
completion of Ajns/EAins. Since Ajys is p-adically complete, the projection Ajns — Aing/EAint
induces a surjective ring homomorphism

Ainf - Ainf/gAinf (12)

by a general fact as stated in [Stal Tag 0315]. It suffices to show that the kernel of this map
is £ Ajne. Under the identification

Ainf/é.Ainf = @(Ainf/é.Ainf)/((pnAinf + gAinf)/EAinf) = @Ainf/(pnAinf + EAinf)

the map ((1.2)) coincides with the natural map
Ajnt — lm Ajne /(p" Aing + §Aing)-

n

oo
The kernel of this map is ﬂ (p" Ains +&Aing ), which clearly contains € Aj,¢. Hence we only need

n=1

o0 o0
to show ﬂ (p" Aing + EAint) € EAins. Consider an arbitrary element u € ﬂ (p" Aing + & Aint).
n=1 n=1

Let us choose sequences (a,) and (b,) in Ay, with u = p™a, + &b, for each n > 1. Then
we have p™(a, — pant1) = &(bpt1 — by) for every n > 1. Since £ has a nonzero image in
Aing/pAint = Op, each by+1 — by, must be divisible by p™. Hence the sequence (b,,) converges
to an element b € A by the p-adic completeness of A;nr. As a result we find
u= lim (p"a, + &b,) = lim p"a, + & lim b, = &b,
n—oo n—oo n—oo
thereby completing the proof. O

Definition 1.1.14. For every primitive element £ € A;,¢, we refer to the natural projection
Oc : Aing = Aing/EAint as the untilt map associated to &.

LEMMA 1.1.15. Let £ be a nondegenerate primitive element in Ajys.

(1) For every nonzero ¢ € O, some power of p is divisible by 8¢([c]) in Aine/&Ain.
(2) For every m € mp, some power of 0¢([m]) is divisible by p in Ajn/Ain.

PROOF. Let us write £ = [w] — pu for some w € mp and u € A ,. For every nonzero
c € O we may write @’ = cc for some i > 0 and ¢’ € Op, and consequently find

P = (Oe(u™)be(up))" = O¢(w) e ([w])" = b (u) ™0 ([c])0e ([€']).
Similarly, for every m € mp we may write m? = w - b for some j > 0 and b € Op, and
consequently find

Oe([m]) = b¢([0]) ¢ ([b]) = O (pu)Be ([b]) = pbe (u)be (b))
We thus deduce the desired assertions. [l


https://stacks.math.columbia.edu/tag/0315
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PROPOSITION 1.1.16. Let £ be a nondegenerate primitive element in A; ;. Take arbitrary
elements ¢, € Op. Then ¢ divides ¢ in Op if and only if 0¢([c]) divides 0¢([¢]) in Aint/&Aint-

PROOF. If ¢ divides ¢’ in Op, then 0¢([c]) divides 0¢([¢]) in Ajns/EAins by the multiplica-
tivity of the Teichmiiller lift and the map 6. Let us now assume that c¢ does not divide
d in Op. We wish to show that 6¢([c]) does not divide 0¢([¢]) in Aing/EAins. Suppose for
contradiction that there exists an element a € Ajine/EAins with 0¢([c']) = 0¢([c])a. Since we
have vp(c) > vp(c¢’) by assumption, there exists some m € mp with ¢ = mc’. We thus find

Oc([c]) = Oc([c])a = O¢([c'])Oe([m])a. (1.3)

Moreover, ¢ is not zero as it is not divisible by ¢. Hence by Lemma we may write
" = ¢ ([])b for some n > 0 and b € Ajys/EAins. Then by we find p" = p"O¢([m])a,
which in turn yields 6¢([m])a = 1 since p is not a zero divisor in Ajn¢/EAins by Proposition
m However, this is impossible because the image of 0¢([m]) under the natural map
Aing/EAing = Aint/(§Aing + pAing) is nilpotent by Lemma O

PROPOSITION 1.1.17. Let £ be a nondegenerate primitive element in Ajn¢. Every a € Ajne/§Aint
is a unit multiple of 6¢([c]) for some ¢ € Op, which is uniquely determined up to unit multiple.

PROOF. Let us first assume that a is a unit multiple of 6¢([c1]) and 6¢([co]) for some
c1,¢2 € Op. Then 6¢([c1]) and 6¢([c2]) divide each other. Hence Proposition [1.1.16| implies
that ¢; and co divide each other, which means that ¢; and ¢y are unit multiples of each other.

It remains to show that a is a unit multiple of 0¢([c]) for some ¢ € Op. We may assume
a # 0 as the assertion is obvious for a = 0. By Proposition [1.1.13| we can write a = p™a’ for
some n > 0 and a' € Ajpe/€Air such that @’ is not divisible by p. Let us write £ = [ww] — up

for some w € mp and u € Amf Then we have

a=p'a = (Oc(u")0e(up))"” a’ = O¢(u) " ¢ ([w])"a.
Hence we may replace a by a’ to assume that a is not divisible by p.
We have a natural isomorphism

Aint/(§Aint + pAint) = Aint/([@] Aint + pAint) = O /wOF.
In addition, the map 6 gives rise to a commutative diagram

B¢

Ainf » Ainf/gAinf
l i (1.4)
OF = Aing/pAing — Aint/(§Aint + pAint) 2 Op /wOp

where the surjectivity of the bottom middle arrow follows from the surjectivity of the other
arrows. Choose an element ¢ € Op whose image under the bottom middle arrow coincides
with the image of a under the second vertical arrow. Then ¢ is not divisible by w since a is
not divisible by p. Therefore we may write @ = ¢m for some m € mp and obtain

p = Oe(u™")b¢ (up) = O (u) ™ e ([]) = b¢(u) "0 ([e]) e ([m).-
Now the diagram yields an element b € A/ §Ainf with
a = 0¢([c]) + pb = Oc([c]) + b0e (u) " 0c([c])0e([m]) = Oc([¢]) (1 + bOe(u) " 0c([m])) -
We thus complete the proof by observing that 1+ b9§( )~ 195([ ]) is a unit in A /€ Ajps with
(1 + b0 (w) ™20 (fm])) ™" =1~ (b (u) "10c([m])) + (b0 ()~ 0 ([m]))”* — -

where the infinite sum converges by Proposition 3l and Lemma [1.1.15) [l
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ProprosITION 1.1.18. Let £ be a primitive element in Ajnf, and let C¢ denote the fraction
field of Ains/EAing. Then Cg¢ is an untilt of F* with the valuation ring Oc, = Aint /€Ains and a
continuous isomorphism ¢ : F' ~ Cg induced by the canonical isomorphism

Orp/@wOF = At/ ([@] Aint + PAint) = Aint/(§Aint + pAint) = Oc, /pC. (1.5)

where w denotes the image of £ under the natural map Aj,f — Ajne/pAins = Op. Moreover,
each element ¢ € Op maps to 6¢([c]) under the sharp map associated to C¢.

PROOF. Let us write & = [w] — up with w € mp and u € A ;. We also let O denote the

inf*
ring Aing/EAins. If @ is zero, then we have a natural isomorphism

O = A /EAins = Aine /pAins = O
which implies that C¢ represents the trivial untilt of F' as noted in Example We
henceforth assume w # 0.

We assert that O = Ajne/ Ajye is an integral domain. Suppose for contradiction that there
exist nonzero elements a,b € O with ab = 0. By Proposition we may write a = 0¢([c])u
for some nonzero ¢ € Op and v € O*. In addition, by Lemma we have 0¢([c])w = p"
for some n > 0 and w € O. Therefore we obtain an identity

0 = abw = O¢([c])wub = p"ub,
which yields a desired contradiction by Proposition [1.1.13

By Proposition we can define a nonnegative real-valued function v on O which
maps each y € O to vp(z) where z is an element in Op such that y is a unit multiple of
0¢([2]). Then by construction v is a multiplicative homomorphism whose image contains the
image of vp. In addition, for any yi,ys € O* with v(y1) > v(y2) we find by Proposition
that 1 is divisible o in O, and consequently obtain

vy +y2) = v((y1/y2 + Dy2) = v(y1/y2 + 1) + v(y2) > v(y2) = min(v(y1), v(y2)).

Therefore we deduce that v is a nondiscrete valuation on O.

We can uniquely extend v to a valuation on C¢, which we also denote by v. For every
x € C¢ we write x = y1/y2 for some y1,y2 € O and find by Proposition that v(z) =
v(y1) — v(y2) is nonnegative if and only if y; is divisible by 5 in O. Hence we deduce that O
is indeed the valuation ring of C¢.

Since the p-th power map is surjective on Op/wOp, it is also surjective on Oc, / pOc, by
the isomorphism ([1.5)). In addition, from the identity

p = 0e(u™")b¢ (up) = O (u) ' b¢([w])
we find v(p) = vp(w) > 0. Hence C¢ has residue characteristic p. Furthermore, Proposition
implies that C¢ is complete with respect to the valuation v. Therefore we deduce that
Ck¢ is a perfectoid field.
By Proposition (and its proof) the isomorphism uniquely lifts to an isomor-
phism

O & lim Op/@wOp = lm Aing/(§Aint + pAing) = lim Oc, /pOc, = lim Oc, = ch

r—xP r—xP TP r—xP

where the first and the third isomorphisms are given by Proposition in Chapter [[TI} and
in turn lifts to a continuous isomorphism F' =~ C’g. Moreover, it is straightforward to verify

that each element ¢ € Op maps to (6¢([c!/?"]) € ch under the above isomorphism, and

consequently maps to ¢([c]) under the sharp map associated to C¢. Therefore we complete
the proof. O
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PRroOPOSITION 1.1.19. Let C be an untilt of F.

(1) There exists a surjective ring homomorphism ¢ : Ay — O¢ with

Oc (Z[cn]p”) = chlp” for every ¢, € Op.

(2) Every primitive element in ker(¢c) generates ker(6¢).

PROOF. Since C' is algebraically closed as noted in Proposition [1.1.6] all results from
the first part of in Chapter [[II] remain valid with C in place of Cx. In particular,
the statement is merely a restatement of Proposition in Chapter m Furthermore,
Proposition in Chapter implies that ker(6¢) is generated by a primitive element
£c := [p’] — p € Ainr where p” denotes an element in O with (p")ti =p.

Let us now consider an arbitrary primitive element { € ker(f¢). The map 6¢ induces a
surjective map 92 ¢ Aing/§Ains — O¢. Then ker(0~€) is a non-maximal prime ideal as O¢ is

an integral domain but not a field. Moreover, ker(f¢) is a principal ideal generated by the

image of £c. Since Ajne/€ is a valuation ring by Proposition |1.1.18, we find ker(9~§) =0 and
consequently deduce that £ generates ker(6¢). O

Remark. In the last sentence, we used an elementary fact that every nonzero principal prime
ideal of a valuation ring is maximal.

Definition 1.1.20. Given an untilt C of F', we refer to the ring homomorphism 6¢ constructed
in Proposition [1.1.19] as the untilt map of C.

THEOREM 1.1.21 (Kedlaya-Liu [KL15], Fontaine [Fon13]). There is a bijection
{ equivalence classes of untilts of F'} — { ideals of Aj,¢ generated by a primitive element }

which maps each untilt C' of F' to ker(6¢).

PrOOF. We first verify that the association is surjective. Consider an arbitrary primitive
element £ € Aj,r. By Proposition it gives rise to an untilt C¢ of F' such that each
¢ € Op maps to ¢([c]) under the associated sharp map. Hence Lemma from Chapter
implies that the maps 6¢ and ¢, coincide, thereby yielding § Ains = ker(6¢) = ker(0c, ).

It remains to show that the association is injective. Let C' be an arbitrary untilt of F
with a continuous isomorphism ¢ : F' ~ C°. Choose a primitive element w € ker(f¢), which
gives rise to an untilt C,, of F with a continuous isomorphism ¢, : F' >~ C’Z by Proposition
It suffices to show that C' and C,, are equivalent. The map 6¢ induces an isomorphism
Oc,, = Aint/wAint ~ O¢, which extends to an isomorphism C,, ~ C. Let f denote the induced
map C’ZJ ~ C”. Then by Proposition and Proposition the map f o, yields an

isomorphism
Or/@wOF 2 At/ (pAint + wAing) = Oc,, /POc,, ~ Oc/pOc (1.6)

where w denotes the image of w in Ay¢/pAins = Op. For every ¢ € Op, this isomorphism
maps the image of ¢ in Op/wOF to the image of ¢ ([c]) = ¢! in O¢/pOc. This implies that
an element ¢ € O is divisible by @ if and only if ¢? is divisible by p, and consequently yields
vr(w) = vo(p). Then the proof of Proposition shows that the isomorphism is
also induced by ¢. Therefore the second part of Proposition [1.1.10] yields f o ¢, = ¢, which
means that C' and C,, are equivalent as desired. O

Remark. The first paragraph of our proof shows that there is no conflict between Definition

[LT.14] and Definition [[L1.200
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1.2. The schematic Fargues-Fontaine curve

The main goal of this subsection is to describe the construction of the Fargues-Fontaine
curve as a scheme. For the rest of this chapter, we fix a nonzero element @w € mp. We also
denote by Yr =Y the set of equivalence classes of characteristic 0 untilts of F.

Definition 1.2.1. Let C be an untilt of F'. We define the associated absolute value on C by
|z|- = p e for every x € C,

and write |C| := {|z|-:2 € C'} for the associated absolute value group. If C' = F is the
trivial untilt of F', we often drop the subscript to ease the notation.

Remark. Thus far we have been using valuations to describe the topology on valued fields,
because valuations are convenient for topological arguments involving algebraic objects such
as p-adic representations and period rings. From now on, we will use absolute values to
describe the topology on perfectoid fields, because the objects of our interest will be very
much analytic in nature.

Example 1.2.2. Let C be an untilt of F. Theorem [[.1.21] yields a primitive element § € Ajy¢
which generates ker(6¢). If we write £ = [m] — up for some m € mp and u € A, we have

ple = [0 () 6c(im)| . = 6c((m) e = [m| = Im].
PRrROPOSITION 1.2.3. We have an identification
Aie[1/p,1/[w]] = { Z[cn]pn e W(F)[1/p] : |en| bounded }

In particular, the ring A, ¢[1/p, 1/[w]] does not depend on our choice of w.

PROOF. Consider an arbitrary element f =  [c,]p" € W(F)[1/p]. Then we have f €
Aint[1/p,1/[]] if and only if there exists some i > 0 with [@']f = > [e,@’]p" € Aine[1/p], or
equivalently |c,| < }w*l‘ for all n. O

Definition 1.2.4. Let y be an element of Y, represented by an untilt C' of F'.

(1) We define the absolute value of y by |y| := |p|s.
(2) For every f => [ca|p™ € Aint[1/p, 1/[w]] we define its value at y by

Fy) = 00(f) = chp"

where 0 : Aine[1/p, 1/[w]] — C'is the ring homomorphism which extends the untilt
map O¢ : Aps — O¢.

Remark. A useful heuristic idea for understanding the construction and the structure of the
Fargues-Fontaine curve is that the set Y behaves in many aspects as the punctured unit disk
D*:={2€C:0<|z] <1} in the complex plane. Here we present a couple of analogies
between Y and D*.

(1) For each y € Y represented by an untilt C' of F, its absolute value |y| = |p| is a real
number between 0 and 1. This is an analogue of the fact that every element z € D*
has an absolute value between 0 and 1.

(2) Every element in Aj¢[1/p, 1/[w]] is a “Laurent series in the variable p” with bounded
coefficients, and gives rise to a function on Y as described in Definition This
is an analogue of the fact that every Laurent series ) a,2" over C with bounded
coefficients defines a holomorphic function on D*.
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LEMMA 1.2.5. Let f = [c,]p™ be a nonzero element in Aju¢[1/p, 1/[w]], and let p be a real

number with 0 < p < 1. Then sup(|c,| p") exists and is attained by finitely many values of n.
neZ

PROOF. Let us take an integer ng with ¢,, # 0. Proposition [I.2.3] implies that there
exists an integer [ > 0 with |c,| p"™ < |cp,| p"° for all n > [. In addition, there exists an integer
k < 0 with ¢, = 0 for all n < k. Therefore sup(|c,|p") = sup (|en|p™) exists and can only

neZ k<n<l
be attained by an integer n with k <n <. g
Definition 1.2.6. Let p be a real number with 0 < p < 1.

(1) We define the Gauss p-norm on Aiu¢[1/p,1/[w]] by
’Z[cn]p”) i= sup(|en| p").
I nez

(2) Given an element f = > [c,]p" € Aint[1l/p,1/[w]], we say that p is generic for f if
there exists a unique n € Z with [f|, = [c,| p".

LEMMA 1.2.7. Let f be an element in Aj¢[1/p,1/[w]]. The set
Sy:={pe(0,1):pis generic for f }
is dense in the interval (0, 1).

PRroOF. If p € (0,1) is not generic for f, then by Lemma there exist some distinct
integers m and n with |f|, = [em|p™ = |en| p", which yields p = (|ep| / len )Y/ (=) We thus
deduce that the complement of Sy in (0, 1) is countable, thereby obtaining the assertion. [

LEMMA 1.2.8. Let y be an element in Y represented by an untilt C' of F. For every f €
Aint[1/p, 1/[w]] we have |f(y)|c < | [}, with equality if |y| is generic for f.

PROOF. Let us write f = ) [c,]|p" with ¢, € F. Then we have

g c sup | |c sup (|c .
fW)le ‘ nP |, = HEIZ) ap ple nEIZ)(‘ nl - [yl™) ’f“y|
It is evident that the inequality above becomes an equality if |y| is generic for f. g

PROPOSITION 1.2.9. For every positive real number p < 1, the Gauss p-norm on A;n¢[1/p, 1/[w]]
is a multiplicative norm.

PROOF. Let f and g be arbitrary elements in A;n¢[1/p, 1/[w]]. We wish to show
f +9l, <max(|f|,.]9l,)  and  [fgl,=I|f],ldl,-
Since |F| is dense in the set of nonnegative real numbers, Lemma implies that the set
S:={7€(0,1)N|F|: T is generic for f,g,f+ g, and fg}
is dense in the interval (0,1). Hence we write p = nlgrolo Ty, for some (7;,) in S to assume p € S.

Take an element ¢ € mp with |c¢| = p. Then £ := [¢] —p € Ajyr is a nondegenerate primitive
element, and thus gives rise to an element y € Y with |y| = p by Proposition |1.1.13] Theorem
1.1.21}, and Example Then by Lemma we find

\f+9l,= 1) +9W)lc <max([f(y)lc.l9(y)lc) = max(|f],.|g],),
1fal, =1fW9Wlec = 1fWlc @)l = 111,191,

Therefore we complete the proof. O
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Definition 1.2.10. Let [a, b] be a closed subinterval of (0,1). We write
Yigoy i ={yeY :a<|y <b},

and define the ring of holomorphic functions on Y}, y), denoted by By, ), to be the completion
of Aine[1/p,1/[w]] with respect to the Gauss a-norm and the Gauss b-norm.

LEMMA 1.2.11. Let [a, b] be a closed subinterval of (0, 1), and let f be an element in A;¢[1/p, 1/[w]].
We have |f|, < sup(|f|,,[fl,) for all p € [a,].

PROOF. Let us write f = Y [e,]p™ for some ¢, € F. Then we have

len| ™ < en| 0" < | f], for all n > 0,
lenl " < len]a™ < |, for all n < 0.
Hence we deduce the desired assertion. O

Remark. Since |F| is dense in (0,00), we find sup (|f(y)|c) = |f], for all p € |[F|N(0,1) by

ly|=
Lemma [1.2.7] and Lemma [1.2.8] Hence we may regard Lemma [1.2.11] as an analogue of the
maximum modulus principle for holomorphic functions on D*.

PROPOSITION 1.2.12. Let [a,b] be a closed subinterval of (0,1). The ring Bj, ) is the comple-
tion of Ain¢[1/p, 1/[w]] with respect to all Gauss p-norms with p € [a, b].

PROOF. Lemma [1.2.11| implies that a sequence (f,) in Ajn[l/p,1/[w]] is Cauchy with
respect to the Gauss a-norm and the Gauss b-norm if and only if it is Cauchy with respect to
the Gauss p-norm for all p € [a, b]. O
COROLLARY 1.2.13. For any a, b,a’,b" € R with [a,] C [a’,0'] C (0,1), we have By y; € Big -
Definition 1.2.14. We define the ring of holomorphic functions on 'Y by

Bp = @1 By
where the transition maps are the natural inclusions given by Corollary|[1.2.13] We often write

B instead of Br to ease the notation.

Remark. It is not hard to see that a formal sum > [c,|p™ with ¢, € F converges in B if and
only if it satisfies

limsup |e, [ < 1 and lim |e_n|Y/™ = 0.
n>0 n—oo
This is an analogue of the fact that a Laurent series ) a,2" over C converges on D* if and
only if it satisfies

limsup |a,|"/" <1 and lim |a_,|"™ = 0.
n>0 n—oo

However, an arbitrary element in B may not admit a unique “Laurent series expansion” in p,
whereas every holomorphic function on D* admits a unique Laurent series expansion.

LEMMA 1.2.15. Let 1 : Ry — Ry be a continuous homomorphism of normed rings.

(1) The map n uniquely extends to a continuous ring homomorphism 7 : R\l s }/%\2
where Ry and Ry respectively denote the completions of Ry and Ra.
(2) The homomorphism 7 is a homeomorphism if 1 is a homeomorphism.

PrOOF. This is an immediate consequence of an elementary fact from analysis. O
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PROPOSITION 1.2.16. Let C' be a characteristic 0 untilt of . The untilt map 6 uniquely
extends to a surjective continuous open ring homomorphism 6 : B — C.

PrOOF. The map 6 uniquely extends to a surjective ring homomorphism
Oc : Aint[1/p,1/[w]] - Oc[1/p] = C.

Let us set p := [p|. Then éE uniquely extends to a surjective continuous ring homomorphism

—

bc : By, — C by Lemma |1.2.8) and Lemma (1.2.15. Moreover, 55 is open by the open

mapping theorem. Take 5(\; to be the restriction of 55 on B. By construction 55 is a surjective
continuous open map which extends f¢. Since the uniqueness is evident by the continuity, we
deduce the desired assertion. O

Definition 1.2.17. Let y be an element in Y, represented by an untilt C of F.
(1) We refer to the map 55 given by Proposition |1.2.16| as the evaluation map at y.
(2) For every f € B, we define its value at y by f(y) := ég(f)

PRrOPOSITION 1.2.18. The Frobenius automorphism of F' uniquely lifts to a continuous auto-
morphism ¢ on B.

PROOF. Let ¢ denote the Frobenius automorphism of W (F'). By construction we have

OF (Z[cn]pn) = Z[cﬁ]pn for all ¢, € F. (1.7)

Then Proposition implies that @ restricts to an automorphism on A;u¢[l/p, 1/[w]].
Moreover, by (1.7]) we find

[or ()l =117 for all f € Aine[1/p,1/[w]] and p € (0,1). (1.8)

Consider an arbitrary closed interval [a,b] C (0,1), and choose a real number r € [a, b]. By

Lemma and the map ¢ on Aiu¢[1/p, 1/[w]] uniquely extends to a continuous ring
isomorphism @y, © Bj,;] =~ Bpp 0. In addition, the identity implies that a sequence
(fn) in Aing[1/p,1/[w]] is Cauchy with respect to the Gauss a-norm and the Gauss b-norm if
and only if the sequence (pg(fy,)) is Cauchy with respect to the Gauss aP-norm and the Gauss
bP-norm. Since @ is bijective, we deduce that ¥1r,r) Testricts to a continuous ring isomorphism

Plab] * Blap) = Blar pr] with an inverse given by the restriction of cp[;lr] on Bigp pp). It is evident
by construction that ¢, is an extension of OF.
By our discussion in the preceding paragraph, the map ¢ on Ajn¢[1/p, 1/[w]] extends to
a continuous isomorphism
p:B= liﬂlB[a,b] ~ @B[ap,bp} = B.
Moreover, the uniqueness of ¢ is evident by the continuity. Therefore we obtain the desired
assertion. O

Definition 1.2.19. We refer to the map ¢ constructed in Proposition [1.2.18| as the Frobenius
automorphism of B, and define the schematic Fargues-Fontaine curve as the scheme

Xp :=Proj | @ B*""
n>0

We often simply write X instead of Xp to ease the notation.
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1.3. The adic Fargues-Fontaine curve

In this subsection, we describe another incarnation of the Fargues-Fontaine curve using
the language of adic spaces developed by Huber in [Hub93| and [Hub94|. Our goal for
this subsection is twofold: introducing a new perspective for the construction of the Fargues-
Fontaine curve, and providing an exposition on some related theories. Our discussion will be
cursory, as we won’t use any results from this section in the subsequent sections.

Definition 1.3.1. Let R be a topological ring.
(1) We say that a subset S of R is bounded if for every open neighborhood U of 0 there
exists an open neighborhood V of 0 with V.S C U.

(2) We say that an element f € R is power-bounded if the set { f :n >0} is bounded,
and denote by R° the subring of power-bounded elements in R.

(3) We say that R is a Huber ring if there exists an open subring Ry, called a ring of
definition, on which the induced topology is generated by a finitely generated ideal.

(4) If R is a Huber ring, we say that R is uniform if R° is a ring of definition.
Example 1.3.2. We present some important examples of uniform Huber rings.

(1) Every ring R with the discrete topology is a uniform Huber ring with R° = R, as its
topology is generated by the zero ideal.

(2) Every nonarchimedean field L is a uniform Huber ring with L° = Oy, as the topology
on Oy is generated by the ideal mOy, for any m in the maximal ideal.

(3) The ring Ajuf is a uniform Huber ring with A? ; = Ajnr and the topology generated
by the ideal pAins + []Ajnt-

Definition 1.3.3. A Huber pair is a pair (R, RT) which consists of a Huber ring R and its
open and integrally closed subring Rt C R°.

ProprosITION 1.3.4. For every Huber ring R, the subring R° is open and integrally closed.
Definition 1.3.5. Let R be a topological ring.
(1) Amap v : R — T U {0} for some totally ordered abelian group 7' is called a
continuous multiplicative valuation if it satisfies the following properties:
(i) v(0) =0 and v(1) = 1.
(ii) For all r,s € R we have v(rs) = v(r)v(s) and v(r + s) < max(v(r), v(s)).
(iii) For every 7 € T'the set {r € R:v(r) <7 } is open in R.
(2) We say that two continuous multiplicative valuations v and w on R are equivalent if

there exists an isomorphism of totally ordered monoids ¢ : v(R)U{ 0} ~ w(R)U{ 0}
with 0(v(r)) = w(r) for all r € R.

(3) We define the valuation spectrum of R, denoted by Spv(R), to be the set of equiva-
lence classes of continuous multiplicative valuations on R.

(4) Given r € R and = € Spv(R), we define the value of r at x by |r(z)| := v(r) where v
is any representative of x.

Remark. Our terminology in slightly modifies Huber’s original terminology continuous
valuation in order to avoid any potential confusion after extensively using the term valuation
in the additive notation.

PROPOSITION 1.3.6. Let v and w be continuous multiplicative valuations on a topological
ring R. Then v and w are equivalent if and only if for all ;s € R the inequality v(r) < v(s)
amounts to the inequality w(r) < w(s).
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Definition 1.3.7. For a Huber pair (R, R™), we define its adic spectrum by
Spa(R,R") :={z € Spv(R) : |f(z)| < 1forall feR"}
endowed with the topology generated by subsets of the form

U(f/g):={ = €Spa(RRY): |f(x)| < lglx)| #0}  for some f.g € R.
Example 1.3.8. We are particularly interested in the set

Y= Spa(Ainfa mf)\{aj € Spa(Ainfa 1nf) |p[ ]( )| = 0},

which we call the perfectoid punctured unit disk. Let us describe two types of points on Y.

Let y be an element in Y, represented by an untilt C' of F'. Consider a nonnegative real
valued function v, on Ajys defined by vy, (f) := |f(¥)|c = |0c(f)|o for every f € A, It is
evident by construction that v, is a continuous multiplicative valuation on Ajys with vy (f) <1
for all f € Ajys. In addition, we have vy (p) = |p|o # 0 and vy ([w]) = |w| # 0. Hence v, gives
rise to a point in ), which we denote by .

Let p be a real number with 0 < p < 1. By Proposition [1.2.9 the Gauss p-norm on
Aint[1/p, 1/[w]] restricts to a continuous multiplicative valuation on Ajy¢ with [f|, <1 for all
f € Aine. In addition, we have |p|, = p # 0 and [[w]|, = |w| # 0. Hence the Gauss p-norm
on Aine[1/p,1/[w]] gives rise to a point in ), which we denote by ~,.

Remark. Interested readers may find some informative illustrations of Spa(Aipnf, Ainf) and Y
in Scholze’s Berkeley lectures [SW20), §12].

Definition 1.3.9. Let (R, R") be a Huber pair. A rational subset of Spa(R, R") is a subset
of the form

UT/g) = { x € Spa(R,RT) : |f(z)] < |g(x)] # 0 for all f € T}
for some g € R and some nonempty finite set 7' C R such that TR is open in R.
Example 1.3.10. We say that a subset of ) is distinguished if it has the form
Viwljwp) = {2 €V [[@'](2)] < Ip(@)] < |[=](2)] }

for some ,j € Z[1/p] with 0 < j < i. Every distinguished subset of ) is a rational subset of
Spa(Aing, Aing); indeed, we have an identification

y“wv lwli] = {x € Spa(AinfyAinf) : HWH_] T ‘ ) ‘p (l’)‘ < Hwﬂp(x)! #0 } - U(T[i,j}/[wj]p)

where T; j := { [@'7],p? } generates an open ideal in A;y¢. In particular, every distinguished
subset of ) is open in Spa(Aiut, Ainf)-

Let us describe some points on each yH - in line with our discussion in Example
For an element y € Y, we have y € y[|w| o] if and only if y is an element of Y; (1t )]
For a real number p with 0 < p < 1, we have v, € y i ] if and only if p belongs to the

interval [|w|’, |w|’].
Remark. We can extend our discussion above by defining the absolute value for an arbitrary
point x € Y. We say that a valuation is of rank 1 if it takes values in the set of positive real

numbers. It is a fact that  admits a unique maximal generization £™#* of rank 1. We define
the absolute value of x by

log(|p(«™3%)])

|x’ = ‘w|10g(\[w](wmax)\) .
Let us now consider N of Y for some i,j € Z[1/p]. Since Vijwli o] 18 OPen in
Spa(Aint, Aing) as noted above, the point z lies in wa'i ()] if and only if 2™®* does, which

amounts to having |z| € [|w|*, |w=]’].



140 IV. THE FARGUES-FONTAINE CURVE

PROPOSITION 1.3.11. Let (R, RT) be a Huber pair, and write S := Spa(R, R"). Consider a
rational subset U := U(T'/g) for some g € R and some nonempty finite set 7' C R such that
TR is open in R.

(1) There exists a map of Huber pairs (R, RT) — (Os(U), 0% (U)) for some complete
Huber ring Og(U) with the following properties:
(i) The induced map Spa(Os(U), 0% (U)) — S yields a homeomorphism onto U.
(ii) It is universal for maps of Huber pairs (R, RT) — (Q,Q%) such that the
induced map Spa(Q, Q") — S factors over U.

(2) If R is uniform such that the topology on R° is given by a finitely generated ideal I,
then Os(U) is given by the completion of R[1/g] with respect to the ideal generated
by I and the set T":={ f/g: fe€T}.

Definition 1.3.12. Let (R, R") be a Huber pair, and write S := Spa(R, R"). We define the
presheaves Og and (’)}' on S by

Os(W):= lim Oslf) and ofW) = lim OfMU) for all open WC S

Ucw Uucw
U rational U rational

where Og(U) and OF (U) for each rational subset U of S are given by Proposition [1.3.11] We
refer to Og as the structure presheaf of S.

Remark. The ring O (W) is in general not open in Og(W).

Example 1.3.13. Let us write S := Spa(Ajuf, Aing). We assert that ) is an open subset
of § with Og()) = B. The set ) is covered by the distinguished subsets; indeed, as both
[cw] and p are topologically nilpotent in Ajuf, for every x € ) there exist some positive
real numbers i,j € Z[1/p] with le](:r)‘ < |p(z)| and |p1/j(x)} < |[w](x)|, or equivalently
sz](:pﬂ < |p(x)] < ij](x)} Since distinguished subsets of ) are (open) rational subsets of
S as noted in Example we deduce that ) is an open subset of S with

where the limit is taken over all distinguished subsets of ).

Consider arbitrary numbers i,j € Z[1/p] with 0 < 7 < i. In light of (1.9) it suffices to
establish an identification

Os (Vi 1) = By i 1 (1.10)
(] | |] (=], |e=l]

Proposition [1.3.11{and Example together imply that Og (y[‘w‘i7|w|j}) is the gompletiog of
Aing[1/p, 1/[ww]] with respect to the ideal I generated by the set T':= { p, [@], [@']/p, p/[="] }.
Moreover, the ideal I is generated by ('] /p and p/[w’] as we have p = (p/[w’]) - [w’] and
[w] = ([@']/p)" - p" - (1/[w])® for some positive integers r and s. It is then straightforward to
verify that the I-adic topology on Aiy¢[1/p, 1/[w]] coincides with the topology induced by the

Gauss |w|"-norm and the Gauss |w|’-norm. Therefore we obtain the identification (T.10) as
desired.

Definition 1.3.14. We say that a Huber pair (R, R") is sheafy if the structure presheaf on
Spa(R, R™) is a sheaf.

PROPOSITION 1.3.15. Let (R, RT) be a Huber pair, and write S := Spa(R, R™).
(1) For every open W C S we have
OfW)={feOsW):|f(z)]<1lforallzeW}.
(2) The presheaf Of is a sheaf if (R, RT) is sheafy.
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Definition 1.3.16. Let R be a Huber ring.

(1) We say that R is Tate if it contains a topologically nilpotent unit.
(2) We say that R is strongly noetherian if for every n > 0 the Tate algebra

Rluy, -+ un) = { > @iy gt uir € Rl[uy, - up]] s limag, g, =0 }
is noetherian.
THEOREM 1.3.17 (Huber [Hub94]). A Huber pair (R, RT) is sheafy if R is Tate and strongly
noetherian.

THEOREM 1.3.18 (Kedlaya [Ked16]). For every closed interval [a,b] C (0, 1) the topological
ring Bj,p is a Tate and strongly noetherian Huber ring.

Definition 1.3.19. An adic space is a topological space S together with a sheaf Og of
topological rings and a continuous multiplicative valuation v, on Os, for each x € § such
that S is locally of the form Spa(R, R™) for some sheafy Huber pair (R, RT).

Example 1.3.20. By Example [1.3.13] Theorem [1.3.17| and Theorem [1.3.18| we deduce that
distinguished subsets of ) are noetherian adic spaces, and in turn find that ) is a locally
noetherian adic space. In addition, for every closed interval [a,b] C (0,1) we see that

Vo= U Veep)
[l |w]’]< a,b]
is a locally noetherian adic space with Oy, Viap) = Blay-
PROPOSITION 1.3.21. Every morphism of Huber pairs g : (R, RT) — (Q, Q™) induces a map
of presheaves Os — ¢.O7 where we write S := Spa(R, R™) and T := Spa(Q, Q™).

Example 1.3.22. Let ¢ denote the automorphism of Spa(Ajy¢, Aing) induced by the Frobenius
automorphism of Aj.¢. It is evident by construction that ) is stable under ¢. In addition,

by Example [1.3.13| and Proposition [1.3.21| we get an induced automorphism on Oy()) = B
which is easily seen to coincide with (.

Let us choose ¢ € (1/p,p) N Q. For every n € Z, we set
Vi i= Vjoprior ey a0 Wai= Ve | jegpms)-

Arguing as in Example [1.3.13] we find that ) is covered by such sets. In addition, we have
d(Vn) = Vp—1 and ¢(W,,) = Wy, for all n € Z. Therefore the action of ¢ on ) is properly
discontinuous, and consequently yields the quotient space

X = Y/¢r.
Moreover, X is covered by (the isomorphic images of) Vy and Wy, which are noetherian adic
spaces as noted in Example [1.3.20 Hence X is a noetherian adic space with Oy (X) = B¥=1L.

Definition 1.3.23. We refer to the noetherian adic space X constructed in Example [1.3.22
as the adic Fargues-Fontaine curve.

THEOREM 1.3.24 (Kedlaya-Liu [KL15|]). There exists a natural morphism of locally ringed
spaces h : X — X such that the pullback along h induces an equivalence

h* : Buny — Buny
where Buny and Buny respectively denote the categories of vector bundles on X and X.

Remark. Theorem is often referred to as “GAGA for the Fargues-Fontaine curve”.
By Theorem studying the schematic Fargues-Fontaine curve is essentially equivalent
to studying the adic Fargues-Fontaine curve.
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2. Geometric structure

In this section we establish some fundamental geometric properties of the Fargues-Fontaine
curve. Our discussion will show that the Fargues-Fontaine curve is geometrically very akin to
proper curves over Q. In addition, our discussion will provide a number of new perspectives
towards several constructions from Chapter [[Ill The primary references for this section are
Fargues and Fontaine’s survey paper [FF12] and Lurie’s notes [Lur]

2.1. Legendre-Newton polygons
We begin by introducing a crucial tool for studying the structure of the ring B.
Definition 2.1.1. Let log, denote the real logarithm base p.
(1) Given an element f € B, we define the Legendre-Newton polygon of f as the function
Lys:(0,00) — RU{ 0o} given by
Ly(s) = —log, (]f|p,s> for all s € (0, 00).

(2) Given a closed interval [a,b] € (0,1) and an element f € By, we define the
Legendre-Newton [a, b]-polygon of f as the function Ly (44 : [ 1og,(b), —log,(a)] —
RU{ oo} given by

Lppay(s) == —log, (| f\p,s) for all s € [~ log, (), —log,(a)].

Remark. With notations as in Example we may write Ly(s) = —log, (| f(vp-s)|) for
all f € B and s € (0, 00).
LEMMA 2.1.2. Given any elements f,g € Ain¢[1/p, 1/[w]], we have
Lig(s) =Lys(s)+Ly(s) and Lrig(s) >min(Ly(s),Ly(s)) for all s € (0,00).
ProOOF. This is an immediate consequence of Proposition [1.2.9 O

Our main goal in this subsection is to prove that Legendre-Newton polygons are indeed
polygons with decreasing integer slopes.

Definition 2.1.3. Let g be a piecewise linear function defined on an interval I C R.

(1) We say that g is concave if the slopes are decreasing, and convez if the slopes are
increasing.

(2) We write 0_g and 04g respectively for the left and right derivatives of g.

Example 2.1.4. Let f = > [c,]p™ be a nonzero element in Ay ¢[1/p,1/[w]]. Its Newton
polygon is defined as the lower convex hull the points (n, vr(c,)) € R?, which we may regard
as a convex piecewise linear function on (0, c0).

LEMMA 2.1.5. Given a nonzero element f =Y [c,|p" € Aine[1/p, 1/[w]], we have
Ls(s) = iné(up(cn) + ns) for every s € (0, 00).
ne

Proor. This is obvious by definition. O

Remark. By Lemma 2.1.5: it is not hard to verify that L coincides with the Legendre
transform of the Newton polygon of f.

Example 2.1.6. Let £ be a primitive element in Aj,s with the Teichmiiller expansion £ =
> [en]p™. By Proposition [1.1.12 we have

Le(s) = min(vp(co),vr(c1) + s) = min(vr(co), s) for all s € (0, 00).
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PROPOSITION 2.1.7. Let f = [c,] be a nonzero element in Aj¢[1/p, 1/[w]].

(1) Ly is a concave piecewise linear function with integer slopes.

(2) For each s € (0,00), the one-sided derivatives 0_L¢(s) and 01 L¢(s) are respectively
given by the minimum and maximum elements of the set

Ts:={neZ:Lis)=vp(cn)+ns}.
Proor. Fix a real number s > 0. Lemma and Lemma together imply that

Ts is finite. Let [ and r respectively denote the minimum and maximum elements of Ts. By
construction we have

vi(a)+1ls =vp(e) +1s <vp(e,) +ns for all n € Z (2.1)

where equality holds if and only if n belongs to T;. It suffices to show that for all sufficiently
small € > 0 we have

Li(s+e)=Lys(s)+ e and Li(s—€)=Lys(s)—re. (2.2)
Let us consider the first identity in . Take k£ < 0 with ¢, = 0 for all n < k, and set
5 i inf ((VF(Cn) +ns) — (ve(e) + ls)> — it <(VF(Cn) +ns) — (ve(e) + ls)> ‘

n<l l—n k<n<l l—n

Then we have §; > 0 as the inequality in (2.1)) is strict for all n < [. Let € be a real number
with 0 < € < d1. For every n <[ we find €(l —n) < 51(l — n) < (vp(cn) + ns) — (vr(a) + 1s)
and consequently obtain

vr(c) +1U(s+e€) <vp(en) +n(s+e).
In addition, for every n > [ we have
vi(a) +1(s+e€) <vp(en) +ns+le <vp(en) +n(s +e€)
where the first inequality follows from . Therefore we obtain
Li(s+e) = Tllrelg(yp(cn) +n(s+e€) =vr(c)+i(s+e)=Lys(s)+ e

We now consider the second identity in (2.2)). Proposition implies that there exists
A € R with vp(e,) > A for all n € Z. Let us set
ve(er) — A 5y = inf <(1/F(cn) +ns) — (vr(e) + 7"5)> '

u:=—————+7r and
5/2 r<n<u n—r

Then we have 9 > 0 as the inequality in (2.1)) is strict for all n > r. Let € be a real number
with 0 < € < min(s/2,d2). For every n > u we find

vi(cr) —vp(en) <ve(e) —A=(u—r1)s/2 < (n—r)(s—¢)
and consequently obtain
vi(er) +1(s—€) <vp(en) +n(s —e).

In addition, we get the same inequality for every m < r by arguing as in the preceding
paragraph. Therefore we deduce

Li(s—e€)= iIelg(VF(Cn) +n(s—¢€) =vp(c,) +r(s—¢€) = Ls(s) —re,
thereby completing the proof. O

Remark. In light of the remark after Lemma [2.1.5] we can alternatively deduce Proposition
from a general fact that the Legendre transform of a convex piecewise linear function
with integer breakpoints is a concave piecewise linear function with integer slopes.
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LEMMA 2.1.8. Let (f,) be a Cauchy sequence in Aj,¢[1/p, 1/[w]] with respect to the Gauss
p~®-norm for some s > 0. Assume that (f,) does not converge to 0. Then the sequences
(L4,(5)), (0-Ly,(s)), and (04+Ly,(s)) are all eventually constant.

ProOF. The sequence (| fn|p,s> converges in R. Let us set

a:= lim Ly (s) = —nli_)r{.lologp (]fn|p_s) )

n—oo

and take an integer u > 0 with
Ly, —,(s) =—log, <|fn - fu]p_s) > 2a and Ly, (s) < 2a for all n > w.
For every m > u, since both L, and Ly, _;, are continuous, we may find some 4, > 0 with
Lf—t.(s+€>2a>Ly (s+e€) for all € € (=6, 0n),

and consequently obtain L (s +¢€) = Ly, (s +¢€) for all € € (=4,,6,) by Lemma This
implies that for every n > u we have

ﬁfn(s) = ﬁfu(8)7 8_£fn(8) = a_ﬁfu (8)7 a+£fn (S) = 8+£,fu(s)
Hence we deduce the desired assertion. O

PROPOSITION 2.1.9. Let [a,b] be a closed subinterval of (0,1), and let (f,) be a Cauchy
sequence in Aiye[1/p, 1/[w]] with respect to the Gauss a-norm and the Gauss b-norm. Assume
that (f,,) does not converge to 0 with respect to either the Gauss a-norm or the Gauss b-norm.
Then the sequence of functions (L, ) is eventually constant on [—log,(b), —log,(a)].

PROOF. Let us write [ := —log,(b) and r := —log,(a). Without loss of generality we may
assume that each f, is not zero. In addition, by symmetry we may assume that f, does not
converge to 0 with respect to the Gauss b-norm. Then Lemma[2.1.8]yields i, 8 € R and u € Z
such that we have Ly, (I) = a and 0, Ly, (I) = 8 for all n > u. Since each Ly, is concave and
piecewise linear by Proposition we set w := max(a, a + B(r —[)) and find

L (s)<a+p(s—1)<w for all n > w and s € [I,r]. (2.3)

Moreover, Lemma [1.2.11| (or Proposition [1.2.12]) implies that the sequence (f,) converges
with respect to all Gauss p-norms with p € [a,b], thereby yielding an integer «' > u with

| frn — furl , <p ¥ foralln> u' and p € [a,b], or equivalently
Ly, r,(8)>w for all n > v’ and s € [I,7].

Hence by Lemma and (2.3) we find
Ly, (s)= Ly, (s) for all n > v’ and s € [I,7].
thereby deducing the desired assertion. O

PROPOSITION 2.1.10. Let [a,b] be a closed subinterval of (0, 1). For every nonzero f € B,y
the function Ly [, ) is concave and piecewise linear with integer slopes.

PROOF. Take a sequence (f,,) in Ain¢[1/p, 1/[w]] which converges to f with respect to the
Gauss a-norm and the Gauss b-norm. By Proposition [1.2.12| we have

Liap(s)= lim Ly (s) for all s € [—1log,(b), —log,(a)].

Since f is not zero, the assertion follows by Proposition [2.1.7] an Proposition [2.1.9 U
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Remark. For a holomorphic function g on the annulus D, := {z€C:a<|z| <b}, the
Hadamard three-circle theorem asserts that the function M, : [In(a),In(b)] — R defined by
My(r) == ln( sup (|g(z)|)> for all r € [In(a),In(b)] is convex. In light of the remark after

|z|=er

Lemmal|l.2.11)we may consider Proposition[2.1.10|as an analogue of the Hadamard three-circle
theorem.

COROLLARY 2.1.11. For every nonzero f € B, the Legendre-Newton polygon Ly is a concave
piecewise linear function with integer slopes.

Remark. Corollary [2.1.11] suggests that we can define the Newton polygon of f as the Le-
gendre transform of L.

Example 2.1.12. Let f be an invertible element in B. By Lemma we find
Ly(s) =L1(s) = Ly-1(s) =—Lp1(s) for all s € (0, 00).

Since both Ly and L;-1 are concave piecewise linear functions as noted in Corollary [2.1.11
we deduce that Ly is linear.

Remark. In fact, it is not hard to prove that a nonzero element f € B is invertible if and
only if Ly is linear.
Let us present some important applications of the Legendre-Newton polygons.

Definition 2.1.13. For every n € Z, we refer to the ring B#=P" as the Frobenius eigenspace
of B with eigenvalue p".

LEMMA 2.1.14. Given an element f € B, we have
le(H)l e = £, and fl, = prlfl, for all p € (0,1).

PROOF. If f is an element in Ajy¢[1/p,1/[w]], the assertion is evident by construction.
The assertion for the general case then follows by continuity. O

PROPOSITION 2.1.15. The Frobenius eigenspace B#=P" is trivial for every n < 0.

PROOF. Suppose for contradiction that B#=P" contains a nonzero element f. By Lemma

2.1.14] we have

PLy(s) = Lyp)(ps) = Lypny(ps) = nps + Lf(ps) for all s > 0.
Since Ly is a concave piecewise linear function by Corollary we find

PO+ Lf(s) = np+ p0yLf(ps) < np 4+ p0iLy(s) for all s > 0, (2.4)
thereby obtaining a contradiction as desired. O

Remark. A similar argument shows that L; is linear for every nonzero f € B*=1. In
Proposition we will build on this fact to prove that B¥=! is naturally isomorphic to Qp.

PROPOSITION 2.1.16. Let [a, b] be a closed subinterval of (0, 1), and let f be a nonzero element
in By, p). Then we have |f|, # 0 for every p € [a, b].

PROOF. Proposition [2.1.10 implies that Ly, (—log,(p)) = —log, (|f|p> is finite for

every p € [a,b], thereby yielding the desired assertion. O

COROLLARY 2.1.17. For every closed interval [a, b] C (0, 1) the ring Biq) 1s an integral domain.

PrOOF. This is an immediate consequence of Proposition|L.2.9|and Proposition[2.1.16| [
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2.2. Divisors and zeros of functions
In this subsection we define the notion of divisors on Y for elements in B.

Definition 2.2.1. A divisor on Y is a formal sum Z ny -y with n, € Z such that for every
yey
closed interval [a,b] C (0, 1) the set Zy, ) = {ye Yiap :ny #0 } is finite.

Remark. Definition [2.2.1|is comparable with the definition of Weil divisors on locally noe-
therian integral schemes as given in [Stal, Tag 0BE2|.

LEMMA 2.2.2. Let f and g be elements in B. Assume that f is divisible by g in B,y for
every closed interval [a,b] C (0,1). Then f is divisible by ¢ in B.

PROOF. For every n > 2 we may write f = gh,, for some h, € Bjj/p1-1/n- Then by
Corollary and Corollary we find that h, takes a constant value for all n > 2.
Hence we get an element h € B with h = h,, for all n > 2, thereby obtaining the desired
assertion. O

PRrOPOSITION 2.2.3. Let y be an element in Y, represented by an untilt C of F'. Every f € B
with f(y) = 0 is divisible by every primitive element { € ker(0¢).

PROOF. Consider an arbitrary closed interval [a,b] C (0,1) with y € Y[,4. By Lemma
2.2.2]it suffices to prove that f is divisible by £ in By, ;). Take a sequence (fy) in Aine[1/p, 1/[w]]
which converges to f with respect to the Gauss a-norm and the Gauss b-norm. By Corollary
we may write f,(y) = ch, for some ¢, € F. Then we have

cﬁc

lim |¢y| = lim
n—oo n—oo

= lim |fu(y)le = 1f W)l =0,

and consequently find that the sequence ([c¢y]) converges to 0 with respect to the Gauss a-
norm and the Gauss b-norm. Hence we may replace (fy,) by (fn — [¢n]) to assume f,(y) =0
for all n > 0.

Let Oc Aine[1/p, 1/[w]] — C be the ring homomorphism which extends the untilt map

Oc. Proposition |1.1.19) implies that & generates ker(6c). We may thus write f, = &g, for
some gpn, € Aint[1/p,1/[w]]. Then for every p € [a, b] we use Proposition to find

. . .
Jim g 41— gnl, = A [€(gnt1 = gn)l, = A |[fatr = ful, =0,
P P

which means that the sequence (g,,) is Cauchy with respect to the Gauss p-norm. Therefore
the sequence (g,,) defines an element g € B, with f = &g. O

Remark. By Corollary we may write p = (p")ti for some p’ € mp, which is uniquely
determined up to unit multiple. Then we obtain a primitive element [p’] — p € ker(A¢), and
consequently find an expression f = ([pb] — p)g for some g € B by Proposition This is
an analogue of the fact that a holomorphic function f on D* with a zero at zg € D* can be
written in the form f = (z — zp)g for some holomorphic function g on D*.

COROLLARY 2.2.4. Let C be a characteristic 0 untilt of F'. Every primitive element £ € ker(6¢)
generates ker(ég).

Remark. Let [a,b] be a closed subinterval of (0,1) with |p|~ € [a,b]. By the proof of
Proposition [1.2.16] the untilt map 6 extends to a surjective continuous ring homomorphism

ég : Blap) = C. Then we can similarly show that every primitive element { € ker(fc)

generates ker(gg ).
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PROPOSITION 2.2.5. Let C' be a characteristic 0 untilt of F', and let 0c[1/p] : Aine[1/p] — C
be the ring homomorphism which extends the untilt map 6-. Then we have

Aume[1/p] N ker(8c) = ker(6c[1/p]) for all j > 1.

PrOOF. The assertion for j = 1 follows by observing that 5; restricts to 0c[1/p]. Let us
now proceed by induction on j. We only need to show Ap¢[1/p] Nker(0c)’ C ker(6c[1/p]),
since the reverse containment is obvious by the fact that 6¢c restricts to 6c[1/p]. Let a be an
arbitrary element in Aj¢[1/p] Nker(fc)?, and choose a primitive element ¢ € ker(6c). Then
§ generates both ker(fc) and ker(6¢[1/p]) by Corollary and Proposition [1.1.19] Hence
we may write a = &b for some b € B. In addition, since we have

Ant[1/p] Nker(8c)? C Aie[1/p] Nker(8c)' ™ = ker(6c[1/p])"
by the induction hypothesis, there exists some ¢ € Aj,¢[1/p] with a = &~1c. We then find
0=a—a=gb-glc=g (-0,

and consequently obtain ¢ = £b by Corollary [2.1.17} This implies ¢ € Aju¢[1/p] N ker(ga), and
in turn yields ¢ € ker(6¢([1/p]) by the assertion for j = 1 that we have already established.
Therefore we deduce a = &/~ tc € ker(0c[1/p])? as desired. O

Definition 2.2.6. Let y be an element in Y, represented by an untilt C' of F'. We define the
de Rham local ring at y by

Bp(y) = lim Aing[1/p]/ ker(0c[1/p])’

pami—
J

where 0c[1/p] : Aint[1/p] — C' is the ring homomorphism which extends the untilt map 6.

PROPOSITION 2.2.7. Let y be an element in Y, represented by an untilt C' of F.
(1) The ring Bj;(y) is a complete discrete valuation ring with C as the residue field.
(2) Every primitive element in ker(f¢) is a uniformizer of Bj; (y).
(3) There exists a natural isomorphism
By (y) = lim B/ ker(0c)’
J

PRrooF. Since C is algebraically closed as noted in Proposition all results from the
first part of in Chapter remain valid with C' in place of Cg. Hence the statements
and follow from Proposition in Chapter and Proposition

It remains to verify the statement Let Oc[1/p] : Aine[1/p] — C be the surjective ring
homomorphism which extends the untilt map 6, and choose a primitive element & € ker(6¢).
Then & generates both ker(ég) and ker(6¢c[1/p]) by Corollary and Proposition
Hence we get a natural map

Bi(y) = lm Awi[1/p]/€ Aue[1/p] — lim B/ B = lim B/ker(Bc)’  (2.)
J J J

which is easily seen to be injective by Proposition Moreover, since we have

Ainf[l/p]/gAinf[l/p] =20 B/gBa

the map (22.5)) is surjective by a general fact as stated in [Stal, Tag 0315]. We thus deduce
that the natural map (2.5)) is an isomorphism, thereby completing the proof. O


https://stacks.math.columbia.edu/tag/0315
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Definition 2.2.8. Let f be a nonzero element in B. We define its order of vanishing at
y €Y to be its valuation in BJ;(y), denoted by ord,(f).

Remark. The element y gives rise to a point iy € ) as described in Example With
Proposition and our discussion in we can show that B:R(y) is the completed local
ring at g. In this sense, Definition 2.2.8 agrees with the usual definition for order of vanishing.

Example 2.2.9. Let £ be a nondegenerate primitive element in Aj,¢. Theorem [1.1.21]implies
that § vanishes at a unique element y¢ € Y. Then we have
1 fory =y,

ordy (§) = {0 for y # ye.

LEMMA 2.2.10. Let f and g be nonzero elements in B. Then we have
ordy(fg) = ordy(f) + ordy(g) forally €Y.

PRrOOF. This is evident by definition. O

PROPOSITION 2.2.11. Let f be a nonzero element in B. For every closed interval [a, b] C (0,1),
the set Zj, ) := { Y € Vg :ordy(f) #0 } is finite.

PROOF. Let us write [ := —log,(b) and r := —log,(a). We also set n := d_Ly(l) —
04 L¢(r), which is a nonnegative integer by Corollary [2.1.11] Since we have ord,(f) > 0 for
all y € Y, it suffices to show

Z ordy(f) < n. (2.6)
yEZ[a)b]
Suppose for contradiction that this inequality fails. By Proposition [2.2.3] Example and
Lemma [2:2.10] we may write
f=&& &g (2.7)
for some g € B and primitive elements &1, - ,&,+1 € Ajnr such that each & vanishes at a

unique element y; € Y|, . Then Example and Example together imply that for
eachi=1,--- ,n+ 1 we have

Le(s) = {3 1 for s < —logp(]yi]),
—log,(lyil) ~ for s > —log,([yil)-
Hence we obtain
0_Leg(l) =04 Le,(r)=1-0=1 foreachi=1,--- ,n+1.
In addition, by Corollary we have 0_L¢(l) — 04L¢(r) > 0. Therefore we use Lemma

and (2.7) to find
n=0_L¢(l)—0+Ls(r)

n+1
= > (0-Le(1) = 04 Ley(r) + (0-Ly (1) — 0Ly (r))
=1
>n—+1,
thereby obtaining a contradiction as desired. O

Remark. It turns out that the inequality (2.6]) is indeed an equality.
Definition 2.2.12. For every f € B, we define its associated divisor on Y by

Div(f) =Y ordy(f) - y.

yey
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2.3. The logarithm and untilts

In this subsection, we define and study the logarithms of elements in the multiplicative
group 1+ mp. For the rest of this section we write m}, := mp\ {0 }.

PRroOPOSITION 2.3.1. There exists a group homomorphism log : 1 + mp — B¥=P with

- (] -D)"
1 = B e . :
og(e) Z( 1) - for every e € 1 + mp (2.8)
n=1
PROOF. Given arbitrary ¢ € 1 4+ mp and p € (0,1), we write [e] — 1 = > [c,]p™ with
cn € Op to find
6]~ 1], < max(leo] . p) = masx(fe ~ 1], p) < 1.
Hence we obtain a map log : 1 + mp — B satisfying (2.8)). It then follows that log is a group
homomorphism by the identity of formal power series log(zy) = log(z) +1og(y). Furthermore,
as ¢ is continuous by construction, for every € € 1 + mp we find

o0 o0

pliog(e)) = (-1 PEDZDY s gyt 1200 oy o) — ploge),
n=1 n=1
thereby completing the proof. O

Remark. We will see in Proposition that log is a Qp-linear isomorphism.

Definition 2.3.2. We refer to the map log : 1 + mp — B¥~P constructed in Proposition
2.31] as the logarithm on 1 + mp.

ProrosITION 2.3.3. Let C be a characteristic 0 untilt of F', and let mo denote the maximal
ideal of O¢. There exists a commutative diagram

1
1+mp —2 5 Be=p

EHE“l i (2.9)

T —
! * e lOgﬂpoo ¢

where all maps are group homomorphisms.

PROOF. Let ¢ be an arbitrary element in Or. By Proposition in Chapter [[TI] there
exists some a € O¢ with ¢f —1 = (¢ — 1)jj + pa. If ¢ belongs to 1 + mp, then we have

’cﬁ—l

< max (|(c = 1f| . pal) = max(le — 1], palc) < 1

and in turn obtain ¢ € 1+ mg. Conversely, if ¢f belongs to 1 4+ m¢, then we have
~ 1l =[(e= 1] < mox (|¢* ~1] .pa) <

le — 1] (c—1) o Smax|e oPo

and consequently obtain ¢ € 1 + mp. Therefore in light of Corollary we deduce that
1 + mp maps onto 1 + m¢ under the sharp map.

Since the map 55 is continuous by construction, for every € € 1 +mg we have

/\ S n. _1\n 0 f_ 1\n
Fottog(e) = (- CELZ DT sh gy B2 DT, )
n=1 n=1

where the last identity follows by Example [3.3.9in Chapter [l Moreover, as C' is algebraically
closed by Proposition '1.1.6|, the map logupw is a surjective homomorphism by Proposition

3.3.11] in Chapter [l]l Therefore we obtain the commutative diagram (2.9) as desired. O
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PROPOSITION 2.3.4. For every € € 14 m},, the element
(] -1
[e1/P] — 1

is a nondegenerate primitive element which divides [¢] — 1 but not [¢}/P] — 1.

&= =14+ [gl/p] I [5(1"_1)/1”} € Apy

PROOF. Let us write k := Op/mp for the residue field of F', and W (k) for the ring of
Witt vectors over k. In addition, for every ¢ € O we denote by ¢ its image under the natural
map Op — k, and by [¢] the Teichmiiller lift of ¢ in W (k). Lemma from Chapter
yields a homomorphism 7 : Ay — W (k) with

T (Z[cn]p") = Z[@]pn for all ¢,, € Of.

We then find 7(£.) = p by observing /P = /P = 1, and consequently obtain a Teichmiiller
expansion
& = [mo] + [m1 + 1]p + Z[mn]p” with m,, € mp.
n>2
Since we have |mg| < 1 and |m; + 1| = 1, we deduce by Proposition [1.1.12| that & is a
primitive element in A;,¢. Moreover, & is nondegenerate as we have

_ Up o o o-)p 1
mog=1+e/P+...+¢ 51/1’—17&0'

It is also evident that & divides [¢] — 1. On the other hand, & does not divide [¢'/P] — 1,
since otherwise & = 14 [¢/?] + --- + [¢P=1/P] should divide p, yielding a contradiction by

Proposition [T.1.13] O

PROPOSITION 2.3.5. For every ¢ € 1 4+ mJ,, there exists some y. € Y with ord,, (log(e)) = 1.

PROOF. Proposition allows us to write [¢] —1 = & ([¢'/P] —1) for some nondegenerate
primitive element & € Ajys which does not divide [¢'/?] — 1. Then by Example and
Lemma we find an element y. € Y with ord,_([¢] — 1) = 1. This means that the image
of [c] — 1 in Bjz(y:) is a uniformizer. The assertion then follows from the fact that log(e) is
divisible by [¢] — 1 but not by ([g] — 1)2. O

PROPOSITION 2.3.6. There exists a bijection Y — (1+m},)/Z,* which maps the equivalence

class of an untilt C' of F' to the Z;-orbit of elements e € 1+m}, with Eﬂc =1and (Elc/p)ﬁ # 1.

PrROOF. Let y be an arbitrary element in Y, represented by an untilt C' of F. Choosing

an element ec € 1+ m} with sﬁc = 1 and (é‘é«/p )ﬁ % 1 amounts to choosing a system of
primitive p-power roots of unity in C” ~ F. Such a system exists uniquely up to Z; -multiple
by Proposition [1.1.6

Let us now consider an arbitrary element ¢ € 1 4+ m}.. Proposition yields a nonde-
generate primitive element & € Ay, which divides [¢] — 1 but not [¢'/?] — 1. Then by Theorem
we get an untilt C. of F with ¢! = 1 and (!/ p)ti # 1. Moreover, for every untilt C' of
F with ¢! = 1 and (51/1’)ti # 1, we have

_ Sﬁ—l B 90([5} _1) B
0= (51/;17)ﬁ 1 - GC([c‘:l/p] — 1) = 00(5&)

and consequently find by Proposition|[I.1.19/and Theorem [1.1.21|that C' and C; are equivalent.

Therefore we deduce that ¢ is the image of a unique element in Y. U
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Definition 2.3.7. Let ¢ denote the Frobenius automorphism of F'.
(1) Given an untilt C' of F with a continuous isomorphism ¢ : C* ~ F, we define its
Frobenius twist ¢(C) as the perfectoid field C' with the isomorphism ¢% o ¢.
(2) We define the Frobenius action on Y as the map ¢ : Y — Y induced by Frobenius

twists.

LEMMA 2.3.8. For every characteristic 0 untilt C' of F' we have 975(\0) = éE oY

PROOF. The identity is evident on Ajn¢[1/p,1/[w]] by construction. The assertion then
follows by continuity. O

Remark. In Example [1.3.22| we described the Frobenius action ¢ on ). By Lemma [2.3.8] it
is straightforward to check that the map Y — ) given by Example is compatible with
the Frobenius actions on Y and V.

PROPOSITION 2.3.9. Let f be a nonzero element in B¥=P" for some n > 0. Then we have
ordy(f) = ordy,)(f) for ally € Y.

PRrooF. Let C' be an untilt of F' which represents y. By corollary there exists a
primitive element £ which generates ker(¢). It is then straightforward to check by Proposition

1.1.12/that ¢(€) is a primitive element in Aj,¢. Moreover, we have ¢(§) € ker(%) by Lemma
[2.3.8 Let us write i := ord,(f) and j := ordg(y)(f). By Proposition we may write

f=¢&g=pE)’h with g, h € B.

Then we have f = p "o(f) = go(f)i -p~"g and consequently find ¢ < j. Similarly, we have
f=voYo(f) =p" (f) = & -p™h and consequently find i > j. Therefore we deduce i = j
as desired. 0

ProprosITION 2.3.10. For every ¢ € 1 + m},, there exists some y. € Y with

Div(log(e)) = Z ?" (ye)-

nez

PROOF. Proposition yields an untilt C. of F with ¢= = 1 and (51/7’)%E # 1. Let
Ye € Y be the equivalence class of C.. Consider an arbitrary element y € Y, represented by
an untilt C' of F. We know by Proposition (3.3.11}in Chapter [l that ker(log,, .. ) is the torsion
subgroup of 1 + m¢ where mg denotes the maximal ideal of O¢. Since we have ¢ # 1 by
assumption, Proposition implies that log(e) vanishes at y if and only if there exists some
n € Z with (57’71)ﬁc =1 and (61’7171)tjo # 1, or equivalently (go’}(s))ﬁc =1 and (cp’}fl(e))ﬁc #1
where pp denotes the Frobenius automorphism of F'. Hence by Proposition [2.3.6] we deduce

that log(e) vanishes at y if and only if there exists some n € Z with y = ¢"(y.). Since we
have log(e) € B¥=P, the assertion follows by Proposition and Proposition [2.3.9] O

PROPOSITION 2.3.11. There exists a natural bijection (1 4+ m})/Qf —— Y/¢* which maps
the Q,f-orbit of an element € € 1 + mj, to the set of elements in Y at which log(e) vanishes.

Proor. Lemma [2.3.8[implies that the Frobenius action ¢ on Y corresponds to the multi-
plication by 1/p on (14+m},)/Z) under the bijection Y — (1+m},)/Z given by Proposition
2.3.6. Hence we obtain a natural bijection (1 + mj})/QY — Y/ ¢”. Let us now consider
an arbitrary element € € 1 + m7. Its Q;-orbit maps to the ¢-orbit of an element y € YV
with a representative C' that satisfies ¥ = 1. Then we find ég(log(s)) = log, .. (e") = 0 by
Proposition [2.3.3] and consequently deduce the desired assertion by Proposition O
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2.4. Points and regularity

In this subsection, we prove that the Fargues-Fontaine curve is a Dedekind scheme whose
closed points classify the Frobenius orbits in Y. For the rest of this chapter, let us write
P := @ B?7P" and denote by | X| the set of closed points in X. We also invoke the following
technical result without proof.

ProPOSITION 2.4.1. Let f and g be elements in B. Then f is divisible by g in B if and only
if we have ord,(f) > ord,(g) for all y € Y.

Remark. This is one of the most difficult results from the original work of Fargues and
Fontaine [FF18|. Curious readers can find a complete proof in [Lur), Lecture 13-16]. Here we
provide a brief sketch of the proof.

We only need to prove the if part as the converse is obvious by Lemma Moreover,
in light of Lemma we may replace B by Bj,; for an arbitrary interval [a,b] C (0,1).
The key point is to show that every element in Bj,; admits a (necessarily unique) factor-
ization into primitive elements. By a similar argument as in Proposition the proof
boils down to showing that every h € B with 0_Ly, (44(5) # 04+Lp [qp(s) for some
s € [~1log,(b), —log,(a)] has a zero y € Y, .

Let us set Y := Y U { 0}, where o denotes the equivalence class of F' as the trivial untilt
of itself. Then Y turns out to be complete with respect to an ultrametric d given by

d(yl,yQ) = |902 (51)‘02 for all y1,4y2 € }/}

where & and Cs respectively denote a primitive element that vanishes at y; and an untilt
of F' that represents yo. If h is an element in Ajn[1/p,1/[w]], an elegant approximation
argument using Legendre-Newton polygons allows us to construct a zero y € Y,-s ,-s) of h as

the limit of a Cauchy sequence (y,) in ¥ with |y,| = p~* and lim |h(yn)|c. = 0 where each
n—oo "

C,, is a representative of y,. For the general case, we can construct Cauchy sequences (hy,)
in Aine[1/p, 1/[@]] and (yn) in Yj,-s —s) with hp(yn) =0 and lim h,, = h with respect to the
’ n—oo

Gauss p~°-norm, thereby obtaining a zero y € Y}, ,—s of h as the limit of (yy).
COROLLARY 2.4.2. The ring B¥=! is a field.

PrOOF. Consider an arbitrary nonzero element f € B¥=!. We have Div(f) = 0, since
otherwise f would be divisible by some g € B¥=/P, thereby contradicting Proposition [2.1.15
Hence by Proposition we deduce that f admits an inverse in B¥=" as desired. O

Remark. As remarked after Proposition [2.1.15] we will see in Proposition that B¥=!
is canonically isomorphic to Q.

LEMMA 2.4.3. Let f be an element in B¥=P" for some n > 0, and let € be an element in
1 4+ m}. Assume that both f and log(e) vanish at some y € Y. Then there exists some

g € B¥=P""" with f = log(e)g.
PROOF. By Proposition we have
ordgi, (f) = ordy(f) > 1 for all ¢ € Z.
In addition, by Proposition [2.3.10| we find
Div(log(e)) = Y ¢'(y).
€7
Since log(e) belongs to B¥=P by construction, the assertion follows by Proposition m O
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PROPOSITION 2.4.4. For every € € 1 4+ mp, the element log(e) € B¥=? is a prime in P.

PROOF. The assertion is obvious for € = 1 as P is an integral domain by Corollary [2.1.17]
We henceforth assume ¢ # 1. Consider arbitrary elements f and g in P such that log(e)
divides fg in P. We wish to show that log(e) divides either f or g in P. Since log(e) is
homogeneous, we may assume without loss of generality that both f and g are homogeneous.
Proposition implies that log(e) vanishes at some y. € Y. Then we find by Lemma
that either f or g vanishes at y., and in turn deduce the desired assertion by Lemma[2.4.3] [

PROPOSITION 2.4.5. Let f be a nonzero element in B¥=P" for some n > 0.
(1) The map ¢ uniquely extends to an automorphism ;¢ on B[1/f].
(2) We may write
f=Alog(e1) - - -log(en) with A € B¥=! and ¢; € 1 + m} (2.10)

where the factors are uniquely determined up to Q -multiple.

PRrROOF. The first statement is straightforward to verify. Let us prove the second statement
by induction on n. Since the assertion is obvious for n = 0, we henceforth assume n > 0.
Then f vanishes at some y € Y'; otherwise, it would be invertible in B by Proposition [2.4.1
and thus would yield a nonzero element f~! € B¥=P™" contradicting Proposition Now
Lemma and Proposition together yield some €, € 1 + mp and g € B#~P" with
f =1log(en)g. Hence by induction hypothesis we obtain an expression as in , where the
factors are uniquely determined up to Q; -multiple by Proposition m O

Definition 2.4.6. Given a nonzero homogeneous element f € P, we refer to the map ¢y
described in Proposition as the Frobenius automorphism of B[1/f]. We often abuse
notation and write ¢ instead of ¢y ;.

PropoOSITION 2.4.7. Every non-generic point £ € X is a closed point, induced by a prime
log(e) in P for some € € 1 + m}. Moreover, its residue field is naturally isomorphic to the
perfectoid field given by any y € Y at which log(e) vanishes.

PROOF. By Proposition [2.4.5 there exists a nonzero element ¢ € B#=P such that z lies in
the open subscheme Spec (B[1/t]¥=!) of X = Proj(P). Let us denote by p the prime ideal
of B[l/t]‘p:1 which corresponds to z, and take an element f/t" € p with f € B¥=F". By
Proposition [2.4.5| we may write

I ). log(e1) log(e2)  log(en)
Ak t t t
Since A is a unit in B#=! by Corollary we have log(e)/t € p for some € € 1 + mj,.

Take an element y € Y at which log(e) vanishes, and choose a representative C' of y. Then
t does not vanish at y, since otherwise Corollary and Lemma together would imply
that log(e)/t is an invertible element in B¥=!, which is impossible as p is a prime ideal. We
thus obtain a map 6, : B[1/t]*~' < B[1/t] — C where the second arrow is induced by Oc.

It suffices to show that 6, is a surjective map whose kernel is generated by log(e)/t.
Proposition implies that ég induces a surjection B¥Y=P —» (', which in turn implies
that 6, is already surjective when restricted to (1/t)B¥=P. Let us now consider an arbitrary
element f'/t" € ker(6,) with f/ € B®=P". Arguing as in the first paragraph, we find that
f'/t" is divisible by log(e’)/t € ker(§,) for some €’ € 1+ m},. Then we have fc(log(e')) = 0,
which means that log(¢’) vanishes at y. Therefore we deduce by Lemma that log(e)/t
divides log(¢’)/t, and thus divides f’/t as desired. O

with A € B¥=! and ¢; € 1 + m}.
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THEOREM 2.4.8 (Fargues-Fontaine [FF18]). The scheme X has the following properties:

(i) There exists a natural bijection |X| —» Y/¢” which maps the point induced by
log(e) for some € € 1+ mJ, to the set of elements in Y at which log(e) vanishes.

(ii) X is a Dedekind scheme such that the open subscheme X\ { z } for every = € | X| is
the spectrum of a principal ideal domain.

(iii) For every x € |X|, its completed local ring @ admits a natural identification
OX,:L‘ = Bc—li—R(y)
where y is any element in the image of z under the bijection |X| ~ Y/¢%.

PROOF. Proposition yields a surjective map 1+ mj, — | X| which associates to each
€ € 1+ mj, the point z € X induced by the prime log(e) € P. Moreover, Lemma implies
that two elements €; and €2 in 1 +mj}, map to the same point in |X]| if and only if log(e1) and
log(e2) have a common zero. Therefore we deduce the property |(i)| by Proposition

Let us now fix a closed point x in X. As shown in the preceding paragraph, the point
x is induced by log(e) for some ¢ € 1+ mj. It follows that X\ {« } is the spectrum of
the ring B[1/ log(s)]“"zl. In addition, we find by Proposition m that every prime ideal of
B[1/ log(a)]‘pzl is a principal ideal. Therefore we obtain the property by a general fact as
stated in [Stal Tag 05KH].

It remains to establish the property Let us fix an element y € Y at which log(e)
vanishes, and take an untilt C' of F' which represents y. We also choose an element ¢t € B¥=P
which is not divisible by log(e). Then we have a surjective map 55[1 /t] : B[1/t] - C induced
by Oc. Let us denote by 6, the restriction of 55[1 /1] to B[1/t]*='. Proposition implies
that we may identify « as a point in Spec (B[1/t]*=") given by ker(f,). Hence we obtain an
identification o

Ox ., = lim B[1/t)7="/ ker(6,,)’. (2.11)

iy

J
Meanwhile, Proposition allows us to identify B:{R(y) as the completed local ring of a

closed point y € Spec (B) given by ker(6¢), thereby yielding an identification

By () = lim B1/1)/ ker (Be 1 /1)) (2.12)

For an arbitrary element f/t" € B[1/t]#~ ﬂker(gg)j with f € B#=P" and j > 1, we have
ord,(f) > j and consequently find by Lemma that f/t™ is divisible by log(¢)? /7. Since
log(e)/t belongs to ker(#,), we obtain an identification

B[1/t]*='n ker(é(\;)j = ker(6,)’ forall j > 1

and in turn get a natural injective map

lim B[1/1]7~"/ ker(6,)) — lim B[1/¢]/ ker(Bc[1/1]). (2.13)

Moreover, since both B[1/t]?="/ker(f,) and B[l/t]/ker(éa[l/t]) are isomorphic to C, the
map ([2.13)) is surjective by a general fact as stated in [Stal Tag 0315]. Therefore we obtain
the property |(iii)| by (2.11)) and ([2.12)). O

Remark. The scheme X is defined over @@, as we will see in Corollary However, it
is not of finite type over QQ, since the residue field of an arbitrary closed point is an infinite

extension of Q, by Proposition
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3. Vector bundles

Our main objective in this section is to discuss several key properties of vector bundles on
the Fargues-Fontaine curve. The primary references for this section are Fargues and Fontaine’s
survey paper [FF14] and Lurie’s notes [Lur].

3.1. Frobenius eigenspaces

In order to study the vector bundles on X it is crucial to understand the structure of the
graded ring P = @ B¥~"". In this subsection, we aim to establish an explicit description of
the Frobenius eigenspaces B¥=P" for all n > 0.

ProprosITION 3.1.1. The natural map F' — B given by Teichmiiller lifts is continuous.

PrOOF. Take a characteristic 0 untilt C' of F. The natural map F©' — B composed
with f¢ coincides with the sharp map associated to C', which is evidently continuous by
construction. Hence the assertion follows by Proposition [1.2.16 U

LEMMA 3.1.2. For every f € B with |f[, <1 for all p € (0,1), there exists a sequence (fy) in
Aint[1/[w]] which converges to f with respect to all Gauss norms.

__ PrROOF. We may assume [ # 0, since the assertion is obvious for f = 0. Take a sequence
(fn) in Aine[1/p, 1/[w]] which converges to f with respect to all Gauss norms. For each n > 1,
we may write f, = f, + Z[cm]pl with ¢,; € F and f,, € Aine[l/[w]]. Take arbitrary real

<0
numbers p € (0,1) and € > 0. Then for all sufficiently large n we have
}; - fn) = Sup (|Cn,i‘ pi) < sup (e_i) - sup (|Cn,i| Eipi) <e- ff\n/ =€ |f’5p <e
P <0 1<0 1<0 €p
where the second identity follows from Lemma [2.1.8, Hence we obtain lim jf; — fn| =0for
n—oo P

all p € (0, 1), thereby deducing that (f,) converges to f with respect to all Gauss norms. [

PropoOSITION 3.1.3. Let f be an element in B. Assume that there exists an integer n > 0
with |f|p < p™for all p € (0,1). Then we may write f = [¢]p" + g for some ¢ € Op and g € B
with |g], < p" 1 for all p € (0,1).

PROOF. We may replace f by f/p" to assume n = 0. Lemma yields a sequence
(fi) in Ajne[1/[w]] which converges to f with respect to all Gauss norms. For each i > 1,
we denote by [¢;] the first coefficient in the Teichmiiller expansion of f;. Then we have
cit1 —ci| < |fi1— fil, for all i > 1 and p € (0,1). This means that the sequence (c;) is
Cauchy in F' and thus converges to an element ¢ € F. In addition, given a real number
p € (0,1), Lemma yields [¢;| < [fil, = [f], < 1 for all sufficiently large ¢, thereby
implying ¢ € Op.

Let us now set g; := fi — [ci] € Aint[l/[w]] for each ¢ > 1 and take g :== f — [c] € B.
We may assume g # 0, since the assertion is obvious if we have ¢ = 0. Each g; admits a
Teichmiiller expansion where only positive powers of p occur, so that all slopes of L, are
positive integers by Proposition Moreover, Proposition implies that the sequence
(g9i) converges to g with respect to all Gauss norms. Therefore we deduce by Lemma m
that all slopes of £, are positive integers. We then use Lemma 2.1.2] to obtain

Ly(s) > min (Lf(s), Liy(s)) = min (— log,, (|f]p,5) , —log, (\c])) >0 for all s > 0,
thereby deducing L4(s) > s for all s > 0, or equivalently |g|, < p for all p € (0,1). O
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PrOPOSITION 3.1.4. Let f be a nonzero element in B.

(1) The element f belongs to Ajy¢ if and only if we have |f| p, < 1forallpe (0,1).

(2) The element f belongs to Aj,¢[1/p] if and only if there exists an integer n with
| fl, < p" for all p € (0,1).

(3) The element f belongs to Ajne[l/[w]] if and only if there exists a constant C' > 0
with [f[, < C for all p € (0,1).

(4) The element f belongs to Ain¢[1/p,1/[w]] if and only if there exist a constant C' > 0
and an integer n with |f|, < Cp" for all p € (0,1).

PROOF. If f belongs to Ajng, then we clearly have |f| <1 for all p € (0,1). Conversely,
if we have [f|, <1 for all p € (0,1), then by Proposition we can inductively construct a
sequence (¢;) in O with

f=> lel'

=0

n—1
‘ <p" for all n > 0 and p € (0,1),

p
thereby deducing f € Aj,s. Therefore we establish the statement

Now we find that f belongs to Aj,¢[1/p] if and only if there exists an integer n with
p"f € A, or equivalently \f|p < |p|;" = p " for all p € (0,1), thereby obtaining the
statement Similarly, we find that f belongs to Aiy¢[1/[ww]] if and only if there exists an
integer n with [@"]f € Ajn, or equivalently |f|, < [[@]|," = |w|™" for all p € (0,1), thereby
obtaining the statement |[(3)l Finally, we find that f belongs to Ai,¢[1/p,1/[w]] if and only if
there exist integers | and n with p"[w]'f € A, or equivalently | f| p < Hw]lp”|p = |w|l p" for
all p € (0,1), thereby obtaining the statement O

LEMMA 3.1.5. Given a nonzero element f € B¥=! there exists an integer n with lfl, =p"
for all p € (0,1).
PrROOF. By Lemma we have
pLs(s) = Lyp)(ps) = L (ps) for all s > 0, (3.1)

and consequently find pdy Lf(s) = p0;L(ps) for all s > 0. Hence Corollary implies
that L is linear with integer slope, which means that there exist an integer n and a real
number 7 with £7(s) = ns+r for all s > 0. We then find r = 0 by (3.1)), and in turn obtain
Lf(s) = ns for all s > 0, or equivalently [f|, = p" for all p € (0,1). 0O

PROPOSITION 3.1.6. The ring B¥~! is canonically isomorphic to Qp.

PRrOOF. Let W (F,) denote the ring of Witt vectors over F,. Under the identification
Q= WE)1/p) 2 { D lenlp™ € Auill/p] i cn €F,p |, (3.2)

we may regard @, as a subring of B¥=1. Let us now consider an arbitrary nonzero element

f e BP=1, Propositionand Lemmatogether imply that f is an element in Aj¢[1/p].
Hence we may write f = ) [c,]|p™ with ¢, € Op. Since f is invariant under ¢, for each n € Z
we find ¢}, = ¢,, or equivalently ¢, € F,. We thus deduce f € Q, under the identification
, thereby completing the proof. O

Remark. Our proof does not depend on Proposition that we assume without proof.

COROLLARY 3.1.7. The scheme X is defined over Q,.
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ProposITION 3.1.8. The map log : 1 + mp — B¥~P? is a continuous Q)-linear isomorphism.

ProOOF. Choose a characteristic 0 untilt C of F. The sharp map associated to C is
continuous by construction. In addition, the map log,, . is continuous by Proposition
in Chapter [[Tl Therefore it follows by Proposition and Proposition that the map
log is continuous. Moreover, since every element in Q,, is the limit of a sequence in Z, we obtain
the Qp-linearity of log by Proposition El’ and consequently deduce the surjectivity of log
by Proposition and Proposition [3.1.6], We also find that log is injective, as Proposition
yields log(e) # 0 for every € € 14+m7},. Therefore we establish the desired assertion. [J

COROLLARY 3.1.9. There exists a natural bijection |X| — (B¥=P\ {0 })/Q) which maps
the point induced by log(e) for some € € 1+ m}, to the Q,-orbit of log(e) in B¥~P.

Proor. This is merely a restatement of the property |(i)|in Theorem using Proposi-
tion B.1.8 O

COROLLARY 3.1.10. Let f be a nonzero element in B#=P" for some n > 1. We may write
f =log(e1)log(e2) - - - log(en) with g; € 1 + mp

where the factors are uniquely determined up to Q;f—multiple.

ProOF. This is an immediate consequence of Proposition Proposition [3.1.8] and
Proposition [2.4.5 U

Remark. Corollary and Corollary are respectively analogues of the following
facts about the complex projective line PL = Proj (Clz1, 22)):

(1) Closed points in ]P’(lc are in bijection with the Q,-orbits of linear homogeneous poly-
nomials in C[z1, 22].

(2) Every homogeneous polynomial in C[z1, z2] of positive degree admits a unique fac-
torization into linear homogeneous polynomials up to C*-multiple

It is therefore reasonable to expect that the Fargues-Fontaine curve X is geometrically similar
to PL, even though X is not of finite type over Q,. We will solidify this idea in the next
subsection by studying line bundles on the Fargues-Fontaine curve.

PROPOSITION 3.1.11. Let Bt be the closure of Aju¢[1/p] in B. For every n € Z we have
B#=P" C Bt.

PRroOF. For n < 0, the assertion is obvious by Proposition [2.1.15| and Proposition [3.1.6
Moreover, we find

o0

Ny =D
log(e) = Z( 1) €eB for every e € 1+ mp
n=1 "
as each summand belongs to Ajn[1/p], thereby deducing the assertion for n > 1 by Corollary
3.1.10 O

Remark. For every nonzero element f € B¥=" we find liH(l] L¢(s) = 0 by the functional
S—>

equation pL¢(s) = ns + L;(ps) as obtained in the proof of Proposition [2.1.15, Hence we can
alternatively deduce Proposition [3.1.11] from an identification

B+:{f€B:giB[1)£f(s)20}

which is not hard to verify using Proposition and Proposition We note that this
proof does not rely on Proposition which we assume without proof.



158 IV. THE FARGUES-FONTAINE CURVE
3.2. Line bundles and their cohomology

In this subsection, we classify and study line bundles on the Fargues-Fontaine curve.
Throughout this subsection, we denote by Div(X) the group of Weil divisors on X, and by
Pic(X) the Picard group of X. In addition, for every rational section f on X we write Div(f)
for its associated Weil divisor on X.

Definition 3.2.1. We define the divisor degree map of X to be the group homomorphism
deg : Div(X) — Z with deg(z) =1 for all x € | X|.

PROPOSITION 3.2.2. For every D € Div(X), we have deg(D) = 0 if and only if D is principal.

PROOF. Let K(X) denote the function field of X. We also let () denote the fraction field
of P. Note that there exists a natural identification

K(X)2{f/geQ: f.ge B** forsomen>0}. (3.3)

Consider an arbitrary element f € K(X)*. By (3.3) and Corollary [3.1.10|there exist some
nonzero elements ti,to, - ,to, € B¥~P with

B titg - -tn
tngitagzcoton
We then find deg(Div(f)) = 0 as Corollary [3.1.9)yields z1, z2, - - - , T2, € |X| with Div(t;) = ;.
Let us now consider an arbitrary Weil divisor D on X with deg(D) = 0. We may write

D=(xi4+zo+ - +x) — (Tpy1 + Tpsa+ -+ x2p) with z; € | X|.
Moreover, Corollary yields ty,to,- -, tay, € B¥=P with Div(t;) = x;. Hence we have

t1to - - -t
D = Div (12">7
tn+1tn+2 < top

which is easily seen to be a principal divisor by ([3.3)). O

Definition 3.2.3. For every d € Z, we write P(d) := @B“’:pdﬂ and define the d-th twist

nez
of Ox to be the quasicoherent sheaf O(d) on X associated to P(d).

LEMMA 3.2.4. For every d € Z, the sheaf O(d) is a line bundle on X with a canonical
isomorphism O(d) = O(1)®.

PROOF. The assertion follows from Corollary |3.1.10| by a general fact as stated in [Stal,
Tag 01MT]. O

PROPOSITION 3.2.5. The divisor degree map of X induces a natural isomorphism Pic(X) = Z
whose inverse maps each d € Z to the isomorphism class of O(d).

PROOF. Since X is a Dedekind scheme as noted in Theorem we can identify Pic(X)
with the class group of X. Hence by Proposition the divisor degree map of X induces
a natural isomorphism Pic(X) = Z. Let us now choose a nonzero element ¢ € B¥=P_ which
induces a closed point x on X by Corollary It is straightforward to check that t is a
global section of O(1), which in turn implies by Lemma that O(1) is isomorphic to the
line bundle that arises from the Weil divisor Div(¢) = = on X. Hence the isomorphism class
of O(1) maps to deg(x) = 1 under the isomorphism Pic(X) = Z. The assertion now follows
by Lemma Il

Remark. Proposition|3.2.5|is an analogue of the fact that there exists a natural isomorphism
Pic(PL) & Z whose inverse maps each d € Z to the isomorphism class of Op1 (d).
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PROPOSITION 3.2.6. Let M = @ M, be a graded P-module, and let M be the associated qua-
neZ
sicoherent Ox-module. There exists a canonical functorial Q,-linear map My — H%(X, M).

PROOF. Since we have B¥=! = Qp as noted in Proposition the assertion follows by
a general fact as stated in [Stal Tag 01M7]. O

Definition 3.2.7. Given a graded P-module M, we refer to the map My — HY(X, M) in
Proposition [3.2.6] as the saturation map for M.

ProproSITION 3.2.8. Let d be a nonnegative integer, and let ¢ be a nonzero element in B¥~P.
The multiplication by ¢ on P induces a commutative diagram of exact sequences

0 , ge=p? , ge=ptt! , ge=p*t! /tB%O:Pd . 0

| | |
0 —— HYX,0(d) —— HX,0(d+1)) —— H°(X,0(d+1)/tO(d)) — 0

where the vertical arrows respectively represent the saturation maps for P(d), P(d + 1) and
P(d+1)/tP(d). Moreover, O(d + 1)/tO(d) is supported at the point = € |X| induced by ¢.

PROOF. Since P is an integral domain by Corollary [2.1.17] the multiplication by ¢ on P
yields an exact sequence of graded P-modules

0 —— Pd) L% P(d+1) —— P(d+1)/tP(d) — 0 (3.4)
which gives rise to an exact sequence of coherent O x-modules
00— O(d) —— O(d+1) —— O(d+1)/tO(d) —— 0. (3.5)

The top row of the diagram is induced by the sequence , and is exact. The bottom row
of the diagram is induced by the sequence , and is left exact. The commutativity of the
diagram is evident by the functoriality of saturation maps as noted in Proposition [3.2.6

By Corollary we may write ¢ = log(e) for some € € 1+m7,. In addition, Proposition
[2.3.10] yields an element yy € Y at which ¢ vanishes. Let us choose a representative C of y.
Proposition M implies that 55 restricts to a surjective map B¥=P — (. Hence for every
a € C we can take sg,s € B¥~P with 90(80) =1 and 55( ) = a, and consequently obtain
0@(508) =a. In partlcular the map Gc restricts to a surjective map Be=P"" _, O We also
find by Lemma that the kernel of this map is given by tB¥= " Therefore the map 55
induces an 1somorphlsm

Be=r" )y Be=r" & O, (3.6)

Let us now take z € |X| induced by t. Then Prop051t10n allows us to identify C'

with the residue field of z. In addition, Proposition implies that O(d) and O(d+ 1) are

respectively isomorphic to the line bundles that arise from the Weil divisors dz and (d 4 1)z.

It is then straightforward to verify that O(d+1)/tO(d) is supported at = with the stalk given

by t=4710x . /t~4Ox , ~ C. This means that O(d+1)/tO(d) is isomorphic to the skyscraper
sheaf at = with value C. Furthermore, by (3.6 . we obtain an isomorphism

Be=r"" )i pe=r" ~ 0 =~ gO(X, 0(d + 1)/tO(d)),

which is easily seen to coincide with the saturation map for P(d + 1)/tP(d). We then deduce
by the commutativity of the second square that the bottom row is exact, thereby completing
the proof. O
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THEOREM 3.2.9 (Fargues-Fontaine [FF18]). We have the following facts about the cohomol-
ogy of line bundles on X:

(1) There exists a canonical isomorphism H°(X, O(d)) = B?*="" for every d € Z.
(2) The cohomology group H'(X,O(d)) vanishes for every d > 0.

PROOF. Take a nonzero element t € B¥=P. By Corollary there exists a closed
point  on X induced by t. Let us write U := X\ {x }. Then we have an identification
U = Spec (B[1/t]%71).

For every d € 7Z, the multiplication by ¢ on P yields an injective map of P-graded modules
P(d) — P(d+ 1) by Corollary and in turn gives rise to an injective sheaf morphism
O(d) — O(d + 1). In addition, Proposition implies that each O(d) is isomorphic to
the line bundle that arises from the Weil divisor dz. We then find that lim O(d) is natu-
rally isomorphic to the pushforward of Oy by the embedding U —— X, and in turn obtain
identifications

H° (X,1lim O(d)) = H°(U,Oy) = B[1/1]¥~,
H' (X,lim O(d)) = H'(U,0p) = 0.
Let us now prove the statement For every d € Z, we denote by a4 the saturation map

of P(d). We wish to show that each «ay4 is an isomorphism. Proposition implies that the
sequence (o) gives rise to a map

B[1/1)*=! 2 1im B¥" — lim HO(X, O(d)) = H° (X, lim O(d)) ,

which is easily seen to coincide with the isomorphism (3.7). Moreover, Proposition and
the snake lemma together yield isomorphisms

ker(ayg) ~ ker(ags1) and coker(ayg) ~ coker(ag1) for all d > 0.

Therefore we deduce that g is an isomorphism for every d > 0. In particular, we have
HY(X,0x) = B*=! = Q, where the second isomorphism is given by Proposition Then
for every d < 0, we find that there exists no nonzero element element of H(X,Ox) which
vanishes to order —d at z, and consequently obtain H°(X,O(d)) = 0. We thus deduce by
Proposition 2.1.15] that «q4 is an isomorphism for every d < 0 as well.

It remains to establish the statement For every n > 0, the last statement of Propo-
sition implies that the cohomology of O(d + 1)/tO(d) vanishes in degree 1. Hence for
every d > 0 we have a long exact sequence

HOX,0(d + 1)) — HY(X,0(d+1)/t0(d)) — H'(X,0(d)) — H'(X,0(d+1)) — 0,

which in turn yields an isomorphism H!(X,O(d)) ~ HY(X,O(d + 1)) as the first arrow is
surjective by Proposition The desired assertion now follows by (i3.8)). O

Remark. Theorem provides analogues of the following facts about the complex projec-
tive line P{ = Proj (Clz1, 29)):

(1) For every d € Z, the cohomology group HY(Pf, O]P’}c (d)) is naturally isomorphic to
the group of degree d homogeneous polynomials in C[z1, z2].

(2) For every d > 0, the cohomology group H'(PL, (91% (d)) vanishes.

However, it is known that H'(X,O(—1)) does not vanish while H' (P, Op1 (—1)) vanishes.
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3.3. Harder-Narasimhan filtration

In this subsection, we review the Harder-Narasimhan formalism for vector bundles on a
complete algebraic curve.

Definition 3.3.1. A complete algebraic curve is a scheme Z with the following properties:

(i) Z is connected, separated, noetherian and regular of dimension 1.

(ii) The Picard group Pic(Z) admits a homomorphism deg, : Pic(Z) — Z, called a
degree map, which takes a positive value on every line bundle that arises from a
nonzero effective Weil divisor on Z.

Example 3.3.2. Below are two important examples of complete algebraic curves.

(1) Every regular proper curve over a field is a complete algebraic curve by a general
fact as stated in [Stal Tag 0AYY].

(2) The Fargues-Fontaine curve is a complete algebraic curve by Theorem and

Proposition [3.2.5

For the rest of this subsection, we fix a complete algebraic curve Z with a degree map
deg, on the Picard group Pic(Z). Our first goal in this subsection is to study the notion of
degree and slope for vector bundles on Z.

Definition 3.3.3. Let V be a vector bundle on Z.
(1) We write rk(V) for the rank of V, and define the degree of V by

deg(V) = degy (/\rk(v) (V)) .
(2) If V is not zero, we define its slope by

(V) = ig((;))

(3) We denote by VY the dual bundle of V.

ProrosITION 3.3.4. Let U, V, and W be vector bundles on Z. Assume that there exits a
short exact sequence

0 > U >V > W 0.
(1) We have identities
rk(V) = rk(U) + rk(W) and deg(V) = deg(Uf) + deg(W).
(2) If U, V, and W are all nonzero, then we have
min (uU) , p(W)) < u(V) < max (uU), p(W))
with equality if and only if u(U) and p(WV) are equal.

PrOOF. The first identity in the statement is evident, whereas the second identity
in the statement follows from a general fact as stated in [Stal Tag 0B38]. It remains to
prove the the statement Let us now assume that U/, V, and W are all nonzero. By the
statement we have

(V) = deg(V) _ deg(U) + deg(W)

rk(V) rk(U) + k(W)
If u(U) and p(W) are not equal, then p(V) must lie between p(U) and (V). Otherwise, we
find p(Uf) = p(V) = p(W). .
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LEMMA 3.3.5. Let M and N be free modules over a ring R of rank r and 7. There exists a
canonical isomorphism

/\rr’(M ®R N) o /\T(M)(XJT’ ®R /\T,(N)@)r-
PROOF. Let us choose bases (m;) and (n;) for M and N, respectively. We have an
isomorphism of rank 1 free R-modules
AT (M ®@p N) ~ AT(M)®" @p A" (N)®" (3.9)

which maps A(m; ® n;) to (Ami)®" @ (An;j)®". Tt suffices to show that this map does not
depend on the choices of (m;) and (n;). Take an invertible r x r matrix o = (ay;) over R.

Then we have
/\ (Z Qpimi @ nj> = det(a)” /\(mZ ®nj),
(A (o)) (A)” =t (o) o (An) "

Hence \(Y apimi @ n;) maps to (A an.imi))®" @ (An;)®" under (3.9). Tt follows that
the map (3.9) does not depend on the choice of (m;). By symmetry, the map (3.9) does not
depend on the choice of (n;) either. Therefore we deduce the desired assertion. g

ProroSITION 3.3.6. Let V and W be nonzero vector bundles on Z. Then we have

deg(V ®0, W) = deg(V)rk(W) + degW)rk(V) and p(V ®@0p, W) = p(V) + u(W).

PROOF. Since we have rk(V ®p, W) = rk(V)rk(W), the first identity is straightforward
to verify by Lemma [3.3.5] The second identity then immediately follows. O
LEMMA 3.3.7. The cohomology group H°(Z,0y) is a field.

PROOF. Let K(Z) denote the function field of Z, and take an arbitrary element f €
K(Z)*. Then f yields a global section of Oy if and only if the associated Weil divisor Div(f)

on Z is effective. Since every principal divisor on Z induces a line bundle of degree 0, the
Weil divisor Div(f) is effective if and only if it is the zero divisor. We thus find

H(Z,02)\{0}={f e K(Z)*:Div(f) =0},
and consequently deduce that H%(Z,0y) is a subfield of K(Z). O
LEMMA 3.3.8. Let £ and M be line bundles on Z.

(1) If we have deg(L) > deg(M), there is no nonzero Oz-module map from £ to M.

(2) If we have deg(L) = deg(M), every nonzero Oz-module map from £ to M is an
isomorphism.

PROOF. Assume that there exists a nonzero Oz-module map s : L — M. Then s
induces a nonzero global section on £Y ®p, M via the identification
Home, (£, M) = H*(Z, LY @0, M). (3.10)
Hence LY ®p, M arises from an effective Weil divisor D on Z by a general fact as stated in
[Stal, Tag 01X0]. We then find
deg(M) — deg(L) = deg(LY ®0, M) >0, (3.11)
and consequently deduce the first statement.

Let us now assume deg(L) = deg(M). By (3.11)) we have deg(LY ®p, M) = 0, which
means that the effective Weil D must be zero. It follows that £ ®¢, M is trivial, which in

turn implies by (3.10) and Lemma that s is an isomorphism. O


https://stacks.math.columbia.edu/tag/01X0
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PRrROPOSITION 3.3.9. A coherent Oz-module is a vector bundle if and only if it is torsion free.

PROOF. Since Z is integral and regular by construction, the assertion follows from a
general fact as stated in [Stal, Tag 0CC4]. O

ProrosiTION 3.3.10. Let V be a vector bundle on Z, and let W be a coherent subsheaf of V.
(1) W is a vector bundle on Z.
(2) W is contained in a subbundle W of V with k(W) = k(W) and deg(W) < deg(VN\/).

PROOF. Since W is evidently torsion free, the first statement follows from Proposition
Hence it remains to verify the second statement. We may assume W # 0, as otherwise
the assertion would be obvious. Let 7 denote the torsion subsheaf of the quotient V/W.
Take W to be the preimage of 7 under the surjection V — V/W. Then W is a torsion
free subsheaf of V with a torsion free quotient, and thus is a subbundle of V by Proposition
In addition, we have W C W and W/W ~ T by construction, and consequently
find rk(W) = rk(W) as T has rank 0 for being a torsion sheaf. We also have a nonzero
Oz-module map AW —, AW induced by the embedding W —— VNV, and in turn
obtain deg(W) < deg(W) by Lemma m O

Remark. The subbundle W of V that we constructed above is often referred to as the
saturation of YW in V.

ProposITION 3.3.11. Let V and W be vector bundles on Z of equal rank and degree. Assume
that W is a coherent subsheaf of V. Then we have V = W.

PROOF. The embedding W <— V induces a nonzero map AKOV)(W) — AOV)(V),
which is forced to be an isomorphism by Lemma[3.3.8] Hence at each point in Z the embedding
W —— V yields an isomorphism on the stalks for having an invertible determinant. It follows
that the embedding W —— V is an isomorphism. g

PROPOSITION 3.3.12. Given a vector bundle V on Z, there is an integer dy with deg(W) < dy
for every subbundle W of V.

PROOF. If V is the zero bundle, the assertion is trivial. Let us now proceed by induction on
rk(V). We may assume that there exists a nonzero proper subbundle U of V, as otherwise the
assertion would be obvious. Consider an arbitrary subbundle W of V. Let us set P :=WnNU
and denote by Q the image of W under the natural surjection V — V/U. Proposition
and the induction hypothesis together imply that P and Q are vector bundles on Z with

deg(P) < dy and deg(Q) < dyy

for some integers dyy and dy, ;4 that do not depend on W. In addition, we have a short exact
sequence

0 > P W Q 0.
Therefore we obtain
deg(W) = deg(P) + deg(Q) < dy + dyy
where the first identity follows from Proposition U

Remark. On the other hand, if V' is not a line bundle on Z, we don’t necessarily have an
integer dj, with deg(W) > dj, for every subbundle W of V. In fact, in the context of the
complex projective line or the Fargues-Fontaine curve, it is known that such an integer d,
never exists if V is not a line bundle.
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We now introduce and study two important classes of vector bundles on Z.
Definition 3.3.13. Let V be a nonzero vector bundle on Z.
(1) We say that V is semistable if we have (W) < (V) for every nonzero subbundle W
of V.
(2) We say that V is stable if we have p(W) < p(V) for every nonzero proper subbundle
W of V.

Remark. Here we don’t speak of semistability for the zero bundle, although some authors
say that the zero bundle is semistable of every slope.

Example 3.3.14. Every line bundle on Z is stable; indeed, a line bundle on Z has no nonzero
proper subbundles as easily seen by Proposition

ProprosITION 3.3.15. Let V be a semistable vector bundle on Z. KEvery nonzero coherent
subsheaf W of V is a vector bundle on Z with p(W) < pu(V).

PROOF. Proposition 3.3.10] implies that W is a vector bundle on Z, contained in some
subbundle W of V with (W) < p(W). We then find u(W) < u(V) by the semistability of V,
and consequently obtain the desired assertion. O

PROPOSITION 3.3.16. Let V and W be semistable vector bundles on Z with u(V) > p(WV).
Then we have Homp, (V, W) = 0.

PROOF. Suppose for contradiction that there is a nonzero Oz-module map f:V — W.
Let @ denote the image of f. Proposition [3.3.15|implies that Q is a vector bundle on Z with

w(Q) < p(W) < u(V). (3.12)
Let us now consider the short exact sequence

0 — s ker(f) —s VL300
We have ker(f) # 0 as Q and V are not isomorphic by (3.12)). We thus obtain u(ker(f)) < u(V)
by the semistability of V and consequently find ©(Q) > u(V) by Proposition thereby
deducing a desired contradiction by (3.12)). O

Remark. The converse of Proposition does not hold in general. For example, if the
Picard group of Z is not isomorphic to Z, we get a nontrivial degree 0 line bundle £ on Z
and find Homp,(Oz, L) = 0 by Lemma On the other hand, if Z is taken to be the
complex projective line or the Fargues-Fontaine curve, then the converse of Proposition [3.3.16]
is known to hold.

PROPOSITION 3.3.17. Let V be a vector bundle on Z such that V®" is semistable for some
n > 0. Then V is semistable.

ProoF. Consider an arbitrary nonzero subbundle W of V. We may regard W®" as a
subsheaf of V®". Then we have u(W®") < u(V®") by Proposition [3.3.15, and in turn find

pW) = p(WE) fn < u(VE™) /n = p(V)
by Proposition [3.3.6 ]
Remark. It is natural to ask if the tensor product of two arbitrary semistable vector bundles
on Z is necessarily semistable. If Z is a regular proper curve over a field of characteristic 0,
this is known to be true by the work of Narasimhan-Seshadri [NS65]. In addition, we will

see in Corollary that this is true in the context of the Fargues-Fontaine curve. However,
this is false if Z is defined over a field of characteristic p, as shown by Gieseker [Gie73].
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ProPOSITION 3.3.18. Let V and W be semistable vector bundles on Z of slope A.

(1) Every extension of YW by V is a semistable vector bundle on Z of slope A.

(2) Forevery f € Homp, (V, W), both ker(f) and coker(f) are either trivial or semistable
vector bundles on Z of slope A.

PRrROOF. Let £ be a vector bundle on X which fits into a short exact sequence
0 1% y £ w » 0.

By Proposition we find p(€) = A. Take an arbitrary subbundle F of £, and denote by
F' its image under the map £ — W. By construction we have a short exact sequence

0 —— VNF F F' > 0.
In addition, Proposition implies that ¥V N F and F’ are vector bundles on Z with
p(VNF)<pV)=A  and  p(F) <pW) =\
We then find pu(F) < A = u(€) by Proposition thereby deducing the statement

It remains prove the statement The assertion is trivial for f = 0. We henceforth
assume f # 0, and denote by Q the image of f. Then we have a short exact sequence

0 —— ker(f) >V > Q > 0,
Moreover, Proposition implies that ker( f) and Q are vector bundles on Z with
deg(ker(f)) < (V) -rk(ker(£) = A-rk(ker(f))  and  p(@) < p(W) = A

Hence by Proposition we find
deg(ker(f)) = A - rk(ker(f)) and w(Q) = A.

Since every subbundle of ker(f) is a coherent subsheaf of V), the first identity and Proposition
3.3.15| together imply that ker(f) is either zero or semistable of slope .

Meanwhile, Proposition [3.3.10| implies that Q is contained in a subbundle Q of W with
rk(Q) = rk(é) and deg(Q) < deg(é). (3.13)
Then by the semistability of V we obtain
A=n(Q) < p(Q) < p(W) =\,
and consequently find that the inequality in (3.13)) is indeed an equality. Hence Proposition

3.3.11] yields Q = é, which in particular means that Q is a subbundle of W.
Let us now assume that coker(f) is not zero. Since we have a short exact sequence

0 o s W coker(f) —— 0,

our discussion in the preceding paragraph and Proposition together imply that coker(f)
is a vector bundle on Z with p(coker(f)) = A. We wish to show that coker(f) is semistable.
Take an arbitrary subbundle R of coker(f), and denote by R’ its preimage under the map
W — coker(f). Then we have a short exact sequence
0 Q » R > R > 0.
In addition, Proposition [3.3.15| implies that R’ is a vector bundle on Z with
1(R) < W) = A = p(Q).

Hence we find u(R) < u(Q) = A = p(coker(f)) by Proposition and consequently deduce
that coker(f) is semistable as desired. O
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Our final goal in this subsection is to show that every vector bundle on Z admits a unique
filtration whose successive quotients are semistable vector bundles with strictly increasing
slopes.

Definition 3.3.19. Let V be a vector bundle on Z. A Harder-Narasimhan filtration of V is
a filtration by subbundles

0=VoCViC---CV,=V
such that the successive quotients V;/Vy, -+, V,/V,—1 are semistable vector bundles on Z
with N(VI/VO) > > :U’(Vn/vn—l)'

LEMMA 3.3.20. Given a nonzero vector bundle V on Z, there exists a semistable subbundle
Vi of V with u(V1) > (V) and u(Vy) > p(U) for every nonzero subbundle U of V/V;.

PROOF. For an arbitrary nonzero subbundle W of V, we have 0 < rk(W) < rk(V) and
deg(W) < dy for some fixed integer dy given by Proposition |3.3.12] This implies that the set

S:={qe€Q:q= pu(W) for some nonzero subbundle W of V }

is discrete and bounded above. In particular, the set S contains the largest element A.

Let us take V; to be a maximal subbundle of V with p(V1) = A. By construction we have
p(V1) > u(V). Moreover, since every subbundle of V) is a coherent subsheaf of V, Proposition
and the maximality of A together imply that V; is semistable. Let us now consider
an arbitrary nonzero subbundle U of V/V;, and denote by U its preimage under the natural
surjection ¥V — V/V;. Then we have a short exact sequence

0 %1 u u > 0.

In addition, the maximality of A\ and V; implies p(U) < A = p(Vi). Therefore we find
p(U) < p(V1) by Proposition thereby completing the proof. O

Remark. Our proof above relies on the fact that the group Z is discrete. However, as noted in
[Ked19, Lemma 3.4.10], it is not hard to prove Lemma without using the discreteness
of Z. As a consequence, we can extend all of our discussion in this subsection to some other
contexts where the degree of a vector bundle takes a value in a nondiscrete group such as
Z[1/p]. We refer the curious readers to [Ked19, Example 3.5.7] for a discussion of such an
example.

LEMMA 3.3.21. Let V be a nonzero vector bundle on Z. Assume that V admits a Harder-
Narasimhan filtration

0=VCWViC---CV,=V.
For every semistable vector bundle W on Z with Homep, (W, V) # 0, we have u(W) < u(V1).

ProoOF. Take a nonzero Oz-module map f : W — V, and denote its image by Q.
Since Q is a nonzero coherent subsheaf of V), there exists the smallest integer ¢ > 1 with

Q CV;. Then we find that f induces a nonzero Oz-module map W 1, Vi = Vi/Vi—1, and
consequently obtain

pW) < u(Vi/Vie1) < p(Vr)
where the first inequality follows by Proposition [3.3.16 0
Remark. Lemma [3.3.21] does not hold without the semistability assumption on W. For

example, if we take W := V & L where L is a line bundle on Z with u(£) > u(V), we find
Homp, W, V) # 0 and p(W) > p(V).
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THEOREM 3.3.22 (Harder-Narasimhan [HN75]). Every vector bundle V on Z admits a unique
Harder-Narasimhan filtration.

PROOF. Let us proceed by induction on rk(V). If V is the zero bundle, the assertion is
trivial. We henceforth assume that V is not zero.

We first assert that V admits a Harder-Narasimhan filtration. Lemma [3.3.20] yields a
semistable subbundle V; of V with (V1) > u(U) for every nonzero subbundle U of V/V;. By
the induction hypothesis, the vector bundle V/V; on Z admits a Harder-Narasimhan filtration

O:ulC"'Cun:V/Vl. (3.14)

For each ¢ = 2,--- ,n, let us set V; to be the preimage of U; under the natural surjection
V — V/V;. Then we find

Vi/Vifl = Z/{i/ui,1 foreachi=2,--- ,n.

Moreover, by construction we have (V1) > u(Us) whenever the filtration (3.14)) is not trivial.
Therefore V admits a Harder-Narasimhan filtration

0=VoCWVIC:--CV,=V. (3.15)

It remains to show that (3.15)) is a unique Harder-Narasimhan filtration of V. Assume
that V admits another Harder-Narasimhan filtration

O=Wo Wi C---CW,=V. (3.16)

Since W) is a nonzero subbundle of V, Lemma [3.3.21 yields u(W;) < p(V1). Then by sym-
metry we obtain p(V;) < p(Wi), and thus find p(V1) = p(Wr). Now we have

p(W1) = p(V1) > p(Vo/V1) = pla/Us)

unless the filtration is trivial. It follows by Lemma that Homp, W1, V/V1)
vanishes. We then find W; C V; by observing that the natural map W; < V — V/V; must
be zero. By symmetry we also obtain V1 C W, and consequently deduce that V; and Wy are
equal. The filtration then induces a Harder-Narasimhan filtration

0:W1/V1C--'W1/V1:V/V1, (3.17)

which must coincide with the filtration (3.14)) by the induction hypothesis. Since each W; is
the preimage of W;/V; under the natural surjection V — V/Vi, we deduce that the filtrations
(3-15) and (3.16|) coincide. O

Remark. A careful examination of our proof shows that Theorem is a formal conse-
quence of Proposition [3.3.4] and Proposition In other words, Theorem read-
ily extends to any exact category ¢ equipped with assignments rky : ¢ — Z>¢ and
degy : € — Z that satisfy the following properties:

(i) Both rkey and degy, are additive on short exact sequences.

(ii) Every monomorphism f : A — B in ¥ factors through some admissible monomor-

phism f : A — B with kg (A) = rkg (A) and degy (A) < degy, (A).
Such a category is called a slope category.

We will see that the category of vector bundles on the Fargues-Fontaine curve is closely
related to two other slope categories, namely the category of isocrystals and the category of
filtered isocrystals. This fact will be crucial for studying the essential image of the crystalline

functor in
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3.4. Semistable bundles and unramified covers

In this subsection, we construct semistable vector bundles on the Fargues-Fontaine curve
by studying its unramified covers.

Definition 3.4.1. Let h be a positive integer.

(1) We denote by Ej, the degree r unramified extension of @Q,, and define the degree h
unramified cover of X to be the natural map

Th - X XSpeC (Qp) SpeC (Eh) — X
(2) We write Xh =X XSpeC(Qp) SpeC (Eh) and Ph — @BW}L:pn‘
n>0

LEMMA 3.4.2. Let r and n be integers with » > 0. Given a positive integer h and a nonzero
homogeneous element f € P, we have a canonical isomorphism

B[1/f]7 =" g, By = B[1/f)7"="".

PRrROOF. The group Gal(E}/Q)) is cyclic of order h, and admits a canonical generator ~y
which lifts the p-th power map on F,». Moreover, for every n € Z there exists an action of
Gal(Ep,/Qp) on B[l/f]wh:pnh such that v acts via p~"¢". We thus find

T_,n rh__,n G 1(E /Q )
B[1/fF =" = (Bl

and consequently deduce the desired isomorphism by the Galois descent for vector spaces. [

ProprosITION 3.4.3. For every positive integer h, we have a canonical isomorphism
Xp, = Proj (Pp) .

Proor. By Lemma we have B¥=P" ®q, En = B#"=P"" for every n € Z, and conse-
quently obtain a natural isomorphism

X, = PI‘Oj (P ®Qp Eh) = PI‘Oj @ Bcph:pnh ~ PI‘Oj @ B(ph:pn
n>0 n>0

as desired. n
We invoke the following generalization of Corollary [3.1.10] without proof.

PROPOSITION 3.4.4. Let h and n be positive integers. Every nonzero element f € B#"=p"
admits a factorization

f=fifo  with fi € BF'7
where the factors are uniquely determined up to E;‘-multiple.

Remark. Let us briefly sketch the proof of Proposition The theory of Lubin-Tate
formal groups yields a unique 1-dimensional p-divisible formal group law ppr over Og, with

(D] prr () = pt + #". Denote by Grr the associated p-divisible group over Og,. By means of
the logarithm for G, we can construct a group homomorphism
. ; h_
logh : GLT(OF) = ELHGLT(OF/mlFOF) — B¥Y 7P,

2

It is then not hard to extend the results from and § with logy,, Grr(OF), ",
#", Py, and X}, respectively taking the roles of log, 1 + mp, ¢, ¢, P, and X. We refer the
readers to [Lur, Lecture 22-26] for details.
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Definition 3.4.5. Let d and h be integers with h > 0. We define the d-th twist of Ox, to be
the quasicoherent Ox, -module O (d) associated to Pp(d) := GB B?"="""" where we identify

ne”L
X, = Proj (Pp) as in Proposition
LEMMA 3.4.6. Let h be a positive integer. For every d € Z, the Ox,-module Oy (d) is a line
bundle on X}, with a canonical isomorphism O, (d) =2 O, (1)

PROOF. The assertion follows from Proposition by a general fact as stated in [Stal,
Tag 01MT)]. O

Definition 3.4.7. Let h be a positive integer.

(1) For every positive integer r, we define the degree r unramified cover of X}, to be the
natural map

Trhh @ Xrh & Xp XSpec (Ey) Spec (Erp) — Xp.
(2) For every pair of integers (d,r) with r > 0, we write Op(d,r) := (7r4,1)+Orn(d).

(3) For every nonzero homogeneous f € P, we denote by Dp(f) the preimage of the
open subscheme D(f) := Spec (B[1/f]¥=') € X under m.

LEMMA 3.4.8. Let h be a positive integer.

(1) The scheme X}, is covered by open subschemes of the form Dy (f) for some nonzero
homogeneous element f € P.

(2) Given two nonzero homogeneous f and g in P, we have Dy (f) N Dy(g) = Dp(fg).
PROOF. Both statements evidently hold for h = 1 as we have X; = X = Proj (P). The
assertion for the general case then follows by the surjectivity of . O
ProPOSITION 3.4.9. Let d, h, and r be integers with A, > 0.
(1) The Ox,-module Oy (d,r) is a vector bundle on X} of rank r.
(2) Given a nonzero homogeneous f € P, there exists a canonical identification

On(d,r) (Dn(f)) = B[1/f]*

PROOF. The first statement follows from Lemma [3.4.6] since the morphism 7, 5, is finite
of degree r. The second statement is obvious by construction. O

hr:pd

PRrOPOSITION 3.4.10. Let d and r be integers with » > 0. Given arbitrary positive integers h
and n, there exists a natural identification

(Thnp) *On(d, 1) = Opp(dn, ).

PROOF. Let f € P be an arbitrary nonzero homogeneous element. Since Dy, (f) is the
inverse image of Dj,(f) under 7y, 5, we use Lemma and Proposition to find

(%) On(d. 7) (Dpn(£)) = On(d,7) (Di(f)) @ s B/

= B/ 0 o (BUSP 2o, B)
~ BL/f17"™"" @q, B

= B[/ 17" "

= Opn(dn, ) (Din(f)-

The desired assertion now follows by Lemma |3.4.8 U


https://stacks.math.columbia.edu/tag/01MT

170 IV. THE FARGUES-FONTAINE CURVE

PROPOSITION 3.4.11. Let d and r be integers with » > 0. Given arbitrary positive integers h
and n, we have a natural isomorphism

Op(dn,rn) = Op(d,r)®".
Proor. By Proposition |3.4.10| we obtain a natural isomorphism

On(dn,™n) = (Thr 1)« (Thor hr )« Ohnr (A1) = (T p) s (Thinr b )+ (Thir b ) O (d).-
Then we use the projection formula to find
(T b )« (T i )* Onre (d) 22 (Thir pr )+ O,y @0, Onr(d) 2 OFT @0y, Opr(d) = Opy(d)®7,
and consequently deduce the desired assertion. O
PRrROPOSITION 3.4.12. Let h be a positive integer. We have a canonical isomorphism

On(dy,r1) ®0x, Op(da,12) = Op(dyra + dary, m172)

for all integers dy,do, 71,72 With 1,79 > 0.

PROOF. Let g and [ respectively denote the greatest common divisor and the least common
multiple of 71 and ra. Since r;/g and ra/g are relatively prime integers, the fields E,,; and
E,,; are linearly disjoint finite extensions of Eg, with E, ,FE,,, = Ej,. Hence we have an
identification Ej, = E, ) ® Egn E,,n, which gives rise to a cartesian diagram

Tih,roh

Xin Xroh
ﬂlh,rlhl lT"TQh,gh
Trih,gh
Xrlh Xgh

where all arrows are finite étale. Let us now write 7} := 71 /g and % := r3/g. Then we find
Ogn(d1,m1) ®0x , Ogn(da, ) = (Wringn)+(Orin(dr)) ®ox , (Trsh.gh)«(Orsn(da))

(Tih,gh )+ ((ﬂ'lh,rlh)*orlh(dl) ®0x,, (Wlh,rzh)*orgh(d2)>

(Tih,gh)+ (Olh(dlr’l) ®0x,, Om(dzré))
= (min,gh )« O (dir + dary)
= Ogp(dy7] + darh, ri15)

1

12

where the isomorphisms respectively follow from the Kiinneth formula, Proposition [3.4.10)
and Lemma We thus use the projection formula, Proposition [3.4.10] and Proposition
[3.4.11] to obtain an identification

Tghh)+ (Ogh(dh?”/l) ®ox,, Ogh(d%?“é)@g)
ah,n)sOgn(diry + dorh, r175)

p(diry 4 dorhy, grire)®9

n(diry + dara, r172),

thereby completing the proof. O
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PROPOSITION 3.4.13. Let d and 7 be ingeters with » > 0. For every positive integer h, there
exists a canonical isomorphism

Oh(d, 7")\/ = Oh(—d, 7“).
PRrOOF. Proposition [3.4.11 and Proposition |3.4.12| together yield a natural map

v
On(d,r) ®ox, On(—d,r) = (’)??22 o (’)?@Z ®ox, (O%;) — Oy,

where the last arrow is given by the trace map. It is straightforward to verify that this map
is a perfect pairing, which in turn yields the desired isomorphism. O

PRrOPOSITION 3.4.14. Let d and r be integers with r > 0.

(1) The vector bundle O(d,r) := O1(d,r) on X is semistable of rank  and degree d.
(2) If d and r are relatively prime, then the bundle O(d, r) is stable.

PROOF. Proposition and Proposition together yield a natural isomorphism
O(d,r)®" = O(dr",r") = O(d)®"". (3.18)

Moreover, we find deg ((’)(d)@”r) = dr"” by Proposition Therefore it follows by Proposi-
tion[3.3.6|and Proposition that O(d, r) is of rank r and degree d. Furthermore, since O(d)
is stable as noted in Example we find by Proposition that O(d)®"" is semistable,
and consequently deduce by (3.18)) and Proposition that O(d,r) is semistable as well.

Let us now assume that d and r are relatively prime. Take an arbitrary nonzero proper
subbundle V of O(d,r). We have u(V) # d/r as rk(V) is less than rk(O(d,r)) = r. Hence we
find (V) < A by the semistability of O(d,r), thereby deducing that O(d,r) is stable. O

Remark. Proposition readily extends to Op(d,r) and X, for every positive integer h,
as it turns out that X is a complete algebraic curve. In fact, extending the remark after
Proposition it is not hard to show that all results from remain valid with ", Py,
Xpn, and Op(d) respectively in place of ¢, P, X, and O(d); in particular, X} is a Dedekind
scheme whose Picard group is isomorphic to Z.

Definition 3.4.15. Let A = d/r be a rational number, written in a reduced form with r > 0.
We refer to O(\) := O1(d, r) as the canonical stable bundle on X of slope A.

PROPOSITION 3.4.16. Let X\ be a rational number.

(1) There exists a canonical isomorphism O(\)Y = O(-\).

(2) Given a rational number X', we have a natural isomorphism
O\) ®oy, O(N) = O+ X))o

for some positive integer n.

PROOF. The first statement is a special case of Proposition [3.4.13] The second statement
follows from Proposition and Proposition [3.4.12] O

Remark. By the remark after Proposition for every positive integer h we can define
the canonical stable bundle O () of slope A on X}, and extend Proposition [3.4.16| to Op(A).



172 IV. THE FARGUES-FONTAINE CURVE
3.5. Classification of the vector bundles

In this subsection, we describe a complete classification of vector bundles on the Fargues-
Fontaine curve. We invoke the following technical result without proof.

PRrROPOSITION 3.5.1. Let X\ be a rational number.

(1) A vector bundle on X is semistable of slope A if and only if is isomorphic to O(\)®"
for some n > 1.

(2) If we have A > 0, the cohomology group H'(X,O()\)) vanishes.

Remark. The second statement is relatively easy to prove. Let us write A = d/r where d and
r are relatively prime integers with » > 0. As remarked after Proposition [3.4.14] Theorem
is valid with O,(d) and X, respectively in place of O(d) and X. Hence for A > 0 we find

HY (X, 0\) = H'(X, (7,).0,(d)) = H'(X,, 0,(d)) = 0.

On the other hand, the first statement is one of the most technical results from the original
work of Fargues and Fontaine [FF18]. Here we can only sketch some key ideas for the proof.
We refer the curious readers to [FEF14l §6] for a good exposition of the proof.

The if part of the first statement is immediate by Proposition [3.4.14] In order to prove the
converse, it is essential to simultaneously consider all unramified covers of X; more precisely,
we assert that every semistable vector bundle V on X}, of slope A is isomorphic to Op(\)®"
for some n > 1, where we set Op(\) := Op(d,r). The proof of this statement is given by a
series of dévissage arguments as follows:

(a) We may replace V with (m,p,,)*V to assume that A is an integer; this reduction is
based on the identification (w4 )« (Trnr)*On(A) = Op(d)®" given by Proposition
and the fact that (m,,)*V is semistable of slope d as seen by an elementary
Galois descent argument based on Theorem

(b) We may replace V by V(=A) := V ®oy, Op(—A) to further assume A = 0; this
reduction is based on the identification Op(\) = Oy ®0x, 0), and the fact that
V(—A) is semistable of slope 0 as easily seen by Proposition

(c) With X\ = 0, it suffices to prove that H°(X},V) does not vanish; indeed, any nonzero
global section of V gives rise to an exact sequence of vector bundles on X},

0 — Oy, 1% W > 0
where W is semistable of slope 0 by Proposition[3.3.18] thereby allowing us to proceed
by induction on rk(V) with the identification Exté)xh (On, Op) & HY (X}, Ox, ) = 0.

(d) The proof further reduces to the case where V fits into a short exact sequence

0 —— Op(—=1/n) — V —— Op(1) —— 0
with n = rk()) — 1; this reduction involves a generalization of Grothendieck’s argu-

ment for the classification of vector bundles on the projective line.

(e) The exact sequence above turns out to naturally arise from p-divisible groups, as we
will remark after Example [3.5.4} as a consequence the assertion eventually follows
from some results about period morphisms on the Lubin-Tate spaces due to Drinfeld
[Dri76], Gross-Hopkins [GH94], and Laffaille [Laf85].

COROLLARY 3.5.2. The tensor product of two semistable vector bundles on X is semistable.

PRrooOF. This is an immediate consequence of Proposition and Proposition O
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THEOREM 3.5.3 (Fargues-Fontaine [FF18]). Every vector bundle V on X admits a unique
Harder-Narasimhan filtration

0=VoCWViC---CV,=V,

which (noncanonically) splits into a direct sum decomposition
n
Y~ Pom)em
i=1
where we set A\; := u(V;/V;_1) for each i =1,--- ,n.

PrOOF. Existence and uniqueness of the Harder-Narasimhan filtration is an immediate
consequence of Theorem [3.3.22] Hence it remains to prove that the Harder-Narasimhan
filtration splits. Let us proceed by induction on n. If we have n = 0, then the assertion is
trivial. We henceforth assume n > 0. By construction each successive quotient V;/V;_; is
semistable of slope \;. Hence Proposition yields an isomorphism

Vi/Vie1 = O(\;)®m foreachi=1,---,n (3.19)
where m; is a positive integer. Moreover, by the induction hypothesis, the filtration
0=V CV1 C---CVp_1

splits into a direct sum decomposition
n—1
Vier ~ P o). (3.20)
i=1

Hence it suffices to establish the identity
Exty, (V/Va-1,Va-1) = 0. (3.21)
For each i = 1,--- ,n, Proposition yields an identification
Exté, (O(An), O(Ni)) =2 H (X, 0(N) ®ox O(An)Y) = HY (X, 0N — An)®™)
where n; is a positive integer. Since we have \; > A\, for each i = 1,--- ,n, we find
Ext%gx (O(Mn),0(N\)) =0 foreachi=1,---,n

by Proposition [3.5.1 Therefore we deduce the identity ([3.21]) by the decompositions ([3.19)
and (]3.20)), thereby completing the proof. [l

Remark. Theorem [3.5.3]is an analogue of the fact that every vector bundle W on the complex
projective line IP’}C admits a direct sum decomposition

l
W= P Opi(dj)® with d; € Z.
j=1

The only essential difference is that semistable vector bundles on X may have rational slopes,
whereas semistable vector bundles on ]P’(lc have integer slopes. This difference comes from the
fact that we have H'(X,O(—1)) # 0 and H'(PL, (’)P}C(—l)) = 0 as remarked after Theorem
B.2.9

It is worthwhile to mention that an equivalent result of Theorem [3.5.3| was first obtained
by Kedlaya [Ked05]. In fact, Kedlaya’s result can be reformulated as a classification of vector
bundles on the adic Fargues-Fontaine curve, which recovers Theorem by Theorem
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Example 3.5.4. Let us write W(F,) for the ring of Witt vectors over F,, and Kj for the
fraction field of W (FF,). Let N be an isocrystal over K, which admits a decomposition

N ~ @N )& with \; € Q. (3.22)
We assert that N naturally gives rise to a vector bundle £(N) on X with an isomorphism

@ O(\) ™. (3.23)

We may regard Kg as a subring of B under the identification

Ko = W(E)1/p) = { Y lealp € Ail1/p] : e €F, |

Then by construction ¢ restricts to the Frobenius automorphism of K, and thus acts on N
and NV via the Frobenius automorphisms ¢y and ¢yv. Hence we get a graded P-module

P(N) := (N &, B)*".
n>0

Let us set £(N) to be the associated quasicoherent sheaf on X, and take an arbitrary
nonzero homogeneous element f € P. In addition, for each i = 1,--- ,n, we write \; := d;/r;
where d; and r; are relatively prime integers with r; > 0. By construction we have

END) = (N @x, BI/f)7 = (Homuey (N, Ko) @iy B/ )
~ Homg, (N, B[1/f])¥=". :

Moreover, since each N();) admits a basis (@7 (n)) for some n € N();) with ¢"(n) = p%

there exists an identification

Homy, (N (N), B1/f)¢~" 2 B[1/f]7"="" = O(\)(D(f)) (3.25)

where the last isomorphism follows from Proposition As f € P is arbitrarily chosen,
we obtain the isomorphism (3.23) by (3.22), (3.24) and (3.25)).

n,

Remark. As noted in Chapter [, Theorem [2.3.24] every isocrystal over Ky admits a direct
sum decomposition as in (3.22)). Hence by Theorem and Example we obtain an

essentially surjective functor

& : p—Modg, — Buny

where p—Modg, and Buny respectively denote the category of isocrystals over K and the
category of vector bundles on X. Furthremore, if we have 0 < A; <1 for each i =1,--- ,n, it
turns out that there exists a p-divisible group G over I, with

5( 1/p @ (’) GamZ

However, the functor £ is not an equivalence of categories; indeed, for arbitrary rational
numbers k and A with k£ < A, we have

Homg_nody, (N(£),N(A)) =0 and  Homo, (E(N(k)),E(N(N))) # 0.
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4. Applications to p-adic representations

In this section, we prove some fundamental results about p-adic representations and period
rings by exploiting our accumulated knowledge of the Fargues-Fontaine curve. The primary
references for this section are Fargues and Fontaine’s survey paper [FF12] and Morrow’s notes
[Mor].

4.1. Geometrization of p-adic period rings

Throughout this section, we let K be a p-adic field with the absolute Galois group 'k,
the inertia group Ik and the residue field k. We also write W (k) for the ring of Witt vectors
over k, and K for its fraction field.

PRrROPOSITION 4.1.1. The tilt of Cg is algebraically closed.

PROOF. Let f(x) be an arbitrary monic polynomial of degree d > 0 over (CZ(. We wish to
show that f(z) has a root in (C'k. Take an element m in the maximal ideal of (’)Ck;( . We may

replace f(x) by m™®f(z/m™) for some sufficiently large n to assume that f(x) is a polynomial
over O(Ct;( . Moreover, we may assume d > 1 since otherwise the assertion would be obvious.

Let us now write
f(l‘) =z + Clxdil + -ty with ¢; € O(Cz{
Proposition and Proposition from Chapter together yield an identification
O(C?( = lln O(CK/pO(CK' (4'1)

c—cP
Write (¢;5,) for the image of each ¢; under this isomorphism, and choose a lift ¢;, € Oc¢, of
each ¢; . In addition, for each n > 0 we set
fa(@) =28+ ez 4 Fegn and };(l’) =2t p e 4 g

Then for each n > 1 we have

p
faoa(@P) =a® +cf 2Pl = (xd +oernr® 4+ Cd,n) = fu(z)P.  (42)

n
Moreover, since Cg is algebraically closed as noted in Chapter [T, Proposition [3.1.13} each
fn(x) admits a factorization

falz) = (z —an1) - (x — anq) with oy, ; € Ocy -

Let us denote by @, ; the image of each «, j under the natural surjection Oc, — Oc,. /pOc -
For each @, ; with n > 1 we obtain f,,—1 (&, ;*) = fu(an;)? =0 by (4.2), and in turn find

fn_l(afl,7j> = (afL,j —Qn-11) (afz,j — an-1,4) € pOgy-

Hence for each o, j with n > 1 we have oz"Z’ j— On—11 € p/ dO(cK for some [, and consequently

obtain an,jpd = ozn_l’lpdf1 by Proposition in Chapter It follows that there exists
a sequence of integers (j,) with an,jnpd = Qn_1,j, 1" "' for all n > 1. Let us now set

o= (an+d_1’jn+d71pd71). Then under the identification (4.1)) we find

f(a) = (fn (Oén—kd—l,jn_;,_d_lpd_l)) = (fn+d—1 (Oén+d—1,jn+d_1)) =0
where the second identity follows by . O

Remark. Our proof above readily extends to show that the tilt of an algebraically closed
perfectoid field is algebraically closed.
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For the rest of this section, we take F' = (Cz{ and regard Cx as an untilt of /. We also

fix an element p’ € Op with (pb)tj = p and set £ := [p’] — p € Aipe. In addition, we choose a
valuation vp on F with vp(p’) = 1.

PROPOSITION 4.1.2. Let ¢ be an element in O with ef = 1 and (61/7’)ti # 1.

(1) We have € € 1 +mj,.

(2) The element t := log(e) € B¥=P is a prime in P, and gives rise to a closed point oo
on X with the following properties:

(i) The residue field at oo is naturally isomorphic to Cg-.

(ii) The completed local ring at oo is naturally isomorphic to B(TR.

PROOF. The first statement is an immediate consequence of Lemma [2.2.21] from Chapter
[11] (or the proof of Proposition . We then observe by Proposition that t = log(e)
vanishes at an element y., € Y represented by Cg, and consequently deduce the second
statement from Proposition [2.4.7] and Theorem [2.4.8] O

PROPOSITION 4.1.3. There exists a natural isomorphism

By = 1im B/ ker(fc,, (4.3)
J

which induces a topology on B('fR with the following properties:

(i) The subring Ay, of Biy is closed.
(ii) The map Oc, [1/p] : Aint[1/p] - Ck induced by ¢, is continuous and open with
respect to the p-adic topology on Cg.
(iii) The logarithm on 1+ mp induces a continuous map log : Z,(1) — Bl under the
natural identification Z,(1) = lim v (K)={c€Op:e*=1}.
(iv) The multiplication by any uniformizer yields a closed embedding on B:{R.

(v) The ring Bj; is complete.

PROOF. The natural isomorphism (4.3)) is given by Proposition Let us equip B('f

with the inverse limit topology via (4.3). The property |(ii)| follows from Proposition [1.2.16
and the fact that 0c, [1/p] extends to Oc, . The property is evident by Proposition

Let us now establish the property Recall that we may regard Ajn¢[1/p] as a subring

of B;R in light of Proposition [2.2.18| from Chapter Proposition implies that Ajnr
is complete with respect to all Gauss norms. Moreover, by Example we have || <1

for all p € (0,1), and consequently find that every &-adically Cauchy sequence in Ajy¢ is also
Cauchy with respect to all Gauss norms. We then deduce the assertion by the fact that ¢

generates ker(G/C;) as noted in Corollary

It remains to verify the properties and We find by Proposition that
ker(G/@;) = ¢B is closed in B, and in turn deduce that ker(G/(c;)j = ¢IB is closed in B for
each 7 > 1. Hence the property follows by the fact that every uniformizer of B(;FR is a
unit multiple of £ as noted in Proposition In addition, we find by the completeness of B
that B/ ker(O/(C;)j is complete for each j > 1, and consequently obtain the property |(iv)] O

Remark. Proposition proves Proposition [2.2.19] from Chapter [T} Our proof does not
rely on any unproved results such as Proposition [2.4.1] Proposition or Proposition |3.5.1
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We henceforth fix e € 1+ m}, t € B=P and oo € |X| as in Proposition We also
write BT for the closure of Aj[1/p] in B. In addition, for every p € (0,1) we denote by B,

the closure of Aj¢[1/p] in By, ).

LEMMA 4.1.4. Let V' be a normed space over Q,, and let T/B denote the p-adic completion
of the closed unit disk Vp in V. The completion of V' with respect to its norm is naturally
isomorphic to Vy[1/p].

PROOF. Since p is topologically nilpotent in Q,, we have a neighborhood basis for 0 € V'
given by the sets p™ V| for n > 0. This implies that a sequence ] in Vj is Cauchy with respect to
the norm on V if and only if it is p-adically Cauchy. Hence Vj coincides with the completion
of Vy with respect to the norm on V. The assertion now follows by the fact that every Cauchy
sequence in V becomes a Cauchy sequence in Vj after a multiplication by some power of p. [

Remark. The notion of p-adic completion is not meaningful for V', as we have p"V =V for
all n > 0.

PROPOSITION 4.1.5. Let ¢ be an element in (’);. There exists a canonical continuous isomor-
phism

o —

B, = Anl[9/8111/7)
where Ain/f[[c\]/p] denotes the p-adic completion of Ajn¢[[c]/p].

PrOOF. By construction, the topological ring Bﬁ; | is naturally isomorphic to the com-

pletion of Ajn¢[1/p] with respect to the Gauss |c|-norm. In light of Lemma [£.1.4] it is thus
sufficient to establish the identification

Asnllel /o) = { £ € AwilL/p] | f) <1}

Since we have |[c]/p|,; =1, the ring Ain¢[[c]/p] is contained in the set on the right hand side.
Let us now consider an arbitrary element f € Ain¢[1/p] with |f[, < 1. We wish to show that
f belongs to Ajn¢[[c]/p]. Let us write the Teichmiiller expansion of f as

f= Z[cn]p" + Z[cn]p” with ¢, € O (4.4)
n<0 n>0
where the first summation on the right hand side contains only finitely many nonzero terms.
For every n € Z we find |c,||c[" < |fligg = 1, or equivalently [c,| < le|™™. Hence for every
n < 0 we have ¢, = ¢ "d, for some d,, € O, and consequently obtain

[enlp™ = [dn] - ([c]/p) ™" € Aunt[[c]/p].
The assertion is now evident by (4.4]). O

Remark. Given two elements ¢,d € Oy with |¢| < |d|, we can argue as above to obtain an
identification

—

Biied) = Aintllcl/p, p/[d]][1/p]

where Ajne[[c]/p, p/[d]] denotes the p-adic completion of Aiu¢[[c]/p, p/[d]]. This is in some sense
reminiscent of our discussion in Example which shows that for arbitrary positive real
numbers i, j € Z[1/p] the ring B[|w|i7|w|j] coincides with the completion of Aj¢[1/p, 1/[w]] with
respect to the ideal I generated by [@']/p and p/[w’]. We can use the above identification
to show that the natural map B — B;{R extends to a map B,y — B:{R for any closed
interval [a,b] C (0,1).
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PROPOSITION 4.1.6. We have natural continuous embeddings

+ +
B1/pp - BCI‘IS Bl/p'

PROOF. Let AY.. be the Ajs-subalgebra in Aje[1/p] generated by the elements of the
form £"/n! with n > 0. By definition we have B:;ls = Aeis[1/p], where Ay is naturally iso-
morphic to the p-adic completion of ASHS as noted in Chapter Proposition Moreover,

Proposition [4.1.5 yields natural identifications

By = Auwtll@®P)/pl1/sl and  BY, = Aullp)/p)l1/5)

—_—

where A [[(p°)P]/p] and Aine[[p°]/p] respectively denote the p-adic completions of Ap[[(p°)P]/p]
and Aiy¢[[p°]/p]. Hence it suffices to show

lnf[[( ) ]/pl C Agrls C Aine[[p ]/p] (4.5)
We obtain the first inclusion in (4.5)) by observing

b p
[p ]p = (£+p)p = (p_ 1)' ' Zf' +Z <I'L')>pi1§p ‘ € Agrls
=1

p p
In addition, we find

@:mﬂﬂw:w(m_g Auel[P)/p]  forall n >0

n! n! nl\ p
as p"/n! is an element of Z,, and consequently deduce the second inclusion in . ]
LEMMA 4.1.7. Let [a, b] be a closed subinterval of (0,1). There exists some e > 0 with
Ifl, < If15 for every f € Apne[1/p)].

PROOF. Let us set [ := —log,(b) and r := —log,(a). Since L is a concave piecewise
linear function as noted in Corollary [2.1.11] its graph on (0,[] should be bounded above by
the line which passes through the points (I, £L¢(1)) and (r, L¢(r)). Hence we have

Ls(s) < W(S_l)+£l for all s € (0,1],

and consequently find

—U(Ly(r) — L(1)) _ TLLy(r) +rLy(1)
+ L= .
r—1 r—1
Meanwhile, Proposition yields an integer n with
L(s) = —log, (|f\p,s> > —log,(p™"*) = ns for all s € (0, 00),

and in turn implies lir% L¢(s) > 0. We thus obtain rL¢(l) > IL¢(r), and consequently find

liH(l) ﬁf(s) <

\fly = p 56 < p= /DL O = | g7/t
as desired. ]

PROPOSITION 4.1.8. For every closed interval [a, b] C (0, 1), there exists a canonical continuous
embedding B — B;'.

PRrROOF. Lemma implies that every Cauchy sequence in Aj,¢[1/p] with respect to the
Gauss a-norm is Cauchy with respect to the Gauss b-norm. Hence the assertion is evident by
construction. Il
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For the rest of this section, we write Bt = li_rr>1B;r where the transition maps are the
natural injective maps given by Proposition and regard each B; as a subring of B*.
We also regard BY. as a subring of BT in light of Proposition

cris
PROPOSITION 4.1.9. The Frobenius automorphism of Aj;,¢[1/p] uniquely extends to an auto-
morphism T of BT with the following properties:

(i) ¢ and @™ agree on BT.
+

cris®

(ii) The Frobenius endomorphism of Bes and ¢ agree on B

(iii) o™ restricts to an isomorphism B ~ B, for every p € (0,1).

PROOF. Let @i, denote the Frobenius automorphism of Ajn¢[1/p]. Then we have

Pinf (Z[Cn]pn> = Z[Cﬁ}pn for all ¢, € Op,

and consequently find

’SOinf(f”pP = |f‘£ for all f € Amf[l/p] and pE (O> 1)
It follows by Lemma [1.2.15] that ¢ uniquely extends to a continuous ring isomorphism
@f : Bf ~ B;Q, for each p € (0,1). For every closed subinterval [a, b] of (0,1), the restriction
of gozr on B} is a continuous extension of yj,¢, and thus agrees with . Hence we obtain an
isomorphism

+. B —lim Bt ~1i + _ B+
" Bt =lim B, ~lim B, = BT.

It is evident by construction that ¢ is an extension of yi,¢ and each B:{ with p € (0,1).
The uniqueness of each cp; implies that ¢™ is a unique extension of ¢;,; with the property
Moreover, the restriction of ¢+ on B;is is a continuous extension of y;,¢, and thus agrees
with the Frobenius endomorphism on B;is by Lemma from Chapter

It remains to verify the property |(i)| of ¢ ™. By construction, both ¢ and ¢t extend ;.
In addition, the property implies that ™ restricts to an isomorphism

Bt =1lim B} ~lim B}, = B
— P — P
where the transition maps in each limit are the natural inclusions. Since BT is the closure

of Ain¢[1/p] in B, we deduce that this isomorphism agrees with the restriction of ¢ on BT,
thereby completing the proof. O

Remark. Let us give an alternative description of the ring B* and its Frobenius automor-
phism. We define the Gauss 1-norm on Aju¢[1/p] by

‘Z[Cn]pn)l = itelg(|cn|) for all ¢, € Op.

By construction we have |f|, = lin% | f|, for every f € Ain[1/p], and consequently find that
p—

the Gauss 1-norm is indeed a multiplicative norm. It is then straightforward to verify that
Bt is naturally isomorphic to the completion of Aj,¢[1/p] with respect to the Gauss 1-norm.
Hence we may obtain ¢ as a unique continuous extension of ¢ by Lemma [1.2.15

However, we avoid using this description because working with the Gauss 1-norm is often
subtle. The main issue is that the natural map Op — Ajn¢[1/p] given by the Teichmiiller
lifts is not continuous with respect to the Gauss 1-norm. In fact, it is not hard to show

liIr(1)|[l—|—c]—1\1:17é0.
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Definition 4.1.10. We refer to the map ' constructed in Proposition as the Frobe-

nius automorphism of BF. We often abuse notation and write ¢ for p* and the Frobenius
endomorphism of Bs.

PROPOSITION 4.1.11. The Frobenius endomorphism of B is injective.

PROOF. Proposition implies that ¢ is injective on Bcrls’ and in turn yields the
desired assertion as we have Beis = B;ls[l /t] and ¢(t) = pt by Proposition |3.1.11| from
Chapter [[IT} O

Remark. Proposition [£.1.11] proves Theorem [3.1.13] from Chapter [[TI]

PROPOSITION 4.1.12. We have identities
B+ = ﬂ <)0 CrlS and 1/t ﬂ SD CI‘lS

n>0 n>0
Proor. By Proposition |4.1.6| and Proposition 4.1.9| we have
B;r/ppnﬂ =9 (B;r/pp) Ce"(BL) Co (Bfr/p) B;r/ on for every n > 0,

and consequently find

ﬂ B+ - m Bl/pp m SO crls

p>0 n>0 n>0

The second identity then follows as we have Beyis = B, [1/t] and ¢(t) = pt by Proposition
B.I.11] from Chapter [ITI} O

ProOPOSITION 4.1.13. For every n € Z, we have

p=p" _ (gT\r=p" + ye=p"
B (B7)7™F = (Base) T

cris

PRrOOF. The first identity is an immediate consequence of Proposition(3.1.11] The second
identity follows from Proposition [4.1.12 O

(o

COROLLARY 4.1.14. We have X = Proj | @D(BL,,)*~"

Cris
n>0
PROPOSITION 4.1.15. There exists a canonical isomorphism B, 2 B[1/t]¥=!

PROOF. Proposition [1.1.12] and Proposition [£.1.13] together yield a natural identification
B[1/t)¥=' = BH[1/4]*=! = B?' = B,

Cris

as desired. 0

COROLLARY 4.1.16. The ring B, is a principal ideal domain.

PrOOF. By construction, the element ¢ induces the closed point co on X. Hence we
have an identification X\ { co } 2 Spec (B[1/t]*~"), and consequently deduce the assertion

by Theorem [2.4.8] O

Remark. Corollary was first proved by Fontaine prior to the construction of the
Fargues-Fontaine curve. Fontaine’s proof was motivated by a result by Berger [Ber08] that
B, is a Bézout ring, and eventually inspired the first construction of the Fargues-Fontaine
curve as we will soon describe in the subsequent subsection.
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4.2. Essential image of the crystalline functor

In this subsection, we describe the essential image of the functor D, using vector bundles
on the Fargues-Fontaine curve. Our discussion will be cursory, and will focus on explaining
some key ideas for studying p-adic Galois representations via vector bundles on the Fargues-
Fontaine curve. Throughout this subsection, let us write U := X\ { oo }.

PROPOSITION 4.2.1. Let M, be a free B.-module of finite rank, and let MJR be a B;’R—lattice
in Mg := M, XB, Bar.

(1) There exists a unique vector bundle V on X with
HU V)= M, and Vo = M
where 130\0 denotes the completed stalk of V at oo.
(2) The vector bundle V gives rise to a natural exact sequence

0 — HYX,V) — M. ®Mjz — Maqg — H*(X,V) — 0
where the middle arrow maps each (z,y) to x — y.

Remark. The first statement is in fact a standard application of the Beauville-Laszlo theorem
as stated in [BL95] or [Sta, Tag 0BP2|. The second statement then follows as a variant of
the Mayer-Vietoris long exact sequence.

Example 4.2.2. By Proposition and Proposition we have natural identifications
H'(U,0x)= B,  and  Ox. =B,

where @: denotes the completed local ring at oco. Hence by Therem and Proposition
we obtain a natural exact sequence

0 Qp » Be® Bjg — Bar —— 0,
which in turn yields the fundamental exact sequence
0 > Qyp B, » Bar/Bizx —— 0
as described in Chapter [[TI, Theorem

Remark. In fact, the Fargues-Fontaine curve was originally constructed by gluing Spec (B,)
and Spec (B:{R) using the fundamental exact sequence, partially motivated by Colmez’s theory
of Banach-Colmez spaces as developed in [Col02].

Definition 4.2.3. Let N be a filtered isocrystal over K. Let us write rk(N) and deg(N)
respectively for the rank and the degree of N as an isocrystal over Kj.

(1) We define the degree of the filtered vector space Nk, denoted by deg(Ng ), to be the
unique integer d with Fil?(det(Ng)) # 0.
(2) We define the degree of N by
deg®(N) := deg(N) — deg(Nk).
(3) If N is not zero, we define its slope by
R deg® (N
pr () =SB,
rk(N)
Remark. It is straightforward to verify that MF%. is a slope category as remarked after
Theorem [3.3.22] Hence every N € MF%. admits a unique Harder-Narasimhan filtration.


https://stacks.math.columbia.edu/tag/0BP2

182 IV. THE FARGUES-FONTAINE CURVE

Example 4.2.4. Let V be a crystalline I'-representation. We wish to show that Dcyis(V)
has degree 0. Proposition |3.2.14] from Chapter implies that det(V) is a crystalline I'-

~

representation with det(Deyis(V')) = Deris(det(V')), and consequently yield
deg®(Deis(V)) = deg®(det(Deris(V))) = deg®(Deris(det(V))).
Hence we may replace V with det(V) to assume dimg, V' = 1.
Let us choose a continuous character 1 : 'y — Q) with V'~ Q,(n). Proposition
and Proposition from Chapter [[T]] together imply that V' is Hodge-Tate with
Dcris(V)K = DdR(V) and gr(DdR(V)) = DHT(V)

Hence Proposition [1.1.13| from Chapter [I11] yields an integer n such that nx™(Ix) is finite. It
follows by Theorem [I.1.8] from Chapter [[I]] that n is the Hodge-Tate weight of V', which in
turn implies deg(Deyis(V) k) = n.

It remains to show that Deis(V) has degree n as an isocrystal. Let us denote by K™
the maximal unramified extension of K in K, and by Kun the p-adic completion of K. We
also write W (k) for the ring of Witt vectors over k, and K I for the fraction field of W (k).

Example “ 2| and Proposition m 3| from Chapter n together imply that V(n) ~ Q,(nx™)
is crystalline with

Dcris(v(n)) = Dcris(v) K Dcris(Qp(n))' (46)
We then find by Example from Chapter that nx"(Ik) is trivial. Moreover, by
construction K is a p-adic field with Ix as the absolute Galois group. Therefore we have

Deis(V(n)) = (V(n) ®q, Beris)'* C (V(1) @q, Beris)* = B = Ky

where the last identification follows from Theorem from Chapter [[T]] It follows by Propo-
sition from Chapter [III) that the Frobenius automorphism of Deis(V(n)) extends to the

Frobenius automorphism of K§", which in turn implies that Deis(V (n)) has degree 0 as an
isocrystal. In addition, as we have ¢(t) = pt by construction, we deduce by Example
from Chapter that Deis(Qp(n)) has degree —n as an isocrystal. The assertion is now
straightforward to verify by the natural isomorphism in MF¥..

Definition 4.2.5. Let N be a filtered isocrystal over K.

(1) We say that N is semistable if we have u®*(M) < p®*(N) for every nonzero filtered
subisocrystal M of N.

(2) We say that N is weakly admissible if it is semistable of slope 0.

(3) We say that N is admissible if it is in the essential image of D yis.

PROPOSITION 4.2.6. Every admissible filtered isocrystal over K is weakly admissible.

Remark. The proof of Proposition is mostly an elementary algebra, after replacing
K by the completion of the maximal unramified extension of K in light of the remark af-
ter Proposition [3.2.20| from Chapter Curious readers can find a detailed proof in [BCl
Theorem 9.3.4].

PropPoOSITION 4.2.7. Let N be a weakly admissible filtered isocrystal over K, and set
V = (N @k, Bexis)?~ ' NFil’(Ng ®@k Bagr).

(1) V is naturally a crystalline I'i-representation with dimg, (V) < dimg, (V).
(2) N is admissible if and only if we have dimg, (V) = dimg, (V).

Remark. We refer the readers to [BC| Proposition 9.3.9] for a complete proof. If N is
admissible, the assertions are evident by Proposition [3.2.18] from Chapter [[I1]
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PROPOSITION 4.2.8. Let N be a filtered isocrystal over K.
(1) There exists a unique vector bundle £'(N) on X with
HO(U,E'(N)) 2 (N ®5, Bais)?=>  and  &/(N)oo = Fil®(Ni @ Bar)
where SWOO denotes the completed stalk of &'(N) at oco.
(2) We have rk(N) = rk(£'(N)), deg®(N) = deg(&'(N)) and p®(N) = u(E'(N)).
(3) N is weakly admissible if and only if £'(N) is semistable of slope 0.

Remark. A complete proof of Proposition may be added later. Here we explain some
key ideas as sketched in [FF18| Lemma 10.5.5 and Proposition 10.5.6].

The first statement follows from Proposition once we verify verify using Theorem
2.3.24| from Chapter [l| that (N ®j¢, Beis)?~ " is a free Be-module with an identification

=1 o
0 e - :
(N QK Bcrls) OB BdR Nk ®k BdR

The second statement can be obtained by realizing £'(N) in a short exact sequence
00— &'(N) — EN) —— T —— 0

where T is a torsion sheaf supposed at co. The third statement is obtained as a special case of
the fact that the functor £ preserves the Harder-Narasimhan filtration, which is not hard to
prove by observing that the Harder-Narasimhan filtrations of N and &'(N) are stable under
the natural actions of I'g.

THEOREM 4.2.9 (Colmez-Fontaine [CF00]). A filtered isocrystal N over K is admissible if
and only if it is weakly admissible.

Proor. If N is admissible, then it is weakly admissible by Proposition Let us now

assume that N is weakly admissible, and set
V= (N ®K0 Bcris)ﬂo:l n FllO(NK XK BdR)-
In light of Proposition it suffices to show dimgq, (V') = dimg, (). Proposition
yields a semistable vector bundle £(N) on X of slope 0 with
HO(U,E'(N)) = (N ®ky Baris)?="  and  (N)ao = Fil’(Nx ®x Bag)
where Emoo denotes the completed stalk of &'(NN) at co. Hence by Proposition we
obtain a canonical isomorphism
H(X,&'(N)) 2 (N ®k, Beis)?~' NFil’(Ng @k Bar) = V.

Moreover, Theorem and Proposition together imply that £'(N) is isomorphic to
0% where we set 7 := dimg, (IN), and consequently yields an isomorphism

V= HYX,E(N)) ~H(X,0x)® = QF
by Proposition and Theorem We thus find dimg, (V) = dimg, (V) as desired. [
Remark. While the proof above greatly simplifies the original proof by Colmez-Fontaine

[CF00] and another proof by Berger [Ber08|, these prior proofs contained a number of

important ideas that contributed to the discovery of the Fargues-Fontaine curve.
COROLLARY 4.2.10. The functor D.s is an equivalence between Rep&if(F k) and the category
of weakly admissible filtered isocrystals over K.

PROOF. This is immediate by Theorem [3.2.19| from Chapter [[II] and Theorem £.2.9 O
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